Properties

Label 728.2.ds.b.461.3
Level $728$
Weight $2$
Character 728.461
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(293,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 6, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 13 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 461.3
Root \(-1.61083 + 0.636563i\) of defining polynomial
Character \(\chi\) \(=\) 728.461
Dual form 728.2.ds.b.349.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(0.636563 - 1.10256i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(0.465997 - 0.465997i) q^{5} +(-1.73912 - 0.465997i) q^{6} +(-0.684771 + 2.55560i) q^{7} +(2.00000 + 2.00000i) q^{8} +(0.689574 + 1.19438i) q^{9} +(-0.807130 - 0.465997i) q^{10} +2.54625i q^{12} +(0.102471 + 3.60409i) q^{13} +3.74166 q^{14} +(-0.217153 - 0.810426i) q^{15} +(2.00000 - 3.46410i) q^{16} +(1.37915 - 1.37915i) q^{18} +(7.36841 + 1.97436i) q^{19} +(-0.341133 + 1.27313i) q^{20} +(2.38180 + 2.38180i) q^{21} +(-3.01441 - 1.74037i) q^{23} +(3.47825 - 0.931993i) q^{24} +4.56569i q^{25} +(4.88578 - 1.45917i) q^{26} +5.57521 q^{27} +(-1.36954 - 5.11120i) q^{28} +(-1.02758 + 0.593273i) q^{30} +(-5.46410 - 1.46410i) q^{32} +(0.871800 + 1.51000i) q^{35} +(-2.38875 - 1.37915i) q^{36} -10.7881i q^{38} +(4.03896 + 2.18125i) q^{39} +1.86399 q^{40} +(2.38180 - 4.12540i) q^{42} +(0.877915 + 0.235237i) q^{45} +(-1.27404 + 4.75478i) q^{46} +(-2.54625 - 4.41024i) q^{48} +(-6.06218 - 3.50000i) q^{49} +(6.23685 - 1.67116i) q^{50} +(-3.78158 - 6.14000i) q^{52} +(-2.04067 - 7.61588i) q^{54} +(-6.48074 + 3.74166i) q^{56} +(6.86731 - 6.86731i) q^{57} +(3.35950 - 12.5378i) q^{59} +(1.18655 + 1.18655i) q^{60} +(7.77422 + 13.4653i) q^{61} +(-3.52455 + 0.944400i) q^{63} +8.00000i q^{64} +(1.72725 + 1.63175i) q^{65} +(-3.83773 + 2.21571i) q^{69} +(1.74360 - 1.74360i) q^{70} +(-16.0113 - 4.29022i) q^{71} +(-1.00961 + 3.76790i) q^{72} +(5.03395 + 2.90635i) q^{75} +(-14.7368 + 3.94872i) q^{76} +(1.50129 - 6.31572i) q^{78} +8.25834 q^{79} +(-0.682267 - 2.54625i) q^{80} +(1.48025 - 2.56387i) q^{81} +(4.00054 - 4.00054i) q^{83} +(-6.50720 - 1.74360i) q^{84} -1.28536i q^{90} +(-9.28079 - 2.20610i) q^{91} +6.96148 q^{92} +(4.35370 - 2.51361i) q^{95} +(-5.09251 + 5.09251i) q^{96} +(-2.56218 + 9.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 32 q^{8} - 16 q^{9} - 56 q^{15} + 32 q^{16} - 32 q^{18} - 96 q^{30} - 32 q^{32} + 48 q^{36} + 72 q^{39} - 24 q^{46} + 56 q^{50} + 88 q^{57} - 32 q^{60} - 112 q^{63} + 16 q^{65} - 16 q^{71}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.258819 0.965926i
\(3\) 0.636563 1.10256i 0.367520 0.636563i −0.621657 0.783289i \(-0.713540\pi\)
0.989177 + 0.146726i \(0.0468736\pi\)
\(4\) −1.73205 + 1.00000i −0.866025 + 0.500000i
\(5\) 0.465997 0.465997i 0.208400 0.208400i −0.595187 0.803587i \(-0.702922\pi\)
0.803587 + 0.595187i \(0.202922\pi\)
\(6\) −1.73912 0.465997i −0.709994 0.190242i
\(7\) −0.684771 + 2.55560i −0.258819 + 0.965926i
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) 0.689574 + 1.19438i 0.229858 + 0.398126i
\(10\) −0.807130 0.465997i −0.255237 0.147361i
\(11\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(12\) 2.54625i 0.735040i
\(13\) 0.102471 + 3.60409i 0.0284203 + 0.999596i
\(14\) 3.74166 1.00000
\(15\) −0.217153 0.810426i −0.0560687 0.209251i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 1.37915 1.37915i 0.325068 0.325068i
\(19\) 7.36841 + 1.97436i 1.69043 + 0.452949i 0.970501 0.241098i \(-0.0775076\pi\)
0.719929 + 0.694048i \(0.244174\pi\)
\(20\) −0.341133 + 1.27313i −0.0762797 + 0.284680i
\(21\) 2.38180 + 2.38180i 0.519752 + 0.519752i
\(22\) 0 0
\(23\) −3.01441 1.74037i −0.628548 0.362892i 0.151642 0.988436i \(-0.451544\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 3.47825 0.931993i 0.709994 0.190242i
\(25\) 4.56569i 0.913139i
\(26\) 4.88578 1.45917i 0.958180 0.286166i
\(27\) 5.57521 1.07295
\(28\) −1.36954 5.11120i −0.258819 0.965926i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −1.02758 + 0.593273i −0.187609 + 0.108316i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) −5.46410 1.46410i −0.965926 0.258819i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.871800 + 1.51000i 0.147361 + 0.255237i
\(36\) −2.38875 1.37915i −0.398126 0.229858i
\(37\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(38\) 10.7881i 1.75006i
\(39\) 4.03896 + 2.18125i 0.646751 + 0.349280i
\(40\) 1.86399 0.294722
\(41\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(42\) 2.38180 4.12540i 0.367520 0.636563i
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 0.877915 + 0.235237i 0.130872 + 0.0350670i
\(46\) −1.27404 + 4.75478i −0.187847 + 0.701054i
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −2.54625 4.41024i −0.367520 0.636563i
\(49\) −6.06218 3.50000i −0.866025 0.500000i
\(50\) 6.23685 1.67116i 0.882024 0.236338i
\(51\) 0 0
