Properties

Label 728.2.ds.b.461.4
Level $728$
Weight $2$
Character 728.461
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(293,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 6, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 13 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 461.4
Root \(-0.197958 + 1.72070i\) of defining polynomial
Character \(\chi\) \(=\) 728.461
Dual form 728.2.ds.b.349.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(1.72070 - 2.98034i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(1.25964 - 1.25964i) q^{5} +(-4.70104 - 1.25964i) q^{6} +(0.684771 - 2.55560i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-4.42162 - 7.65848i) q^{9} +(-2.18176 - 1.25964i) q^{10} +6.88280i q^{12} +(0.833829 + 3.50781i) q^{13} -3.74166 q^{14} +(-1.58669 - 5.92162i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-8.84325 + 8.84325i) q^{18} +(2.32794 + 0.623770i) q^{19} +(-0.922121 + 3.44140i) q^{20} +(-6.43827 - 6.43827i) q^{21} +(8.21056 + 4.74037i) q^{23} +(9.40209 - 2.51928i) q^{24} +1.82661i q^{25} +(4.48655 - 2.42298i) q^{26} -20.1090 q^{27} +(1.36954 + 5.11120i) q^{28} +(-7.50832 + 4.33493i) q^{30} +(-5.46410 - 1.46410i) q^{32} +(-2.35657 - 4.08170i) q^{35} +(15.3170 + 8.84325i) q^{36} -3.40834i q^{38} +(11.8892 + 3.55080i) q^{39} +5.03856 q^{40} +(-6.43827 + 11.1514i) q^{42} +(-15.2166 - 4.07727i) q^{45} +(3.47019 - 12.9509i) q^{46} +(-6.88280 - 11.9214i) q^{48} +(-6.06218 - 3.50000i) q^{49} +(2.49520 - 0.668586i) q^{50} +(-4.95204 - 5.24188i) q^{52} +(7.36040 + 27.4694i) q^{54} +(6.48074 - 3.74166i) q^{56} +(5.86474 - 5.86474i) q^{57} +(-3.79545 + 14.1648i) q^{59} +(8.66986 + 8.66986i) q^{60} +(-1.28827 - 2.23135i) q^{61} +(-22.5998 + 6.05560i) q^{63} +8.00000i q^{64} +(5.46890 + 3.36825i) q^{65} +(28.2558 - 16.3135i) q^{69} +(-4.71314 + 4.71314i) q^{70} +(10.5472 + 2.82612i) q^{71} +(6.47371 - 24.1602i) q^{72} +(5.44392 + 3.14305i) q^{75} +(-4.65588 + 1.24754i) q^{76} +(0.498713 - 17.5407i) q^{78} +15.7417 q^{79} +(-1.84424 - 6.88280i) q^{80} +(-21.3367 + 36.9562i) q^{81} +(-11.4889 + 11.4889i) q^{83} +(17.5897 + 4.71314i) q^{84} +22.2786i q^{90} +(9.53554 + 0.271112i) q^{91} -18.9615 q^{92} +(3.71810 - 2.14664i) q^{95} +(-13.7656 + 13.7656i) q^{96} +(-2.56218 + 9.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 32 q^{8} - 16 q^{9} - 56 q^{15} + 32 q^{16} - 32 q^{18} - 96 q^{30} - 32 q^{32} + 48 q^{36} + 72 q^{39} - 24 q^{46} + 56 q^{50} + 88 q^{57} - 32 q^{60} - 112 q^{63} + 16 q^{65} - 16 q^{71}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.258819 0.965926i
\(3\) 1.72070 2.98034i 0.993447 1.72070i 0.397744 0.917496i \(-0.369793\pi\)
0.595703 0.803205i \(-0.296874\pi\)
\(4\) −1.73205 + 1.00000i −0.866025 + 0.500000i
\(5\) 1.25964 1.25964i 0.563328 0.563328i −0.366923 0.930251i \(-0.619589\pi\)
0.930251 + 0.366923i \(0.119589\pi\)
\(6\) −4.70104 1.25964i −1.91919 0.514246i
\(7\) 0.684771 2.55560i 0.258819 0.965926i
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) −4.42162 7.65848i −1.47387 2.55283i
\(10\) −2.18176 1.25964i −0.689934 0.398333i
\(11\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(12\) 6.88280i 1.98689i
\(13\) 0.833829 + 3.50781i 0.231263 + 0.972891i
\(14\) −3.74166 −1.00000
\(15\) −1.58669 5.92162i −0.409683 1.52896i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) −8.84325 + 8.84325i −2.08437 + 2.08437i
\(19\) 2.32794 + 0.623770i 0.534066 + 0.143103i 0.515765 0.856730i \(-0.327508\pi\)
0.0183009 + 0.999833i \(0.494174\pi\)
\(20\) −0.922121 + 3.44140i −0.206193 + 0.769521i
\(21\) −6.43827 6.43827i −1.40495 1.40495i
\(22\) 0 0
\(23\) 8.21056 + 4.74037i 1.71202 + 0.988436i 0.931831 + 0.362892i \(0.118211\pi\)
0.780189 + 0.625543i \(0.215123\pi\)
\(24\) 9.40209 2.51928i 1.91919 0.514246i
\(25\) 1.82661i 0.365322i
\(26\) 4.48655 2.42298i 0.879886 0.475185i
\(27\) −20.1090 −3.86997
\(28\) 1.36954 + 5.11120i 0.258819 + 0.965926i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −7.50832 + 4.33493i −1.37083 + 0.791446i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) −5.46410 1.46410i −0.965926 0.258819i
\(33\) 0 0
\(34\) 0 0
\(35\) −2.35657 4.08170i −0.398333 0.689934i
\(36\) 15.3170 + 8.84325i 2.55283 + 1.47387i
\(37\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(38\) 3.40834i 0.552906i
\(39\) 11.8892 + 3.55080i 1.90380 + 0.568582i
\(40\) 5.03856 0.796667
\(41\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(42\) −6.43827 + 11.1514i −0.993447 + 1.72070i
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) −15.2166 4.07727i −2.26836 0.607804i
\(46\) 3.47019 12.9509i 0.511652 1.90951i
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −6.88280 11.9214i −0.993447 1.72070i
\(49\) −6.06218 3.50000i −0.866025 0.500000i
\(50\) 2.49520 0.668586i 0.352874 0.0945523i
\(51\) 0 0
\(52\) −4.95204 5.24188i −0.686725 0.726917i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 7.36040 + 27.4694i 1.00162 + 3.73811i
