Properties

Label 728.2.ds.b.405.4
Level $728$
Weight $2$
Character 728.405
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(293,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 6, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 13 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 405.4
Root \(1.35670 + 1.07674i\) of defining polynomial
Character \(\chi\) \(=\) 728.405
Dual form 728.2.ds.b.293.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(1.07674 + 1.86497i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.94171 + 2.94171i) q^{5} +(0.788230 + 2.94171i) q^{6} +(2.55560 - 0.684771i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-0.818745 + 1.41811i) q^{9} +(-5.09520 + 2.94171i) q^{10} +4.30697i q^{12} +(3.07000 - 1.89079i) q^{13} +3.74166 q^{14} +(-8.65368 - 2.31875i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-1.63749 + 1.63749i) q^{18} +(-1.97436 - 7.36841i) q^{19} +(-8.03691 + 2.15348i) q^{20} +(4.02880 + 4.02880i) q^{21} +(-8.21056 + 4.74037i) q^{23} +(-1.57646 + 5.88343i) q^{24} -12.3074i q^{25} +(4.88578 - 1.45917i) q^{26} +2.93414 q^{27} +(5.11120 + 1.36954i) q^{28} +(-10.9724 - 6.33493i) q^{30} +(1.46410 + 5.46410i) q^{32} +(-5.50344 + 9.53224i) q^{35} +(-2.83622 + 1.63749i) q^{36} -10.7881i q^{38} +(6.83187 + 3.68957i) q^{39} -11.7669 q^{40} +(4.02880 + 6.97808i) q^{42} +(-1.76315 - 6.58018i) q^{45} +(-12.9509 + 3.47019i) q^{46} +(-4.30697 + 7.45989i) q^{48} +(6.06218 - 3.50000i) q^{49} +(4.50480 - 16.8122i) q^{50} +(7.20819 - 0.204942i) q^{52} +(4.00811 + 1.07397i) q^{54} +(6.48074 + 3.74166i) q^{56} +(11.6160 - 11.6160i) q^{57} +(13.1424 - 3.52151i) q^{59} +(-12.6699 - 12.6699i) q^{60} +(-4.53609 + 7.85674i) q^{61} +(-1.12131 + 4.18477i) q^{63} +8.00000i q^{64} +(-3.46890 + 14.5932i) q^{65} +(-17.6813 - 10.2083i) q^{69} +(-11.0069 + 11.0069i) q^{70} +(-2.82612 - 10.5472i) q^{71} +(-4.47371 + 1.19873i) q^{72} +(22.9529 - 13.2518i) q^{75} +(3.94872 - 14.7368i) q^{76} +(7.98203 + 7.54069i) q^{78} +8.25834 q^{79} +(-16.0738 - 4.30697i) q^{80} +(5.61555 + 9.72641i) q^{81} +(4.00054 - 4.00054i) q^{83} +(2.94929 + 11.0069i) q^{84} -9.63406i q^{90} +(6.55094 - 6.93435i) q^{91} -18.9615 q^{92} +(27.4838 + 15.8678i) q^{95} +(-8.61393 + 8.61393i) q^{96} +(9.56218 - 2.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 32 q^{8} - 16 q^{9} - 56 q^{15} + 32 q^{16} - 32 q^{18} - 96 q^{30} - 32 q^{32} + 48 q^{36} + 72 q^{39} - 24 q^{46} + 56 q^{50} + 88 q^{57} - 32 q^{60} - 112 q^{63} + 16 q^{65} - 16 q^{71}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.965926 + 0.258819i
\(3\) 1.07674 + 1.86497i 0.621657 + 1.07674i 0.989177 + 0.146726i \(0.0468736\pi\)
−0.367520 + 0.930016i \(0.619793\pi\)
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) −2.94171 + 2.94171i −1.31557 + 1.31557i −0.398333 + 0.917241i \(0.630411\pi\)
−0.917241 + 0.398333i \(0.869589\pi\)
\(6\) 0.788230 + 2.94171i 0.321793 + 1.20095i
\(7\) 2.55560 0.684771i 0.965926 0.258819i
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) −0.818745 + 1.41811i −0.272915 + 0.472703i
\(10\) −5.09520 + 2.94171i −1.61124 + 0.930251i
\(11\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(12\) 4.30697i 1.24331i
\(13\) 3.07000 1.89079i 0.851465 0.524411i
\(14\) 3.74166 1.00000