\(52\) −3.78158 6.14000i −0.524411 0.851465i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −2.04067 7.61588i −0.277700 1.03639i
\(55\) 0 0
\(56\) −6.48074 + 3.74166i −0.866025 + 0.500000i
\(57\) 6.86731 6.86731i 0.909598 0.909598i
\(58\) 0 0
\(59\) 3.35950 12.5378i 0.437369 1.63229i −0.297962 0.954578i \(-0.596307\pi\)
0.735332 0.677707i \(-0.237026\pi\)
\(60\) 1.18655 + 1.18655i 0.153182 + 0.153182i
\(61\) 7.77422 + 13.4653i 0.995386 + 1.72406i 0.580787 + 0.814056i \(0.302745\pi\)
0.414600 + 0.910004i \(0.363922\pi\)
\(62\) 0 0
\(63\) −3.52455 + 0.944400i −0.444052 + 0.118983i
\(64\) 8.00000i 1.00000i
\(65\) 1.72725 + 1.63175i 0.214239 + 0.202393i
\(66\) 0 0
\(67\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(68\) 0 0
\(69\) −3.83773 + 2.21571i −0.462008 + 0.266740i
\(70\) 1.74360 1.74360i 0.208400 0.208400i
\(71\) −16.0113 4.29022i −1.90020 0.509156i −0.996760 0.0804327i \(-0.974370\pi\)
−0.903436 0.428723i \(-0.858964\pi\)
\(72\) −1.00961 + 3.76790i −0.118983 + 0.444052i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 5.03395 + 2.90635i 0.581271 + 0.335597i
\(76\) −14.7368 + 3.94872i −1.69043 + 0.452949i
\(77\) 0 0
\(78\) 1.50129 6.31572i 0.169987 0.715114i
\(79\) 8.25834 0.929136 0.464568 0.885537i \(-0.346210\pi\)
0.464568 + 0.885537i \(0.346210\pi\)
\(80\) −0.682267 2.54625i −0.0762797 0.284680i
\(81\) 1.48025 2.56387i 0.164473 0.284875i
\(82\) 0 0
\(83\) 4.00054 4.00054i 0.439116 0.439116i −0.452598 0.891715i \(-0.649503\pi\)
0.891715 + 0.452598i \(0.149503\pi\)
\(84\) −6.50720 1.74360i −0.709994 0.190242i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(90\) 1.28536i 0.135489i
\(91\) −9.28079 2.20610i −0.972891 0.231263i
\(92\) 6.96148 0.725785
\(93\) 0 0
\(94\) 0 0
\(95\) 4.35370 2.51361i 0.446680 0.257891i
\(96\) −5.09251 + 5.09251i −0.519752 + 0.519752i
\(97\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(98\) −2.56218 + 9.56218i −0.258819 + 0.965926i
\(99\) 0 0
\(100\) −4.56569 7.90801i −0.456569 0.790801i
\(101\) −1.20682 0.696757i −0.120083 0.0693299i 0.438755 0.898607i \(-0.355419\pi\)
−0.558838 + 0.829277i \(0.688753\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −7.00325 + 7.41313i −0.686725 + 0.726917i
\(105\) 2.21982 0.216633
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −9.65655 + 5.57521i −0.929202 + 0.536475i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.48331 + 7.48331i 0.707107 + 0.707107i
\(113\) 0.612486 + 1.06086i 0.0576178 + 0.0997970i 0.893396 0.449271i \(-0.148316\pi\)
−0.835778 + 0.549068i \(0.814983\pi\)
\(114\) −11.8945 6.86731i −1.11403 0.643183i
\(115\) −2.21571 + 0.593698i −0.206616 + 0.0553626i
\(116\) 0 0
\(117\) −4.23399 + 2.60768i −0.391432 + 0.241080i
\(118\) −18.3566 −1.68987
\(119\) 0 0
\(120\) 1.18655 2.05516i 0.108316 0.187609i
\(121\) 9.52628 5.50000i 0.866025 0.500000i
\(122\) 15.5484 15.5484i 1.40769 1.40769i
\(123\) 0 0
\(124\) 0 0
\(125\) 4.45758 + 4.45758i 0.398698 + 0.398698i
\(126\) 2.58015 + 4.46895i 0.229858 + 0.398126i
\(127\) 8.22111 + 4.74646i 0.729506 + 0.421180i 0.818241 0.574875i \(-0.194949\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 10.9282 2.92820i 0.965926 0.258819i
\(129\) 0 0
\(130\) 1.59679 2.95672i 0.140048 0.259322i
\(131\) 20.3120 1.77467 0.887335 0.461125i \(-0.152554\pi\)
0.887335 + 0.461125i \(0.152554\pi\)
\(132\) 0 0
\(133\) −10.0913 + 17.4787i −0.875031 + 1.51560i
\(134\) 0 0
\(135\) 2.59803 2.59803i 0.223603 0.223603i
\(136\) 0 0
\(137\) −4.94743 + 18.4641i −0.422687 + 1.57749i 0.346235 + 0.938148i \(0.387460\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 4.43142 + 4.43142i 0.377228 + 0.377228i
\(139\) −11.4849 19.8924i −0.974133 1.68725i −0.682766 0.730637i \(-0.739223\pi\)
−0.291367 0.956611i \(-0.594110\pi\)
\(140\) −3.02000 1.74360i −0.255237 0.147361i
\(141\) 0 0
\(142\) 23.4422i 1.96723i
\(143\) 0 0
\(144\) 5.51659 0.459716
\(145\) 0 0
\(146\) 0 0
\(147\) −7.71792 + 4.45594i −0.636563 + 0.367520i
\(148\) 0 0
\(149\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(150\) 2.12760 7.94031i 0.173718 0.648323i
\(151\) −10.9388 10.9388i −0.890183 0.890183i 0.104357 0.994540i \(-0.466722\pi\)
−0.994540 + 0.104357i \(0.966722\pi\)
\(152\) 10.7881 + 18.6855i 0.875031 + 1.51560i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −9.17694 + 0.260917i −0.734743 + 0.0208901i
\(157\) −9.39459 −0.749770 −0.374885 0.927071i \(-0.622318\pi\)
−0.374885 + 0.927071i \(0.622318\pi\)
\(158\) −3.02276 11.2811i −0.240478 0.897477i
\(159\) 0 0
\(160\) −3.22852 + 1.86399i −0.255237 + 0.147361i
\(161\) 6.51187 6.51187i 0.513207 0.513207i
\(162\) −4.04413 1.08362i −0.317737 0.0851372i
\(163\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −6.92914 4.00054i −0.537805 0.310502i
\(167\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(168\) 9.52721i 0.735040i
\(169\) −12.9790 + 0.738629i −0.998385 + 0.0568176i
\(170\) 0 0
\(171\) 2.72294 + 10.1621i 0.208228 + 0.777118i
\(172\) 0 0