\(55\) 0 0
\(56\) 6.48074 3.74166i 0.866025 0.500000i
\(57\) 5.86474 5.86474i 0.776804 0.776804i
\(58\) 0 0
\(59\) −3.79545 + 14.1648i −0.494126 + 1.84410i 0.0407464 + 0.999170i \(0.487026\pi\)
−0.534872 + 0.844933i \(0.679640\pi\)
\(60\) 8.66986 + 8.66986i 1.11927 + 1.11927i
\(61\) −1.28827 2.23135i −0.164946 0.285695i 0.771690 0.635999i \(-0.219412\pi\)
−0.936636 + 0.350304i \(0.886078\pi\)
\(62\) 0 0
\(63\) −22.5998 + 6.05560i −2.84731 + 0.762934i
\(64\) 8.00000i 1.00000i
\(65\) 5.46890 + 3.36825i 0.678334 + 0.417781i
\(66\) 0 0
\(67\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(68\) 0 0
\(69\) 28.2558 16.3135i 3.40160 1.96392i
\(70\) −4.71314 + 4.71314i −0.563328 + 0.563328i
\(71\) 10.5472 + 2.82612i 1.25173 + 0.335399i 0.823003 0.568037i \(-0.192297\pi\)
0.428723 + 0.903436i \(0.358964\pi\)
\(72\) 6.47371 24.1602i 0.762934 2.84731i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 5.44392 + 3.14305i 0.628610 + 0.362928i
\(76\) −4.65588 + 1.24754i −0.534066 + 0.143103i
\(77\) 0 0
\(78\) 0.498713 17.5407i 0.0564681 1.98609i
\(79\) 15.7417 1.77107 0.885537 0.464568i \(-0.153790\pi\)
0.885537 + 0.464568i \(0.153790\pi\)
\(80\) −1.84424 6.88280i −0.206193 0.769521i
\(81\) −21.3367 + 36.9562i −2.37074 + 4.10624i
\(82\) 0 0
\(83\) −11.4889 + 11.4889i −1.26107 + 1.26107i −0.310502 + 0.950573i \(0.600497\pi\)
−0.950573 + 0.310502i \(0.899503\pi\)
\(84\) 17.5897 + 4.71314i 1.91919 + 0.514246i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(90\) 22.2786i 2.34837i
\(91\) 9.53554 + 0.271112i 0.999596 + 0.0284203i
\(92\) −18.9615 −1.97687
\(93\) 0 0
\(94\) 0 0
\(95\) 3.71810 2.14664i 0.381469 0.220241i
\(96\) −13.7656 + 13.7656i −1.40495 + 1.40495i
\(97\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(98\) −2.56218 + 9.56218i −0.258819 + 0.965926i
\(99\) 0 0
\(100\) −1.82661 3.16378i −0.182661 0.316378i
\(101\) −11.4256 6.59655i −1.13689 0.656382i −0.191229 0.981546i \(-0.561247\pi\)
−0.945658 + 0.325164i \(0.894581\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −5.34796 + 8.68328i −0.524411 + 0.851465i
\(105\) −16.2198 −1.58289
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 34.8298 20.1090i 3.35150 1.93499i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −7.48331 7.48331i −0.707107 0.707107i
\(113\) −10.6125 18.3814i −0.998339 1.72917i −0.549068 0.835778i \(-0.685017\pi\)
−0.449271 0.893396i \(-0.648316\pi\)
\(114\) −10.1580 5.86474i −0.951386 0.549283i
\(115\) 16.3135 4.37119i 1.52124 0.407616i
\(116\) 0 0
\(117\) 23.1776 21.8961i 2.14277 2.02429i
\(118\) 20.7387 1.90916
\(119\) 0 0
\(120\) 8.66986 15.0166i 0.791446 1.37083i
\(121\) 9.52628 5.50000i 0.866025 0.500000i
\(122\) −2.57654 + 2.57654i −0.233269 + 0.233269i
\(123\) 0 0
\(124\) 0 0
\(125\) 8.59908 + 8.59908i 0.769125 + 0.769125i
\(126\) 16.5442 + 28.6554i 1.47387 + 2.55283i
\(127\) −11.2211 6.47851i −0.995713 0.574875i −0.0887357 0.996055i \(-0.528283\pi\)
−0.906977 + 0.421180i \(0.861616\pi\)
\(128\) 10.9282 2.92820i 0.965926 0.258819i
\(129\) 0 0
\(130\) 2.59936 8.70353i 0.227979 0.763350i
\(131\) −15.4531 −1.35014 −0.675071 0.737752i \(-0.735887\pi\)
−0.675071 + 0.737752i \(0.735887\pi\)
\(132\) 0 0
\(133\) 3.18821 5.52215i 0.276453 0.478831i
\(134\) 0 0
\(135\) −25.3301 + 25.3301i −2.18007 + 2.18007i
\(136\) 0 0
\(137\) 2.53589 9.46406i 0.216655 0.808569i −0.768922 0.639343i \(-0.779207\pi\)
0.985577 0.169226i \(-0.0541268\pi\)
\(138\) −32.6270 32.6270i −2.77740 2.77740i
\(139\) −10.0049 17.3290i −0.848604 1.46983i −0.882454 0.470399i \(-0.844110\pi\)
0.0338497 0.999427i \(-0.489223\pi\)
\(140\) 8.16340 + 4.71314i 0.689934 + 0.398333i
\(141\) 0 0
\(142\) 15.4422i 1.29588i
\(143\) 0 0
\(144\) −35.3730 −2.94775
\(145\) 0 0
\(146\) 0 0
\(147\) −20.8624 + 12.0449i −1.72070 + 0.993447i
\(148\) 0 0
\(149\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(150\) 2.30087 8.58698i 0.187866 0.701124i
\(151\) −2.72150 2.72150i −0.221473 0.221473i 0.587646 0.809118i \(-0.300055\pi\)
−0.809118 + 0.587646i \(0.800055\pi\)
\(152\) 3.40834 + 5.90342i 0.276453 + 0.478831i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −24.1436 + 5.73908i −1.93303 + 0.459494i
\(157\) 9.78477 0.780909 0.390455 0.920622i \(-0.372318\pi\)
0.390455 + 0.920622i \(0.372318\pi\)
\(158\) −5.76185 21.5035i −0.458388 1.71073i
\(159\) 0 0
\(160\) −8.72705 + 5.03856i −0.689934 + 0.398333i
\(161\) 17.7368 17.7368i 1.39786 1.39786i
\(162\) 58.2928 + 15.6195i 4.57992 + 1.22719i
\(163\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 19.8994 + 11.4889i 1.54449 + 0.891715i
\(167\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(168\) 25.7531i 1.98689i
\(169\) −11.6095 + 5.84983i −0.893035 + 0.449987i
\(170\) 0 0
\(171\) −5.51615 20.5866i −0.421831 1.57429i
\(172\) 0 0
\(173\) −20.0715 + 11.5883i −1.52601 + 0.881040i −0.526483 + 0.850186i \(0.676490\pi\)
−0.999524 + 0.0308546i \(0.990177\pi\)
\(174\) 0 0
\(175\) 4.66809 + 1.25081i 0.352874 + 0.0945523i
\(176\) 0 0
\(177\) 35.6852 + 35.6852i 2.68226 + 2.68226i
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 30.4332 8.15455i 2.26836 0.607804i
\(181\) 6.59930i 0.490522i −0.969457 0.245261i \(-0.921126\pi\)
0.969457 0.245261i \(-0.0788737\pi\)
\(182\) −3.11990 13.1250i −0.231263 0.972891i
\(183\) −8.86692 −0.655462
\(184\) 6.94038 + 25.9019i 0.511652 + 1.90951i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −13.7700 + 51.3905i −1.00162 + 3.73811i
\(190\) −4.29329 4.29329i −0.311468 0.311468i
\(191\) 2.38751 + 4.13530i 0.172754 + 0.299219i 0.939382 0.342873i \(-0.111400\pi\)
−0.766627 + 0.642092i \(0.778067\pi\)
\(192\) 23.8427 + 13.7656i 1.72070 + 0.993447i
\(193\) 19.8761 5.32578i 1.43071 0.383358i 0.541440 0.840739i \(-0.317879\pi\)
0.889271 + 0.457381i \(0.151213\pi\)
\(194\) 0 0
\(195\) 19.4489 10.5034i 1.39276 0.752167i
\(196\) 14.0000 1.00000
\(197\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −3.65322 + 3.65322i −0.258322 + 0.258322i
\(201\) 0 0
\(202\) −4.82901 + 18.0221i −0.339768 + 1.26803i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 83.8406i 5.82732i
\(208\) 13.8191 + 4.12715i 0.958180 + 0.286166i
\(209\) 0 0
\(210\) 5.93687 + 22.1567i 0.409683 + 1.52896i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 26.5714 26.5714i 1.82065 1.82065i
\(214\) 0 0
\(215\) 0 0
\(216\) −40.2179 40.2179i −2.73648 2.73648i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(224\) −7.48331 + 12.9615i −0.500000 + 0.866025i
\(225\) 13.9891 8.07659i 0.932604 0.538439i
\(226\) −21.2250 + 21.2250i −1.41186 + 1.41186i
\(227\) −22.8649 6.12664i −1.51760 0.406639i −0.598647 0.801013i \(-0.704295\pi\)
−0.918950 + 0.394374i \(0.870962\pi\)
\(228\) −4.29329 + 16.0228i −0.284330 + 1.06113i
\(229\) 21.2737 + 21.2737i 1.40581 + 1.40581i 0.779893 + 0.625913i \(0.215274\pi\)
0.625913 + 0.779893i \(0.284726\pi\)
\(230\) −11.9423 20.6847i −0.787454 1.36391i
\(231\) 0 0
\(232\) 0 0
\(233\) 9.77048i 0.640085i −0.947403 0.320043i \(-0.896303\pi\)
0.947403 0.320043i \(-0.103697\pi\)
\(234\) −38.3942 23.6467i −2.50991 1.54583i
\(235\) 0 0
\(236\) −7.59090 28.3296i −0.494126 1.84410i
\(237\) 27.0867 46.9155i 1.75947 3.04749i
\(238\) 0 0
\(239\) −10.6016 + 10.6016i −0.685759 + 0.685759i −0.961292 0.275533i \(-0.911146\pi\)
0.275533 + 0.961292i \(0.411146\pi\)
\(240\) −23.6865 6.34678i −1.52896 0.409683i
\(241\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) 43.2646 + 74.9364i 2.77542 + 4.80717i
\(244\) 4.46270 + 2.57654i 0.285695 + 0.164946i
\(245\) −12.0449 + 3.22742i −0.769521 + 0.206193i
\(246\) 0 0
\(247\) −0.246961 + 8.68609i −0.0157138 + 0.552683i
\(248\) 0 0
\(249\) 14.4719 + 54.0100i 0.917122 + 3.42274i
\(250\) 8.59908 14.8940i 0.543853 0.941982i
\(251\) 27.0553 15.6204i 1.70772 0.985950i 0.770338 0.637636i \(-0.220087\pi\)
0.937378 0.348315i \(-0.113246\pi\)
\(252\) 33.0884 33.0884i 2.08437 2.08437i
\(253\) 0 0
\(254\) −4.74260 + 17.6996i −0.297577 + 1.11057i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −12.8407 0.365083i −0.796345 0.0226415i
\(261\) 0 0
\(262\) 5.65622 + 21.1093i 0.349443 + 1.30414i
\(263\) −4.00654 + 6.93954i −0.247054 + 0.427910i −0.962707 0.270546i \(-0.912796\pi\)
0.715653 + 0.698456i \(0.246129\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.71036 2.33393i −0.534066 0.143103i
\(267\) 0 0
\(268\) 0 0
\(269\) −11.8415 20.5100i −0.721987 1.25052i −0.960202 0.279306i \(-0.909896\pi\)
0.238215 0.971212i \(-0.423438\pi\)
\(270\) 43.8730 + 25.3301i 2.67002 + 1.54154i
\(271\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(272\) 0 0
\(273\) 17.2158 27.9527i 1.04195 1.69177i
\(274\) −13.8563 −0.837092
\(275\) 0 0
\(276\) −32.6270 + 56.5117i −1.96392 + 3.40160i
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) −20.0098 + 20.0098i −1.20011 + 1.20011i
\(279\) 0 0
\(280\) 3.45026 12.8765i 0.206193 0.769521i
\(281\) −7.51669 7.51669i −0.448408 0.448408i 0.446417 0.894825i \(-0.352700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 23.6754 + 13.6690i 1.40736 + 0.812539i 0.995133 0.0985428i \(-0.0314181\pi\)
0.412226 + 0.911082i \(0.364751\pi\)
\(284\) −21.0945 + 5.65225i −1.25173 + 0.335399i
\(285\) 14.7749i 0.875191i
\(286\) 0 0
\(287\) 0 0
\(288\) 12.9474 + 48.3204i 0.762934 + 2.84731i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.53918 + 24.4045i −0.382023 + 1.42573i 0.460784 + 0.887512i \(0.347568\pi\)
−0.842807 + 0.538216i \(0.819098\pi\)
\(294\) 24.0898 + 24.0898i 1.40495 + 1.40495i
\(295\) 13.0617 + 22.6235i 0.760480 + 1.31719i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.78211 + 32.7537i −0.565714 + 1.89420i
\(300\) −12.5722 −0.725857
\(301\) 0 0
\(302\) −2.72150 + 4.71378i −0.156605 + 0.271248i
\(303\) −39.3200 + 22.7014i −2.25887 + 1.30416i