\(173\) −5.21453 + 3.01061i −0.396454 + 0.228893i −0.684953 0.728588i \(-0.740177\pi\)
0.288499 + 0.957480i \(0.406844\pi\)
\(174\) 0 0
\(175\) −11.6681 3.12645i −0.882024 0.236338i
\(176\) 0 0
\(177\) −11.6852 11.6852i −0.878311 0.878311i
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) −1.75583 + 0.470473i −0.130872 + 0.0350670i
\(181\) 13.1258i 0.975636i 0.872945 + 0.487818i \(0.162207\pi\)
−0.872945 + 0.487818i \(0.837793\pi\)
\(182\) 0.383411 + 13.4853i 0.0284203 + 0.999596i
\(183\) 19.7951 1.46330
\(184\) −2.54808 9.50956i −0.187847 0.701054i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.81774 + 14.2480i −0.277700 + 1.03639i
\(190\) −5.02722 5.02722i −0.364713 0.364713i
\(191\) 13.6125 + 23.5775i 0.984965 + 1.70601i 0.642092 + 0.766627i \(0.278067\pi\)
0.342873 + 0.939382i \(0.388600\pi\)
\(192\) 8.82048 + 5.09251i 0.636563 + 0.367520i
\(193\) −5.67992 + 1.52193i −0.408850 + 0.109551i −0.457381 0.889271i \(-0.651213\pi\)
0.0485316 + 0.998822i \(0.484546\pi\)
\(194\) 0 0
\(195\) 2.89860 0.865685i 0.207573 0.0619930i
\(196\) 14.0000 1.00000
\(197\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −9.13139 + 9.13139i −0.645687 + 0.645687i
\(201\) 0 0
\(202\) −0.510061 + 1.90357i −0.0358878 + 0.133935i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.80046i 0.333655i
\(208\) 12.6899 + 6.85322i 0.879886 + 0.475185i
\(209\) 0 0
\(210\) −0.812512 3.03234i −0.0560687 0.209251i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) −14.9225 + 14.9225i −1.02247 + 1.02247i
\(214\) 0 0
\(215\) 0 0
\(216\) 11.1504 + 11.1504i 0.758690 + 0.758690i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(224\) 7.48331 12.9615i 0.500000 0.866025i
\(225\) −5.45316 + 3.14838i −0.363544 + 0.209892i
\(226\) 1.22497 1.22497i 0.0814839 0.0814839i
\(227\) −11.4787 3.07572i −0.761871 0.204143i −0.143094 0.989709i \(-0.545705\pi\)
−0.618777 + 0.785566i \(0.712372\pi\)
\(228\) −5.02722 + 18.7618i −0.332936 + 1.24253i
\(229\) −13.3951 13.3951i −0.885175 0.885175i 0.108880 0.994055i \(-0.465274\pi\)
−0.994055 + 0.108880i \(0.965274\pi\)
\(230\) 1.62201 + 2.80941i 0.106952 + 0.185247i
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1628i 1.32091i 0.750867 + 0.660454i \(0.229636\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 5.11190 + 4.82926i 0.334176 + 0.315699i
\(235\) 0 0
\(236\) 6.71900 + 25.0756i 0.437369 + 1.63229i
\(237\) 5.25696 9.10532i 0.341476 0.591454i
\(238\) 0 0
\(239\) −0.379182 + 0.379182i −0.0245272 + 0.0245272i −0.719264 0.694737i \(-0.755521\pi\)
0.694737 + 0.719264i \(0.255521\pi\)
\(240\) −3.24170 0.868612i −0.209251 0.0560687i
\(241\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) 6.47827 + 11.2207i 0.415581 + 0.719807i
\(244\) −26.9307 15.5484i −1.72406 0.995386i
\(245\) −4.45594 + 1.19397i −0.284680 + 0.0762797i
\(246\) 0 0
\(247\) −6.36073 + 26.7588i −0.404724 + 1.70262i
\(248\) 0 0
\(249\) −1.86424 6.95743i −0.118141 0.440909i
\(250\) 4.45758 7.72076i 0.281922 0.488304i
\(251\) 27.3198 15.7731i 1.72441 0.995588i 0.815287 0.579057i \(-0.196579\pi\)
0.909122 0.416530i \(-0.136754\pi\)
\(252\) 5.16030 5.16030i 0.325068 0.325068i
\(253\) 0 0
\(254\) 3.47465 12.9676i 0.218019 0.813658i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4.62343 1.09902i −0.286733 0.0681582i
\(261\) 0 0
\(262\) −7.43472 27.7468i −0.459319 1.71420i
\(263\) 11.3271 19.6190i 0.698456 1.20976i −0.270546 0.962707i \(-0.587204\pi\)
0.969002 0.247054i \(-0.0794625\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 27.5701 + 7.38738i 1.69043 + 0.452949i
\(267\) 0 0
\(268\) 0 0
\(269\) −14.3751 24.8984i −0.876464 1.51808i −0.855194 0.518307i \(-0.826562\pi\)
−0.0212700 0.999774i \(-0.506771\pi\)
\(270\) −4.49992 2.59803i −0.273856 0.158111i
\(271\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(272\) 0 0
\(273\) −8.34018 + 8.82831i −0.504770 + 0.534313i
\(274\) 27.0333 1.63314
\(275\) 0 0
\(276\) 4.43142 7.67545i 0.266740 0.462008i
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) −22.9697 + 22.9697i −1.37763 + 1.37763i
\(279\) 0 0
\(280\) −1.27640 + 4.76360i −0.0762797 + 0.284680i
\(281\) −22.4833 22.4833i −1.34124 1.34124i −0.894825 0.446417i \(-0.852700\pi\)
−0.446417 0.894825i \(-0.647300\pi\)
\(282\) 0 0
\(283\) −27.2646 15.7412i −1.62071 0.935720i −0.986729 0.162374i \(-0.948085\pi\)
−0.633985 0.773345i \(-0.718582\pi\)
\(284\) 32.0227 8.58045i 1.90020 0.509156i
\(285\) 6.40029i 0.379120i
\(286\) 0 0
\(287\) 0 0
\(288\) −2.01921 7.53581i −0.118983 0.444052i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.85168 33.0349i 0.517121 1.92992i 0.215378 0.976531i \(-0.430902\pi\)
0.301742 0.953390i \(-0.402432\pi\)
\(294\) 8.91189 + 8.91189i 0.519752 + 0.519752i
\(295\) −4.27707 7.40810i −0.249021 0.431316i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.96357 11.0426i 0.344882 0.638608i
\(300\) −11.6254 −0.671194
\(301\) 0 0
\(302\) −10.9388 + 18.9465i −0.629454 + 1.09025i
\(303\) −1.53643 + 0.887060i −0.0882657 + 0.0509602i