\(304\) 6.81668 6.81668i 0.390964 0.390964i
\(305\) −4.43346 1.18794i −0.253859 0.0680214i
\(306\) 0 0
\(307\) 21.6818 + 21.6818i 1.23745 + 1.23745i 0.961041 + 0.276405i \(0.0891433\pi\)
0.276405 + 0.961041i \(0.410857\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 16.6769 + 30.8801i 0.944143 + 1.74824i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −3.58147 13.3662i −0.202114 0.754301i
\(315\) −20.8398 + 36.0955i −1.17419 + 2.03375i
\(316\) −27.2654 + 15.7417i −1.53380 + 0.885537i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 10.0771 + 10.0771i 0.563328 + 0.563328i
\(321\) 0 0
\(322\) −30.7211 17.7368i −1.71202 0.988436i
\(323\) 0 0
\(324\) 85.3466i 4.74148i
\(325\) −6.40740 + 1.52308i −0.355419 + 0.0844854i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(332\) 8.41049 31.3884i 0.461585 1.72266i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −35.1794 + 9.42629i −1.91919 + 0.514246i
\(337\) 0.708287i 0.0385828i −0.999814 0.0192914i \(-0.993859\pi\)
0.999814 0.0192914i \(-0.00614103\pi\)
\(338\) 12.2404 + 13.7176i 0.665788 + 0.746141i
\(339\) −73.0437 −3.96719
\(340\) 0 0
\(341\) 0 0
\(342\) −26.1027 + 15.0704i −1.41147 + 0.814914i
\(343\) −13.0958 + 13.0958i −0.707107 + 0.707107i
\(344\) 0 0
\(345\) 15.0430 56.1414i 0.809890 3.02255i
\(346\) 23.1766 + 23.1766i 1.24598 + 1.24598i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) −36.0562 + 9.66123i −1.93004 + 0.517154i −0.953826 + 0.300360i \(0.902893\pi\)
−0.976218 + 0.216793i \(0.930440\pi\)
\(350\) 6.83455i 0.365322i
\(351\) −16.7674 70.5385i −0.894980 3.76506i
\(352\) 0 0
\(353\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(354\) 35.6852 61.8085i 1.89665 3.28509i
\(355\) 16.8456 9.72583i 0.894073 0.516193i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.4579 + 24.4579i 1.29084 + 1.29084i 0.934268 + 0.356572i \(0.116054\pi\)
0.356572 + 0.934268i \(0.383946\pi\)
\(360\) −22.2786 38.5877i −1.17419 2.03375i
\(361\) −11.4243 6.59580i −0.601277 0.347147i
\(362\) −9.01482 + 2.41551i −0.473808 + 0.126957i
\(363\) 37.8554i 1.98689i
\(364\) −16.7871 + 9.06596i −0.879886 + 0.475185i
\(365\) 0 0
\(366\) 3.24552 + 12.1124i 0.169646 + 0.633127i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 32.8422 18.9615i 1.71202 0.988436i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 40.4246 10.8317i 2.08752 0.559349i
\(376\) 0 0
\(377\) 0 0
\(378\) 75.2409 3.86997
\(379\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(380\) −4.29329 + 7.43619i −0.220241 + 0.381469i
\(381\) −38.6164 + 22.2952i −1.97838 + 1.14222i
\(382\) 4.77503 4.77503i 0.244312 0.244312i
\(383\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(384\) 10.0771 37.6083i 0.514246 1.91919i
\(385\) 0 0
\(386\) −14.5503 25.2019i −0.740591 1.28274i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −21.4668 22.7232i −1.08701 1.15063i
\(391\) 0 0
\(392\) −5.12436 19.1244i −0.258819 0.965926i
\(393\) −26.5902 + 46.0555i −1.34130 + 2.32319i
\(394\) 0 0
\(395\) 19.8288 19.8288i 0.997697 0.997697i
\(396\) 0 0
\(397\) −2.01458 + 7.51852i −0.101109 + 0.377344i −0.997875 0.0651619i \(-0.979244\pi\)
0.896766 + 0.442505i \(0.145910\pi\)
\(398\) 0 0
\(399\) −10.9719 19.0039i −0.549283 0.951386i
\(400\) 6.32757 + 3.65322i 0.316378 + 0.182661i
\(401\) −15.3336 + 4.10862i −0.765723 + 0.205175i −0.620481 0.784221i \(-0.713063\pi\)
−0.145242 + 0.989396i \(0.546396\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 26.3862 1.31276
\(405\) 19.6750 + 73.4280i 0.977658 + 3.64867i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(410\) 0 0
\(411\) −23.8426 23.8426i −1.17607 1.17607i
\(412\) 0 0
\(413\) 33.6006 + 19.3993i 1.65338 + 0.954578i
\(414\) −114.528 + 30.6878i −5.62876 + 1.50822i
\(415\) 28.9439i 1.42080i
\(416\) 0.579662 20.3878i 0.0284203 0.999596i
\(417\) −68.8617 −3.37217
\(418\) 0 0
\(419\) −1.48404 + 2.57043i −0.0725002 + 0.125574i −0.899996 0.435897i \(-0.856431\pi\)
0.827496 + 0.561471i \(0.189764\pi\)
\(420\) 28.0936 16.2198i 1.37083 0.791446i
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −46.0231 26.5714i −2.22983 1.28739i
\(427\) −6.58461 + 1.76434i −0.318652 + 0.0853825i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.00644 + 26.1484i 0.337488 + 1.25952i 0.901146 + 0.433515i \(0.142727\pi\)
−0.563658 + 0.826008i \(0.690607\pi\)
\(432\) −40.2179 + 69.6595i −1.93499 + 3.35150i
\(433\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.1568 + 16.1568i 0.772885 + 0.772885i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 61.9027i 2.94775i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 20.4448 + 5.47817i 0.965926 + 0.258819i
\(449\) −9.50515 + 35.4737i −0.448576 + 1.67411i 0.257743 + 0.966213i \(0.417021\pi\)
−0.706319 + 0.707894i \(0.749646\pi\)
\(450\) −16.1532 16.1532i −0.761468 0.761468i
\(451\) 0 0
\(452\) 36.7627 + 21.2250i 1.72917 + 0.998339i
\(453\) −12.7939 + 3.42811i −0.601110 + 0.161067i
\(454\) 33.4766i 1.57113i
\(455\) 12.3529 11.6698i 0.579111 0.547091i
\(456\) 23.4590 1.09857
\(457\) −8.82485 32.9348i −0.412809 1.54062i −0.789184 0.614157i \(-0.789496\pi\)
0.376375 0.926467i \(-0.377170\pi\)
\(458\) 21.2737 36.8471i 0.994055 1.72175i
\(459\) 0 0
\(460\) −23.8847 + 23.8847i −1.11363 + 1.11363i
\(461\) 11.2857 + 3.02398i 0.525625 + 0.140841i 0.511867 0.859064i \(-0.328954\pi\)
0.0137580 + 0.999905i \(0.495621\pi\)
\(462\) 0 0
\(463\) 4.20185 + 4.20185i 0.195277 + 0.195277i 0.797972 0.602695i \(-0.205906\pi\)
−0.602695 + 0.797972i \(0.705906\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −13.3467 + 3.57624i −0.618275 + 0.165666i
\(467\) 16.1251i 0.746180i 0.927795 + 0.373090i \(0.121702\pi\)
−0.927795 + 0.373090i \(0.878298\pi\)
\(468\) −18.2487 + 61.1027i −0.843547 + 2.82447i
\(469\) 0 0
\(470\) 0 0
\(471\) 16.8367 29.1619i 0.775792 1.34371i
\(472\) −35.9205 + 20.7387i −1.65338 + 0.954578i
\(473\) 0 0
\(474\) −74.0022 19.8288i −3.39903 0.910768i
\(475\) −1.13938 + 4.25224i −0.0522786 + 0.195106i
\(476\) 0 0
\(477\) 0 0
\(478\) 18.3625 + 10.6016i 0.839880 + 0.484905i
\(479\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(480\) 34.6794i 1.58289i
\(481\) 0 0
\(482\) 0 0
\(483\) −22.3420 83.3817i −1.01660 3.79400i
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 86.5291 86.5291i 3.92504 3.92504i
\(487\) 30.4461 + 8.15800i 1.37964 + 0.369674i 0.870992 0.491298i \(-0.163477\pi\)
0.508652 + 0.860972i \(0.330144\pi\)
\(488\) 1.88616 7.03925i 0.0853825 0.318652i
\(489\) 0 0
\(490\) 8.81748 + 15.2723i 0.398333 + 0.689934i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 11.9558 2.84198i 0.537918 0.127867i
\(495\) 0 0
\(496\) 0 0
\(497\) 14.4449 25.0193i 0.647941 1.12227i
\(498\) 68.4819 39.5381i 3.06875 1.77174i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) −23.4931 6.29496i −1.05064 0.281519i
\(501\) 0 0
\(502\) −31.2408 31.2408i −1.39434 1.39434i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) −57.3108 33.0884i −2.55283 1.47387i
\(505\) −22.7014 + 6.08282i −1.01020 + 0.270682i
\(506\) 0 0
\(507\) −2.54192 + 44.6660i −0.112891 + 1.98368i
\(508\) 25.9140 1.14975
\(509\) −5.18356 19.3453i −0.229757 0.857465i −0.980443 0.196805i \(-0.936943\pi\)
0.750686 0.660660i \(-0.229723\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) −46.8125 12.5434i −2.06682 0.553803i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 79.7598i 3.50107i
\(520\) 4.20130 + 17.6743i 0.184239 + 0.775070i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 20.6031 35.6856i 0.900910 1.56042i 0.0745957 0.997214i \(-0.476233\pi\)
0.826315 0.563209i \(-0.190433\pi\)
\(524\) 26.7655 15.4531i 1.16926 0.675071i
\(525\) 11.7602 11.7602i 0.513258 0.513258i
\(526\) 10.9461 + 2.93299i 0.477272 + 0.127885i
\(527\) 0 0
\(528\) 0 0
\(529\) 33.4422 + 57.9236i 1.45401 + 2.51842i
\(530\) 0 0
\(531\) 125.263 33.5641i 5.43595 1.45656i
\(532\) 12.7528i 0.552906i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −23.6829 + 23.6829i −1.02104 + 1.02104i
\(539\) 0 0
\(540\) 18.5429 69.2031i 0.797960 2.97803i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) 0 0
\(543\) −19.6682 11.3554i −0.844043 0.487308i
\(544\) 0 0
\(545\) 0 0
\(546\) −44.4855 13.2859i −1.90380 0.568582i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 5.07177 + 18.9281i 0.216655 + 0.808569i
\(549\) −11.3925 + 19.7324i −0.486220 + 0.842158i
\(550\) 0 0
\(551\) 0 0
\(552\) 89.1387 + 23.8847i 3.79400 + 1.01660i
\(553\) 10.7794 40.2294i 0.458388 1.71073i
\(554\) 0 0
\(555\) 0 0
\(556\) 34.6580 + 20.0098i 1.46983 + 0.848604i
\(557\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −18.8526 −0.796667
\(561\) 0 0
\(562\) −7.51669 + 13.0193i −0.317072 + 0.549185i
\(563\) −40.1801 + 23.1980i −1.69339 + 0.977679i −0.741644 + 0.670794i \(0.765954\pi\)
−0.951746 + 0.306886i \(0.900713\pi\)
\(564\) 0 0
\(565\) −36.5218 9.78600i −1.53649 0.411700i
\(566\) 10.0064 37.3445i 0.420601 1.56970i
\(567\) 79.8345 + 79.8345i 3.35273 + 3.35273i
\(568\) 15.4422 + 26.7467i 0.647941 + 1.12227i
\(569\) 8.30850 + 4.79691i 0.348310 + 0.201097i 0.663941 0.747785i \(-0.268883\pi\)
−0.315631 + 0.948882i \(0.602216\pi\)
\(570\) −20.1829 + 5.40800i −0.845370 + 0.226516i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 16.4328 0.686490
\(574\) 0 0
\(575\) −8.65881 + 14.9975i −0.361097 + 0.625439i
\(576\) 61.2678 35.3730i 2.55283 1.47387i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) −23.2224 6.22243i −0.965926 0.258819i
\(579\) 18.3281 68.4016i 0.761692 2.84267i
\(580\) 0 0
\(581\) 21.4938 + 37.2284i 0.891715 + 1.54449i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.61426 56.7767i 0.0667415 2.34743i
\(586\) 35.7307 1.47602
\(587\) −8.31278 31.0237i −0.343105 1.28049i −0.894810 0.446447i \(-0.852689\pi\)
0.551705 0.834039i \(-0.313978\pi\)
\(588\) 24.0898 41.7248i 0.993447 1.72070i