\(304\) 21.5762 21.5762i 1.23748 1.23748i
\(305\) 9.89756 + 2.65204i 0.566733 + 0.151856i
\(306\) 0 0
\(307\) −24.0478 24.0478i −1.37248 1.37248i −0.856755 0.515723i \(-0.827523\pi\)
−0.515723 0.856755i \(-0.672477\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 3.71541 + 12.4404i 0.210344 + 0.704301i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 3.43866 + 12.8333i 0.194055 + 0.724222i
\(315\) −1.20234 + 2.08252i −0.0677443 + 0.117337i
\(316\) −14.3039 + 8.25834i −0.804655 + 0.464568i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 3.72797 + 3.72797i 0.208400 + 0.208400i
\(321\) 0 0
\(322\) −11.2789 6.51187i −0.628548 0.362892i
\(323\) 0 0
\(324\) 5.92101i 0.328945i
\(325\) −16.4552 + 0.467850i −0.912770 + 0.0259517i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(332\) −2.92860 + 10.9297i −0.160728 + 0.599844i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 13.0144 3.48720i 0.709994 0.190242i
\(337\) 36.7083i 1.99963i 0.0192914 + 0.999814i \(0.493859\pi\)
−0.0192914 + 0.999814i \(0.506141\pi\)
\(338\) 5.75963 + 17.4593i 0.313283 + 0.949660i
\(339\) 1.55954 0.0847028
\(340\) 0 0
\(341\) 0 0
\(342\) 12.8851 7.43920i 0.696745 0.402266i
\(343\) 13.0958 13.0958i 0.707107 0.707107i
\(344\) 0 0
\(345\) −0.755853 + 2.82088i −0.0406938 + 0.151871i
\(346\) 6.02122 + 6.02122i 0.323703 + 0.323703i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 35.2317 9.44029i 1.88591 0.505327i 0.886843 0.462070i \(-0.152893\pi\)
0.999064 0.0432574i \(-0.0137735\pi\)
\(350\) 17.0833i 0.913139i
\(351\) 0.571296 + 20.0936i 0.0304935 + 1.07252i
\(352\) 0 0
\(353\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(354\) −11.6852 + 20.2393i −0.621060 + 1.07571i
\(355\) −9.46046 + 5.46200i −0.502109 + 0.289893i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −26.6541 26.6541i −1.40675 1.40675i −0.775934 0.630814i \(-0.782721\pi\)
−0.630814 0.775934i \(-0.717279\pi\)
\(360\) 1.28536 + 2.22630i 0.0677443 + 0.117337i
\(361\) 33.9409 + 19.5958i 1.78636 + 1.03136i
\(362\) 17.9302 4.80439i 0.942392 0.252513i
\(363\) 14.0044i 0.735040i
\(364\) 18.2809 5.45971i 0.958180 0.286166i
\(365\) 0 0
\(366\) −7.24552 27.0406i −0.378729 1.41344i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −12.0576 + 6.96148i −0.628548 + 0.362892i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 7.75229 2.07722i 0.400326 0.107267i
\(376\) 0 0
\(377\) 0 0
\(378\) 20.8605 1.07295
\(379\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(380\) −5.02722 + 8.70740i −0.257891 + 0.446680i
\(381\) 10.4665 6.04285i 0.536216 0.309584i
\(382\) 27.2250 27.2250i 1.39295 1.39295i
\(383\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(384\) 3.72797 13.9130i 0.190242 0.709994i
\(385\) 0 0
\(386\) 4.15799 + 7.20185i 0.211636 + 0.366565i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −2.24351 3.64270i −0.113604 0.184455i
\(391\) 0 0
\(392\) −5.12436 19.1244i −0.258819 0.965926i
\(393\) 12.9299 22.3952i 0.652227 1.12969i
\(394\) 0 0
\(395\) 3.84836 3.84836i 0.193632 0.193632i
\(396\) 0 0
\(397\) 9.24912 34.5182i 0.464200 1.73242i −0.195327 0.980738i \(-0.562577\pi\)
0.659528 0.751680i \(-0.270756\pi\)
\(398\) 0 0
\(399\) 12.8476 + 22.2526i 0.643183 + 1.11403i
\(400\) 15.8160 + 9.13139i 0.790801 + 0.456569i
\(401\) 15.3336 4.10862i 0.765723 0.205175i 0.145242 0.989396i \(-0.453604\pi\)
0.620481 + 0.784221i \(0.286937\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 2.78703 0.138660
\(405\) −0.504963 1.88455i −0.0250918 0.0936440i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(410\) 0 0
\(411\) 17.2084 + 17.2084i 0.848827 + 0.848827i
\(412\) 0 0
\(413\) 29.7412 + 17.1711i 1.46347 + 0.844933i
\(414\) −6.55755 + 1.75709i −0.322286 + 0.0863562i
\(415\) 3.72848i 0.183024i
\(416\) 4.71685 19.8432i 0.231263 0.972891i
\(417\) −29.2434 −1.43205
\(418\) 0 0
\(419\) 15.4854 26.8215i 0.756511 1.31032i −0.188108 0.982148i \(-0.560236\pi\)
0.944619 0.328168i \(-0.106431\pi\)
\(420\) −3.84485 + 2.21982i −0.187609 + 0.108316i
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 25.8465 + 14.9225i 1.25227 + 0.722996i
\(427\) −39.7356 + 10.6471i −1.92294 + 0.515250i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.99356 + 7.44009i 0.0960266 + 0.358376i 0.997173 0.0751385i \(-0.0239399\pi\)
−0.901146 + 0.433515i \(0.857273\pi\)
\(432\) 11.1504 19.3131i 0.536475 0.929202i
\(433\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18.7753 18.7753i −0.898144 0.898144i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 9.65404i 0.459716i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −20.4448 5.47817i −0.965926 0.258819i
\(449\) −5.49485 + 20.5071i −0.259318 + 0.967788i 0.706319 + 0.707894i \(0.250354\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(450\) 6.29677 + 6.29677i 0.296833 + 0.296833i
\(451\) 0 0
\(452\) −2.12171 1.22497i −0.0997970 0.0576178i
\(453\) −19.0238 + 5.09742i −0.893818 + 0.239498i