\(589\) 0 0
\(590\) 26.1234 26.1234i 1.07548 1.07548i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 48.3230 + 1.37391i 1.97607 + 0.0561833i
\(599\) 43.0726 1.75990 0.879949 0.475068i \(-0.157577\pi\)
0.879949 + 0.475068i \(0.157577\pi\)
\(600\) 4.60175 + 17.1740i 0.187866 + 0.701124i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 7.43528 + 1.99228i 0.302537 + 0.0810646i
\(605\) 5.07167 18.9277i 0.206193 0.769521i
\(606\) 45.4028 + 45.4028i 1.84436 + 1.84436i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) −11.8068 6.81668i −0.478831 0.276453i
\(609\) 0 0
\(610\) 6.49104i 0.262814i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(614\) 21.6818 37.5540i 0.875007 1.51556i
\(615\) 0 0
\(616\) 0 0
\(617\) −11.1703 2.99306i −0.449698 0.120496i 0.0268600 0.999639i \(-0.491449\pi\)
−0.476558 + 0.879143i \(0.658116\pi\)
\(618\) 0 0
\(619\) 35.0197 + 35.0197i 1.40756 + 1.40756i 0.772288 + 0.635273i \(0.219112\pi\)
0.635273 + 0.772288i \(0.280888\pi\)
\(620\) 0 0
\(621\) −165.106 95.3240i −6.62547 3.82522i
\(622\) 0 0
\(623\) 0 0
\(624\) 36.0788 34.0840i 1.44431 1.36445i
\(625\) 12.5304 0.501218
\(626\) 0 0
\(627\) 0 0
\(628\) −16.9477 + 9.78477i −0.676287 + 0.390455i
\(629\) 0 0
\(630\) 56.9353 + 15.2558i 2.26836 + 0.607804i
\(631\) 12.4011 46.2815i 0.493680 1.84244i −0.0436231 0.999048i \(-0.513890\pi\)
0.537303 0.843389i \(-0.319443\pi\)
\(632\) 31.4833 + 31.4833i 1.25234 + 1.25234i
\(633\) 0 0
\(634\) 0 0
\(635\) −22.2952 + 5.97397i −0.884757 + 0.237070i
\(636\) 0 0
\(637\) 7.22251 24.1834i 0.286166 0.958180i
\(638\) 0 0
\(639\) −24.9921 93.2718i −0.988673 3.68978i
\(640\) 10.0771 17.4541i 0.398333 0.689934i
\(641\) −43.7806 + 25.2767i −1.72923 + 0.998371i −0.836090 + 0.548592i \(0.815164\pi\)
−0.893140 + 0.449780i \(0.851502\pi\)
\(642\) 0 0
\(643\) 16.7414 + 4.48583i 0.660215 + 0.176904i 0.573343 0.819315i \(-0.305646\pi\)
0.0868719 + 0.996219i \(0.472313\pi\)
\(644\) −12.9843 + 48.4580i −0.511652 + 1.90951i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) −116.586 + 31.2390i −4.57992 + 1.22719i
\(649\) 0 0
\(650\) 4.42584 + 8.19519i 0.173596 + 0.321442i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) −19.4653 + 19.4653i −0.760574 + 0.760574i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −35.7248 + 9.57242i −1.38953 + 0.372324i −0.874575 0.484891i \(-0.838859\pi\)
−0.514958 + 0.857215i \(0.672193\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −45.9558 −1.78343
\(665\) −2.93992 10.9719i −0.114005 0.425473i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 25.7531 + 44.6057i 0.993447 + 1.72070i
\(673\) −38.8844 22.4499i −1.49889 0.865382i −0.498886 0.866668i \(-0.666257\pi\)
−0.999999 + 0.00128586i \(0.999591\pi\)
\(674\) −0.967538 + 0.259251i −0.0372682 + 0.00998598i
\(675\) 36.7313i 1.41379i
\(676\) 14.2583 21.7417i 0.548398 0.836218i
\(677\) 38.6505 1.48546 0.742729 0.669592i \(-0.233531\pi\)
0.742729 + 0.669592i \(0.233531\pi\)
\(678\) 26.7358 + 99.7795i 1.02678 + 3.83201i
\(679\) 0 0
\(680\) 0 0
\(681\) −57.6032 + 57.6032i −2.20736 + 2.20736i
\(682\) 0 0
\(683\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(684\) 30.1408 + 30.1408i 1.15246 + 1.15246i
\(685\) −8.72700 15.1156i −0.333442 0.577538i
\(686\) 22.6826 + 13.0958i 0.866025 + 0.500000i
\(687\) 100.009 26.7972i 3.81557 1.02238i
\(688\) 0 0
\(689\) 0 0
\(690\) −82.1967 −3.12917
\(691\) 7.28537 + 27.1894i 0.277149 + 1.03433i 0.954388 + 0.298570i \(0.0965096\pi\)
−0.677239 + 0.735763i \(0.736824\pi\)
\(692\) 23.1766 40.1430i 0.881040 1.52601i
\(693\) 0 0
\(694\) 0 0
\(695\) −34.4309 9.22572i −1.30604 0.349952i
\(696\) 0 0
\(697\) 0 0
\(698\) 26.3950 + 45.7174i 0.999064 + 1.73043i
\(699\) −29.1194 16.8121i −1.10140 0.635891i
\(700\) −9.33617 + 2.50162i −0.352874 + 0.0945523i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −90.2200 + 48.7236i −3.40513 + 1.83895i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −24.6820 + 24.6820i −0.928264 + 0.928264i
\(708\) −97.4937 26.1234i −3.66404 0.981776i
\(709\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(710\) −19.4517 19.4517i −0.730007 0.730007i
\(711\) −69.6037 120.557i −2.61034 4.52125i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 13.3542 + 49.8385i 0.498721 + 1.86125i
\(718\) 24.4579 42.3624i 0.912761 1.58095i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) −44.5573 + 44.5573i −1.66055 + 1.66055i
\(721\) 0 0
\(722\) −4.82846 + 18.0201i −0.179697 + 0.670637i
\(723\) 0 0
\(724\) 6.59930 + 11.4303i 0.245261 + 0.424805i
\(725\) 0 0
\(726\) −51.7115 + 13.8560i −1.91919 + 0.514246i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 18.5289 + 19.6133i 0.686725 + 0.726917i
\(729\) 169.762 6.28747
\(730\) 0 0
\(731\) 0 0
\(732\) 15.3580 8.86692i 0.567646 0.327731i
\(733\) 27.0383 27.0383i 0.998682 0.998682i −0.00131730 0.999999i \(-0.500419\pi\)
0.999999 + 0.00131730i \(0.000419310\pi\)
\(734\) 0 0
\(735\) −11.1069 + 41.4514i −0.409683 + 1.52896i
\(736\) −37.9230 37.9230i −1.39786 1.39786i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(740\) 0 0
\(741\) 25.4626 + 15.6822i 0.935391 + 0.576100i
\(742\) 0 0
\(743\) 8.51314 + 31.7715i 0.312317 + 1.16558i 0.926462 + 0.376389i \(0.122834\pi\)
−0.614145 + 0.789193i \(0.710499\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 138.788 + 37.1880i 5.07797 + 1.36064i
\(748\) 0 0
\(749\) 0 0
\(750\) −29.5929 51.2564i −1.08058 1.87162i
\(751\) 27.7789 + 16.0381i 1.01367 + 0.585240i 0.912263 0.409605i \(-0.134333\pi\)
0.101403 + 0.994845i \(0.467667\pi\)
\(752\) 0 0
\(753\) 107.512i 3.91796i
\(754\) 0 0
\(755\) −6.85623 −0.249524
\(756\) −27.5401 102.781i −1.00162 3.73811i
\(757\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 11.7295 + 3.14290i 0.425473 + 0.114005i
\(761\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(762\) 44.5903 + 44.5903i 1.61534 + 1.61534i
\(763\) 0 0
\(764\) −8.27059 4.77503i −0.299219 0.172754i
\(765\) 0 0
\(766\) 0 0
\(767\) −52.8523 1.50268i −1.90838 0.0542588i
\(768\) −55.0624 −1.98689
\(769\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −29.1006 + 29.1006i −1.04735 + 1.04735i
\(773\) −34.3177 9.19540i −1.23432 0.330736i −0.418061 0.908419i \(-0.637290\pi\)
−0.816261 + 0.577683i \(0.803957\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −23.1830 + 37.6414i −0.830086 + 1.34778i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −24.2487 + 14.0000i −0.866025 + 0.500000i
\(785\) 12.3253 12.3253i 0.439908 0.439908i
\(786\) 72.6456 + 19.4653i 2.59118 + 0.694306i
\(787\) 12.7259 47.4939i 0.453631 1.69297i −0.238451 0.971154i \(-0.576640\pi\)
0.692082 0.721819i \(-0.256694\pi\)
\(788\) 0 0
\(789\) 13.7881 + 23.8817i 0.490870 + 0.850213i
\(790\) −34.3445 19.8288i −1.22192 0.705478i
\(791\) −54.2425 + 14.5342i −1.92864 + 0.516778i
\(792\) 0 0
\(793\) 6.75296 6.37958i 0.239805 0.226545i
\(794\) 11.0079 0.390655
\(795\) 0 0
\(796\) 0 0
\(797\) −0.592072 + 0.341833i −0.0209723 + 0.0121083i −0.510449 0.859908i \(-0.670521\pi\)
0.489477 + 0.872016i \(0.337188\pi\)
\(798\) −21.9438 + 21.9438i −0.776804 + 0.776804i
\(799\) 0 0
\(800\) 2.67434 9.98079i 0.0945523 0.352874i
\(801\) 0 0
\(802\) 11.2250 + 19.4422i 0.396368 + 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 44.6841i 1.57491i
\(806\) 0 0
\(807\) −81.5025 −2.86902
\(808\) −9.65803 36.0442i −0.339768 1.26803i
\(809\) −5.83746 + 10.1108i −0.205234 + 0.355476i −0.950207 0.311619i \(-0.899129\pi\)
0.744973 + 0.667094i \(0.232462\pi\)
\(810\) 93.1030 53.7530i 3.27131 1.88869i
\(811\) −25.4687 + 25.4687i −0.894326 + 0.894326i −0.994927 0.100600i \(-0.967924\pi\)
0.100600 + 0.994927i \(0.467924\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −40.0863 74.2265i −1.40073 2.59368i
\(820\) 0 0
\(821\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(822\) −23.8426 + 41.2966i −0.831607 + 1.44039i
\(823\) −33.5437 + 19.3665i −1.16926 + 0.675072i −0.953506 0.301376i \(-0.902554\pi\)
−0.215754 + 0.976448i \(0.569221\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 14.2013 52.9999i 0.494126 1.84410i
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 83.8406 + 145.216i 2.91366 + 5.04661i
\(829\) 5.36861 + 3.09957i 0.186460 + 0.107653i 0.590324 0.807166i \(-0.299000\pi\)
−0.403864 + 0.914819i \(0.632333\pi\)
\(830\) 39.5381 10.5942i 1.37239 0.367730i
\(831\) 0 0
\(832\) −28.0625 + 6.67063i −0.972891 + 0.231263i
\(833\) 0 0
\(834\) 25.2051 + 94.0669i 0.872783 + 3.25727i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 4.05448 + 1.08639i 0.140060 + 0.0375288i
\(839\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(840\) −32.4396 32.4396i −1.11927 1.11927i
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) −35.3363 + 9.46832i −1.21705 + 0.326106i
\(844\) 0 0
\(845\) −7.25506 + 21.9924i −0.249582 + 0.756562i
\(846\) 0 0
\(847\) −7.53248 28.1116i −0.258819 0.965926i
\(848\) 0 0
\(849\) 81.4767 47.0406i 2.79627 1.61443i
\(850\) 0 0
\(851\) 0 0
\(852\) −19.4517 + 72.5945i −0.666403 + 2.48705i
\(853\) −35.8212 35.8212i −1.22650 1.22650i −0.965280 0.261216i \(-0.915877\pi\)
−0.261216 0.965280i \(-0.584123\pi\)
\(854\) 4.82027 + 8.34895i 0.164946 + 0.285695i
\(855\) −32.8800 18.9833i −1.12447 0.649215i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0.440260 0.0150215 0.00751074 0.999972i \(-0.497609\pi\)
0.00751074 + 0.999972i \(0.497609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 33.1548 19.1419i 1.12926 0.651977i
\(863\) 40.2535 40.2535i 1.37025 1.37025i 0.510174 0.860071i \(-0.329581\pi\)
0.860071 0.510174i \(-0.170419\pi\)
\(864\) 109.877 + 29.4416i 3.73811 + 1.00162i
\(865\) −10.6858 + 39.8799i −0.363328 + 1.35596i
\(866\) 0 0
\(867\) −29.2519 50.6658i −0.993447 1.72070i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 16.1568 27.9844i 0.546512 0.946587i