\(454\) 16.8061i 0.788747i
\(455\) −5.35286 + 3.29678i −0.250946 + 0.154555i
\(456\) 27.4692 1.28637
\(457\) −10.1944 38.0460i −0.476873 1.77972i −0.614157 0.789184i \(-0.710504\pi\)
0.137283 0.990532i \(-0.456163\pi\)
\(458\) −13.3951 + 23.2010i −0.625913 + 1.08411i
\(459\) 0 0
\(460\) 3.24403 3.24403i 0.151254 0.151254i
\(461\) 41.4747 + 11.1131i 1.93167 + 0.517589i 0.969395 + 0.245505i \(0.0789539\pi\)
0.962274 + 0.272084i \(0.0877128\pi\)
\(462\) 0 0
\(463\) −28.2019 28.2019i −1.31065 1.31065i −0.920935 0.389716i \(-0.872573\pi\)
−0.389716 0.920935i \(-0.627427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 27.5429 7.38009i 1.27590 0.341876i
\(467\) 25.9542i 1.20102i 0.799618 + 0.600508i \(0.205035\pi\)
−0.799618 + 0.600508i \(0.794965\pi\)
\(468\) 4.72580 8.75062i 0.218450 0.404498i
\(469\) 0 0
\(470\) 0 0
\(471\) −5.98025 + 10.3581i −0.275555 + 0.477276i
\(472\) 31.7946 18.3566i 1.46347 0.844933i
\(473\) 0 0
\(474\) −14.3623 3.84836i −0.659681 0.176761i
\(475\) −9.01432 + 33.6419i −0.413606 + 1.54360i
\(476\) 0 0
\(477\) 0 0
\(478\) 0.656763 + 0.379182i 0.0300396 + 0.0173434i
\(479\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(480\) 4.74618i 0.216633i
\(481\) 0 0
\(482\) 0 0
\(483\) −3.03451 11.3249i −0.138075 0.515303i
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 12.9565 12.9565i 0.587720 0.587720i
\(487\) −11.4461 3.06697i −0.518672 0.138978i −0.0100195 0.999950i \(-0.503189\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) −11.3822 + 42.4791i −0.515250 + 1.92294i
\(489\) 0 0
\(490\) 3.26198 + 5.64991i 0.147361 + 0.255237i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 38.8814 1.10547i 1.74935 0.0497373i
\(495\) 0 0
\(496\) 0 0
\(497\) 21.9282 37.9807i 0.983614 1.70367i
\(498\) −8.82167 + 5.09319i −0.395308 + 0.228231i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) −12.1783 3.26318i −0.544632 0.145934i
\(501\) 0 0
\(502\) −31.5462 31.5462i −1.40797 1.40797i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) −8.93790 5.16030i −0.398126 0.229858i
\(505\) −0.887060 + 0.237687i −0.0394736 + 0.0105769i
\(506\) 0 0
\(507\) −7.44757 + 14.7803i −0.330758 + 0.656417i
\(508\) −18.9858 −0.842361
\(509\) −8.76684 32.7183i −0.388583 1.45021i −0.832440 0.554115i \(-0.813057\pi\)
0.443857 0.896098i \(-0.353610\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) 41.0805 + 11.0075i 1.81375 + 0.485992i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 7.66578i 0.336490i
\(520\) 0.191004 + 6.71799i 0.00837609 + 0.294603i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −14.9196 + 25.8415i −0.652390 + 1.12997i 0.330152 + 0.943928i \(0.392900\pi\)
−0.982541 + 0.186044i \(0.940433\pi\)
\(524\) −35.1815 + 20.3120i −1.53691 + 0.887335i
\(525\) −10.8746 + 10.8746i −0.474606 + 0.474606i
\(526\) −30.9461 8.29198i −1.34931 0.361547i
\(527\) 0 0
\(528\) 0 0
\(529\) −5.44222 9.42621i −0.236618 0.409835i
\(530\) 0 0
\(531\) 17.2915 4.63325i 0.750388 0.201066i
\(532\) 40.3654i 1.75006i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −28.7502 + 28.7502i −1.23951 + 1.23951i
\(539\) 0 0
\(540\) −1.90189 + 7.09795i −0.0818443 + 0.305447i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) 0 0
\(543\) 14.4720 + 8.35543i 0.621054 + 0.358566i
\(544\) 0 0
\(545\) 0 0
\(546\) 15.1124 + 8.16151i 0.646751 + 0.349280i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −9.89486 36.9281i −0.422687 1.57749i
\(549\) −10.7218 + 18.5707i −0.457595 + 0.792578i
\(550\) 0 0
\(551\) 0 0
\(552\) −12.1069 3.24403i −0.515303 0.138075i
\(553\) −5.65507 + 21.1050i −0.240478 + 0.897477i
\(554\) 0 0
\(555\) 0 0
\(556\) 39.7847 + 22.9697i 1.68725 + 0.974133i
\(557\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 6.97440 0.294722
\(561\) 0 0
\(562\) −22.4833 + 38.9422i −0.948401 + 1.64268i
\(563\) −22.3060 + 12.8784i −0.940086 + 0.542759i −0.889987 0.455985i \(-0.849287\pi\)
−0.0500986 + 0.998744i \(0.515954\pi\)
\(564\) 0 0
\(565\) 0.779772 + 0.208939i 0.0328053 + 0.00879015i
\(566\) −11.5234 + 43.0059i −0.484364 + 1.80767i
\(567\) 5.53860 + 5.53860i 0.232599 + 0.232599i
\(568\) −23.4422 40.6031i −0.983614 1.70367i
\(569\) −13.0405 7.52896i −0.546688 0.315631i 0.201097 0.979571i \(-0.435549\pi\)
−0.747785 + 0.663941i \(0.768883\pi\)
\(570\) −8.74296 + 2.34267i −0.366202 + 0.0981236i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 34.6608 1.44798
\(574\) 0 0
\(575\) 7.94600 13.7629i 0.331371 0.573951i
\(576\) −9.55502 + 5.51659i −0.398126 + 0.229858i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) −23.2224 6.22243i −0.965926 0.258819i
\(579\) −1.93761 + 7.23126i −0.0805243 + 0.300521i
\(580\) 0 0
\(581\) 7.48432 + 12.9632i 0.310502 + 0.537805i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.757855 + 3.18819i −0.0313334 + 0.131816i
\(586\) −48.3665 −1.99800
\(587\) 6.91914 + 25.8226i 0.285583 + 1.06581i 0.948412 + 0.317041i \(0.102689\pi\)
−0.662829 + 0.748771i \(0.730644\pi\)
\(588\) 8.91189 15.4358i 0.367520 0.636563i
\(589\) 0 0
\(590\) −8.55414 + 8.55414i −0.352168 + 0.352168i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −17.2672 4.10453i −0.706110 0.167847i
\(599\) −48.9290 −1.99918 −0.999592 0.0285537i \(-0.990910\pi\)
−0.999592 + 0.0285537i \(0.990910\pi\)
\(600\) 4.25520 + 15.8806i 0.173718 + 0.648323i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 29.8852 + 8.00772i 1.21601 + 0.325830i
\(605\) 1.87623 7.00220i 0.0762797 0.284680i
\(606\) 1.77412 + 1.77412i 0.0720687 + 0.0720687i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) −37.3711 21.5762i −1.51560 0.875031i
\(609\) 0 0
\(610\) 14.4910i 0.586725i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(614\) −24.0478 + 41.6519i −0.970489 + 1.68094i
\(615\) 0 0
\(616\) 0 0
\(617\) 34.8305 + 9.33281i 1.40222 + 0.375725i 0.879143 0.476558i \(-0.158116\pi\)
0.523081 + 0.852283i \(0.324782\pi\)
\(618\) 0 0
\(619\) 32.9441 + 32.9441i 1.32414 + 1.32414i 0.910394 + 0.413743i \(0.135779\pi\)
0.413743 + 0.910394i \(0.364221\pi\)
\(620\) 0 0
\(621\) −16.8060 9.70293i −0.674400 0.389365i
\(622\) 0 0
\(623\) 0 0
\(624\) 15.6340 9.62886i 0.625861 0.385463i
\(625\) −18.6740 −0.746961
\(626\) 0 0
\(627\) 0 0
\(628\) 16.2719 9.39459i 0.649320 0.374885i
\(629\) 0 0
\(630\) 3.28486 + 0.880175i 0.130872 + 0.0350670i
\(631\) 2.81430 10.5031i 0.112035 0.418122i −0.887013 0.461745i \(-0.847223\pi\)
0.999048 + 0.0436231i \(0.0138901\pi\)
\(632\) 16.5167 + 16.5167i 0.656998 + 0.656998i
\(633\) 0 0
\(634\) 0 0
\(635\) 6.04285 1.61918i 0.239803 0.0642550i
\(636\) 0 0
\(637\) 11.9931 22.2073i 0.475185 0.879886i
\(638\) 0 0
\(639\) −5.91686 22.0820i −0.234067 0.873551i
\(640\) 3.72797 6.45704i 0.147361 0.255237i
\(641\) −36.6643 + 21.1681i −1.44815 + 0.836090i −0.998371 0.0570491i \(-0.981831\pi\)
−0.449780 + 0.893140i \(0.648498\pi\)
\(642\) 0 0
\(643\) −28.0863 7.52569i −1.10761 0.296784i −0.341752 0.939790i \(-0.611020\pi\)
−0.765861 + 0.643006i \(0.777687\pi\)
\(644\) −4.76702 + 17.7908i −0.187847 + 0.701054i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) 8.08825 2.16724i 0.317737 0.0851372i
\(649\) 0 0
\(650\) 6.66211 + 22.3070i 0.261310 + 0.874951i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 9.46534 9.46534i 0.369842 0.369842i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) 24.0835 6.45314i 0.936738 0.250998i 0.242012 0.970273i \(-0.422193\pi\)
0.694725 + 0.719275i \(0.255526\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 16.0022 0.621004
\(665\) 3.44249 + 12.8476i 0.133494 + 0.498207i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −9.52721 16.5016i −0.367520 0.636563i
\(673\) 38.8844 + 22.4499i 1.49889 + 0.865382i 0.999999 0.00128586i \(-0.000409302\pi\)
0.498886 + 0.866668i \(0.333743\pi\)
\(674\) 50.1445 13.4362i 1.93149 0.517542i
\(675\) 25.4547i 0.979752i
\(676\) 21.7417 14.2583i 0.836218 0.548398i
\(677\) −46.3519 −1.78145 −0.890725 0.454543i \(-0.849802\pi\)
−0.890725 + 0.454543i \(0.849802\pi\)
\(678\) −0.570833 2.13038i −0.0219227 0.0818167i
\(679\) 0 0
\(680\) 0 0
\(681\) −10.6981 + 10.6981i −0.409953 + 0.409953i
\(682\) 0 0
\(683\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(684\) −14.8784 14.8784i −0.568890 0.568890i
\(685\) 6.29870 + 10.9097i 0.240661 + 0.416837i
\(686\) −22.6826 13.0958i −0.866025 0.500000i
\(687\) −23.2958 + 6.24209i −0.888790 + 0.238150i
\(688\) 0 0
\(689\) 0 0
\(690\) 4.13006 0.157229
\(691\) 10.0116 + 37.3638i 0.380859 + 1.42139i 0.844592 + 0.535410i \(0.179843\pi\)
−0.463733 + 0.885975i \(0.653490\pi\)
\(692\) 6.02122 10.4291i 0.228893 0.396454i
\(693\) 0 0
\(694\) 0 0
\(695\) −14.6217 3.91787i −0.554632 0.148613i
\(696\) 0 0
\(697\) 0 0
\(698\) −25.7914 44.6720i −0.976218 1.69086i
\(699\) 22.2307 + 12.8349i 0.840842 + 0.485460i
\(700\) 23.3362 6.25291i 0.882024 0.236338i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 27.2392 8.13517i 1.02808 0.307042i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.60703 2.60703i 0.0980473 0.0980473i
\(708\) 31.9245 + 8.55414i 1.19980 + 0.321484i
\(709\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(710\) 10.9240 + 10.9240i 0.409970 + 0.409970i
\(711\) 5.69474 + 9.86358i 0.213569 + 0.369913i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.176698 + 0.659444i 0.00659889 + 0.0246274i
\(718\) −26.6541 + 46.1662i −0.994721 + 1.72291i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 2.57071 2.57071i 0.0958049 0.0958049i
\(721\) 0 0
\(722\) 14.3451 53.5367i 0.533870 1.99243i
\(723\) 0 0
\(724\) −13.1258 22.7346i −0.487818 0.844926i
\(725\) 0 0
\(726\) −19.1304 + 5.12596i −0.709994 + 0.190242i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −14.1494 22.9738i −0.524411 0.851465i
\(729\) 25.3768 0.939882
\(730\) 0 0
\(731\) 0 0
\(732\) −34.2862 + 19.7951i −1.26725 + 0.731649i
\(733\) 19.1879 19.1879i 0.708720 0.708720i −0.257546 0.966266i \(-0.582914\pi\)