\(875\) 27.8642 16.0874i 0.941982 0.543853i
\(876\) 0 0
\(877\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(878\) 0 0
\(879\) 61.4819 + 61.4819i 2.07373 + 2.07373i
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) 84.5607 22.6580i 2.84731 0.762934i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 89.9010 3.02199
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) −24.2404 + 24.2404i −0.812996 + 0.812996i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) 80.7853 + 85.5134i 2.69734 + 2.85521i
\(898\) 51.9371 1.73316
\(899\) 0 0
\(900\) −16.1532 + 27.9781i −0.538439 + 0.932604i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 15.5378 57.9877i 0.516778 1.92864i
\(905\) −8.31275 8.31275i −0.276325 0.276325i
\(906\) 9.36578 + 16.2220i 0.311157 + 0.538940i
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 45.7298 12.2533i 1.51760 0.406639i
\(909\) 116.670i 3.86970i
\(910\) −20.4628 12.6029i −0.678334 0.417781i
\(911\) −0.210840 −0.00698543 −0.00349271 0.999994i \(-0.501112\pi\)
−0.00349271 + 0.999994i \(0.501112\pi\)
\(912\) −8.58657 32.0455i −0.284330 1.06113i
\(913\) 0 0
\(914\) −41.7596 + 24.1099i −1.38129 + 0.797486i
\(915\) −11.1691 + 11.1691i −0.369240 + 0.369240i
\(916\) −58.1208 15.5734i −1.92037 0.514561i
\(917\) −10.5818 + 39.4919i −0.349443 + 1.30414i
\(918\) 0 0
\(919\) −15.7286 27.2428i −0.518840 0.898657i −0.999760 0.0218926i \(-0.993031\pi\)
0.480921 0.876764i \(-0.340303\pi\)
\(920\) 41.3694 + 23.8847i 1.36391 + 0.787454i
\(921\) 101.927 27.3113i 3.35861 0.899938i
\(922\) 16.5233i 0.544167i
\(923\) −1.11891 + 39.3542i −0.0368294 + 1.29536i
\(924\) 0 0
\(925\) 0 0
\(926\) 4.20185 7.27782i 0.138081 0.239164i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(930\) 0 0
\(931\) −11.9292 11.9292i −0.390964 0.390964i
\(932\) 9.77048 + 16.9230i 0.320043 + 0.554330i
\(933\) 0 0
\(934\) 22.0273 5.90219i 0.720755 0.193126i
\(935\) 0 0
\(936\) 90.1474 + 2.56305i 2.94656 + 0.0837759i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −24.5088 + 24.5088i −0.798964 + 0.798964i −0.982932 0.183968i \(-0.941106\pi\)
0.183968 + 0.982932i \(0.441106\pi\)
\(942\) −45.9986 12.3253i −1.49872 0.401580i
\(943\) 0 0
\(944\) 41.4775 + 41.4775i 1.34998 + 1.34998i
\(945\) 47.3882 + 82.0788i 1.54154 + 2.67002i
\(946\) 0 0
\(947\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(948\) 108.347i 3.51894i
\(949\) 0 0
\(950\) 6.22571 0.201989
\(951\) 0 0
\(952\) 0 0
\(953\) −0.932742 + 0.538519i −0.0302145 + 0.0174443i −0.515031 0.857171i \(-0.672220\pi\)
0.484817 + 0.874616i \(0.338886\pi\)
\(954\) 0 0
\(955\) 8.21640 + 2.20158i 0.265876 + 0.0712413i
\(956\) 7.76090 28.9641i 0.251005 0.936765i
\(957\) 0 0
\(958\) 0 0
\(959\) −22.4498 12.9614i −0.724943 0.418546i
\(960\) 47.3730 12.6936i 1.52896 0.409683i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 18.3281 31.7453i 0.590004 1.02192i
\(966\) −105.724 + 61.0396i −3.40160 + 1.96392i
\(967\) 17.7750 17.7750i 0.571606 0.571606i −0.360971 0.932577i \(-0.617555\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(968\) 30.0526 + 8.05256i 0.965926 + 0.258819i
\(969\) 0 0
\(970\) 0 0
\(971\) −30.9031 53.5257i −0.991728 1.71772i −0.607027 0.794681i \(-0.707638\pi\)
−0.384701 0.923041i \(-0.625695\pi\)
\(972\) −149.873 86.5291i −4.80717 2.77542i
\(973\) −51.1370 + 13.7021i −1.63938 + 0.439270i
\(974\) 44.5762i 1.42831i
\(975\) −6.48592 + 21.7170i −0.207716 + 0.695501i
\(976\) −10.3062 −0.329893
\(977\) 0.489704 + 1.82760i 0.0156670 + 0.0584701i 0.973317 0.229465i \(-0.0736978\pi\)
−0.957650 + 0.287936i \(0.907031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 17.6350 17.6350i 0.563328 0.563328i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −8.25834 15.2917i −0.262733 0.486494i
\(989\) 0 0
\(990\) 0 0
\(991\) −29.3819 + 50.8909i −0.933345 + 1.61660i −0.155787 + 0.987791i \(0.549791\pi\)
−0.777558 + 0.628811i \(0.783542\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −39.4641 10.5744i −1.25173 0.335399i
\(995\) 0 0
\(996\) −79.0761 79.0761i −2.50562 2.50562i
\(997\) −17.5488 30.3955i −0.555777 0.962635i −0.997843 0.0656519i \(-0.979087\pi\)
0.442065 0.896983i \(-0.354246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.b.461.4 yes 16
7.6 odd 2 inner 728.2.ds.b.461.1 yes 16
8.5 even 2 inner 728.2.ds.b.461.1 yes 16
13.11 odd 12 inner 728.2.ds.b.349.4 yes 16
56.13 odd 2 CM 728.2.ds.b.461.4 yes 16
91.76 even 12 inner 728.2.ds.b.349.1 16
104.37 odd 12 inner 728.2.ds.b.349.1 16
728.349 even 12 inner 728.2.ds.b.349.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.b.349.1 16 91.76 even 12 inner
728.2.ds.b.349.1 16 104.37 odd 12 inner
728.2.ds.b.349.4 yes 16 13.11 odd 12 inner
728.2.ds.b.349.4 yes 16 728.349 even 12 inner
728.2.ds.b.461.1 yes 16 7.6 odd 2 inner
728.2.ds.b.461.1 yes 16 8.5 even 2 inner
728.2.ds.b.461.4 yes 16 1.1 even 1 trivial
728.2.ds.b.461.4 yes 16 56.13 odd 2 CM