0.966266 + 0.257546i \(0.0829140\pi\)
\(734\) 0 0
\(735\) −1.52007 + 5.67298i −0.0560687 + 0.209251i
\(736\) 13.9230 + 13.9230i 0.513207 + 0.513207i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(740\) 0 0
\(741\) 25.4541 + 24.0467i 0.935081 + 0.883379i
\(742\) 0 0
\(743\) 11.2522 + 41.9939i 0.412804 + 1.54061i 0.789193 + 0.614145i \(0.210499\pi\)
−0.376389 + 0.926462i \(0.622834\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 7.53682 + 2.01949i 0.275758 + 0.0738891i
\(748\) 0 0
\(749\) 0 0
\(750\) −5.67507 9.82950i −0.207224 0.358923i
\(751\) 47.2211 + 27.2631i 1.72312 + 0.994845i 0.912263 + 0.409605i \(0.134333\pi\)
0.810860 + 0.585240i \(0.199000\pi\)
\(752\) 0 0
\(753\) 40.1623i 1.46359i
\(754\) 0 0
\(755\) −10.1948 −0.371028
\(756\) −7.63548 28.4960i −0.277700 1.03639i
\(757\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 13.7346 + 3.68018i 0.498207 + 0.133494i
\(761\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(762\) −12.0857 12.0857i −0.437818 0.437818i
\(763\) 0 0
\(764\) −47.1550 27.2250i −1.70601 0.984965i
\(765\) 0 0
\(766\) 0 0
\(767\) 45.5317 + 10.8232i 1.64406 + 0.390803i
\(768\) −20.3700 −0.735040
\(769\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.31598 8.31598i 0.299299 0.299299i
\(773\) −53.4825 14.3306i −1.92363 0.515435i −0.985667 0.168700i \(-0.946043\pi\)
−0.937963 0.346735i \(-0.887290\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −4.15484 + 4.39801i −0.148767 + 0.157474i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −24.2487 + 14.0000i −0.866025 + 0.500000i
\(785\) −4.37785 + 4.37785i −0.156252 + 0.156252i
\(786\) −35.3251 9.46534i −1.26001 0.337618i
\(787\) −10.0501 + 37.5076i −0.358248 + 1.33700i 0.518099 + 0.855321i \(0.326640\pi\)
−0.876347 + 0.481680i \(0.840027\pi\)
\(788\) 0 0
\(789\) −14.4208 24.9775i −0.513393 0.889223i
\(790\) −6.66556 3.84836i −0.237150 0.136919i
\(791\) −3.13054 + 0.838825i −0.111309 + 0.0298252i
\(792\) 0 0
\(793\) −47.7337 + 29.3988i −1.69507 + 1.04398i
\(794\) −50.5381 −1.79353
\(795\) 0 0
\(796\) 0 0
\(797\) 47.0750 27.1788i 1.66748 0.962721i 0.698493 0.715617i \(-0.253854\pi\)
0.968989 0.247104i \(-0.0794790\pi\)
\(798\) 25.6951 25.6951i 0.909598 0.909598i
\(799\) 0 0
\(800\) 6.68464 24.9474i 0.236338 0.882024i
\(801\) 0 0
\(802\) −11.2250 19.4422i −0.396368 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 6.06902i 0.213905i
\(806\) 0 0
\(807\) −36.6026 −1.28847
\(808\) −1.02012 3.80715i −0.0358878 0.133935i
\(809\) 27.8375 48.2159i 0.978713 1.69518i 0.311619 0.950207i \(-0.399129\pi\)
0.667094 0.744973i \(-0.267538\pi\)
\(810\) −2.38951 + 1.37959i −0.0839589 + 0.0484737i
\(811\) −36.7272 + 36.7272i −1.28967 + 1.28967i −0.354679 + 0.934988i \(0.615410\pi\)
−0.934988 + 0.354679i \(0.884590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −3.76487 12.6060i −0.131555 0.440491i
\(820\) 0 0
\(821\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(822\) 17.2084 29.8058i 0.600211 1.03960i
\(823\) 10.7206 6.18954i 0.373697 0.215754i −0.301376 0.953506i \(-0.597446\pi\)
0.675072 + 0.737752i \(0.264112\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 12.5701 46.9122i 0.437369 1.63229i
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 4.80046 + 8.31464i 0.166827 + 0.288954i
\(829\) 49.2801 + 28.4519i 1.71157 + 0.988175i 0.932450 + 0.361299i \(0.117667\pi\)
0.779119 + 0.626876i \(0.215667\pi\)
\(830\) −5.09319 + 1.36472i −0.176787 + 0.0473700i
\(831\) 0 0
\(832\) −28.8328 + 0.819767i −0.999596 + 0.0284203i
\(833\) 0 0
\(834\) 10.7038 + 39.9472i 0.370643 + 1.38326i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −42.3069 11.3361i −1.46147 0.391599i
\(839\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(840\) 4.43965 + 4.43965i 0.153182 + 0.153182i
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) −39.1013 + 10.4772i −1.34672 + 0.360852i
\(844\) 0 0
\(845\) −5.70397 + 6.39237i −0.196223 + 0.219904i
\(846\) 0 0
\(847\) 7.53248 + 28.1116i 0.258819 + 0.965926i
\(848\) 0 0
\(849\) −34.7113 + 20.0406i −1.19129 + 0.687792i
\(850\) 0 0
\(851\) 0 0
\(852\) 10.9240 40.7689i 0.374250 1.39672i
\(853\) 29.2786 + 29.2786i 1.00248 + 1.00248i 0.999997 + 0.00248202i \(0.000790052\pi\)
0.00248202 + 0.999997i \(0.499210\pi\)
\(854\) 29.0885 + 50.3827i 0.995386 + 1.72406i
\(855\) 6.00440 + 3.46664i 0.205346 + 0.118557i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 41.7589 1.42480 0.712398 0.701776i \(-0.247609\pi\)
0.712398 + 0.701776i \(0.247609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 9.43365 5.44652i 0.321311 0.185509i
\(863\) 29.0285 29.0285i 0.988143 0.988143i −0.0117879 0.999931i \(-0.503752\pi\)
0.999931 + 0.0117879i \(0.00375228\pi\)
\(864\) −30.4635 8.16268i −1.03639 0.277700i
\(865\) −1.02702 + 3.83289i −0.0349197 + 0.130322i
\(866\) 0 0
\(867\) −10.8216 18.7435i −0.367520 0.636563i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −18.7753 + 32.5198i −0.635084 + 1.10000i
\(875\) −14.4442 + 8.33937i −0.488304 + 0.281922i
\(876\) 0 0
\(877\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(878\) 0 0
\(879\) −30.7883 30.7883i −1.03846 1.03846i
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) −13.1877 + 3.53362i −0.444052 + 0.118983i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) −10.8905 −0.366080
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) −17.7596 + 17.7596i −0.595639 + 0.595639i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) −8.37889 13.6045i −0.279763 0.454240i
\(898\) 30.0244 1.00193
\(899\) 0 0
\(900\) 6.29677 10.9063i 0.209892 0.363544i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −0.896742 + 3.34669i −0.0298252 + 0.111309i
\(905\) 6.11660 + 6.11660i 0.203323 + 0.203323i
\(906\) 13.9264 + 24.1213i 0.462674 + 0.801375i
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 22.9575 6.15144i 0.761871 0.204143i
\(909\) 1.92186i 0.0637441i
\(910\) 6.46277 + 6.10543i 0.214239 + 0.202393i
\(911\) 52.1724 1.72855 0.864274 0.503022i \(-0.167778\pi\)
0.864274 + 0.503022i \(0.167778\pi\)
\(912\) −10.0544 37.5237i −0.332936 1.24253i
\(913\) 0 0
\(914\) −48.2404 + 27.8516i −1.59565 + 0.921249i
\(915\) 9.22446 9.22446i 0.304951 0.304951i
\(916\) 36.5962 + 9.80592i 1.20917 + 0.323997i
\(917\) −13.9091 + 51.9094i −0.459319 + 1.71420i
\(918\) 0 0
\(919\) −0.663673 1.14952i −0.0218926 0.0379190i 0.854872 0.518840i \(-0.173636\pi\)
−0.876764 + 0.480921i \(0.840303\pi\)
\(920\) −5.61882 3.24403i −0.185247 0.106952i
\(921\) −41.8220 + 11.2062i −1.37808 + 0.369256i
\(922\) 60.7232i 1.99981i
\(923\) 13.8217 58.1460i 0.454946 1.91390i
\(924\) 0 0
\(925\) 0 0
\(926\) −28.2019 + 48.8470i −0.926770 + 1.60521i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(930\) 0 0
\(931\) −37.7584 37.7584i −1.23748 1.23748i
\(932\) −20.1628 34.9230i −0.660454 1.14394i
\(933\) 0 0
\(934\) 35.4541 9.49989i 1.16009 0.310846i
\(935\) 0 0
\(936\) −13.6833 3.25262i −0.447254 0.106315i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.4091 14.4091i 0.469724 0.469724i −0.432101 0.901825i \(-0.642228\pi\)
0.901825 + 0.432101i \(0.142228\pi\)
\(942\) 16.3384 + 4.37785i 0.532332 + 0.142638i
\(943\) 0 0
\(944\) −36.7133 36.7133i −1.19492 1.19492i
\(945\) 4.86047 + 8.41858i 0.158111 + 0.273856i
\(946\) 0 0
\(947\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(948\) 21.0278i 0.682952i
\(949\) 0 0
\(950\) 49.2552 1.59805
\(951\) 0 0
\(952\) 0 0
\(953\) −45.8326 + 26.4615i −1.48466 + 0.857171i −0.999848 0.0174443i \(-0.994447\pi\)
−0.484817 + 0.874616i \(0.661114\pi\)
\(954\) 0 0
\(955\) 17.3304 + 4.64367i 0.560799 + 0.150266i
\(956\) 0.277580 1.03594i 0.00897759 0.0335048i
\(957\) 0 0
\(958\) 0 0
\(959\) −43.7989 25.2873i −1.41434 0.816569i
\(960\) 6.48341 1.73722i 0.209251 0.0560687i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.93761 + 3.35604i −0.0623739 + 0.108035i
\(966\) −14.3595 + 8.29044i −0.462008 + 0.266740i
\(967\) 40.2250 40.2250i 1.29355 1.29355i 0.360971 0.932577i \(-0.382445\pi\)
0.932577 0.360971i \(-0.117555\pi\)
\(968\) 30.0526 + 8.05256i 0.965926 + 0.258819i
\(969\) 0 0
\(970\) 0 0
\(971\) 4.13479 + 7.16167i 0.132692 + 0.229829i 0.924713 0.380664i \(-0.124305\pi\)
−0.792021 + 0.610493i \(0.790971\pi\)
\(972\) −22.4414 12.9565i −0.719807 0.415581i
\(973\) 58.7014 15.7290i 1.88188 0.504248i
\(974\) 16.7582i 0.536968i
\(975\) −9.95894 + 18.4407i −0.318941 + 0.590574i
\(976\) 62.1937 1.99077
\(977\) 8.51030 + 31.7609i 0.272269 + 1.01612i 0.957650 + 0.287936i \(0.0929689\pi\)
−0.685381 + 0.728184i \(0.740364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 6.52395 6.52395i 0.208400 0.208400i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −15.7417 52.7083i −0.500809 1.67687i
\(989\) 0 0
\(990\) 0 0
\(991\) −19.7951 + 34.2861i −0.628811 + 1.08913i 0.358980 + 0.933345i \(0.383125\pi\)
−0.987791 + 0.155787i \(0.950209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −59.9089 16.0525i −1.90020 0.509156i
\(995\) 0 0
\(996\) 10.1864 + 10.1864i 0.322768 + 0.322768i
\(997\) 20.8131 + 36.0494i 0.659158 + 1.14170i 0.980834 + 0.194846i \(0.0624207\pi\)
−0.321675 + 0.946850i \(0.604246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.b.461.3 yes 16
7.6 odd 2 inner 728.2.ds.b.461.2 yes 16
8.5 even 2 inner 728.2.ds.b.461.2 yes 16
13.11 odd 12 inner 728.2.ds.b.349.3 yes 16
56.13 odd 2 CM 728.2.ds.b.461.3 yes 16
91.76 even 12 inner 728.2.ds.b.349.2 16
104.37 odd 12 inner 728.2.ds.b.349.2 16
728.349 even 12 inner 728.2.ds.b.349.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.b.349.2 16 91.76 even 12 inner
728.2.ds.b.349.2 16 104.37 odd 12 inner
728.2.ds.b.349.3 yes 16 13.11 odd 12 inner
728.2.ds.b.349.3 yes 16 728.349 even 12 inner
728.2.ds.b.461.2 yes 16 7.6 odd 2 inner
728.2.ds.b.461.2 yes 16 8.5 even 2 inner
728.2.ds.b.461.3 yes 16 1.1 even 1 trivial
728.2.ds.b.461.3 yes 16 56.13 odd 2 CM