\(15\) −8.65368 2.31875i −2.23437 0.598697i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) −1.63749 + 1.63749i −0.385960 + 0.385960i
\(19\) −1.97436 7.36841i −0.452949 1.69043i −0.694048 0.719929i \(-0.744174\pi\)
0.241098 0.970501i \(-0.422492\pi\)
\(20\) −8.03691 + 2.15348i −1.79711 + 0.481534i
\(21\) 4.02880 + 4.02880i 0.879156 + 0.879156i
\(22\) 0 0
\(23\) −8.21056 + 4.74037i −1.71202 + 0.988436i −0.780189 + 0.625543i \(0.784877\pi\)
−0.931831 + 0.362892i \(0.881789\pi\)
\(24\) −1.57646 + 5.88343i −0.321793 + 1.20095i
\(25\) 12.3074i 2.46147i
\(26\) 4.88578 1.45917i 0.958180 0.286166i
\(27\) 2.93414 0.564676
\(28\) 5.11120 + 1.36954i 0.965926 + 0.258819i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) −10.9724 6.33493i −2.00328 1.15659i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) 1.46410 + 5.46410i 0.258819 + 0.965926i
\(33\) 0 0
\(34\) 0 0
\(35\) −5.50344 + 9.53224i −0.930251 + 1.61124i
\(36\) −2.83622 + 1.63749i −0.472703 + 0.272915i
\(37\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(38\) 10.7881i 1.75006i
\(39\) 6.83187 + 3.68957i 1.09397 + 0.590805i
\(40\) −11.7669 −1.86050
\(41\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(42\) 4.02880 + 6.97808i 0.621657 + 1.07674i
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 0 0
\(45\) −1.76315 6.58018i −0.262836 0.980916i
\(46\) −12.9509 + 3.47019i −1.90951 + 0.511652i
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −4.30697 + 7.45989i −0.621657 + 1.07674i
\(49\) 6.06218 3.50000i 0.866025 0.500000i
\(50\) 4.50480 16.8122i 0.637075 2.37760i
\(51\) 0 0
\(52\) 7.20819 0.204942i 0.999596 0.0284203i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 4.00811 + 1.07397i 0.545435 + 0.146149i
\(55\) 0 0
\(56\) 6.48074 + 3.74166i 0.866025 + 0.500000i
\(57\) 11.6160 11.6160i 1.53858 1.53858i
\(58\) 0 0
\(59\) 13.1424 3.52151i 1.71100 0.458461i 0.735332 0.677707i \(-0.237026\pi\)
0.975670 + 0.219246i \(0.0703597\pi\)
\(60\) −12.6699 12.6699i −1.63567 1.63567i
\(61\) −4.53609 + 7.85674i −0.580787 + 1.00595i 0.414600 + 0.910004i \(0.363922\pi\)
−0.995386 + 0.0959480i \(0.969412\pi\)
\(62\) 0 0
\(63\) −1.12131 + 4.18477i −0.141271 + 0.527232i
\(64\) 8.00000i 1.00000i
\(65\) −3.46890 + 14.5932i −0.430265 + 1.81007i
\(66\) 0 0
\(67\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(68\) 0 0
\(69\) −17.6813 10.2083i −2.12858 1.22894i
\(70\) −11.0069 + 11.0069i −1.31557 + 1.31557i
\(71\) −2.82612 10.5472i −0.335399 1.25173i −0.903436 0.428723i \(-0.858964\pi\)
0.568037 0.823003i \(-0.307703\pi\)
\(72\) −4.47371 + 1.19873i −0.527232 + 0.141271i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 22.9529 13.2518i 2.65037 1.53019i
\(76\) 3.94872 14.7368i 0.452949 1.69043i
\(77\) 0 0
\(78\) 7.98203 + 7.54069i 0.903787 + 0.853815i
\(79\) 8.25834 0.929136 0.464568 0.885537i \(-0.346210\pi\)
0.464568 + 0.885537i \(0.346210\pi\)
\(80\) −16.0738 4.30697i −1.79711 0.481534i
\(81\) 5.61555 + 9.72641i 0.623950 + 1.08071i
\(82\) 0 0
\(83\) 4.00054 4.00054i 0.439116 0.439116i −0.452598 0.891715i \(-0.649503\pi\)
0.891715 + 0.452598i \(0.149503\pi\)
\(84\) 2.94929 + 11.0069i 0.321793 + 1.20095i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(90\) 9.63406i 1.01552i
\(91\) 6.55094 6.93435i 0.686725 0.726917i
\(92\) −18.9615 −1.97687
\(93\) 0 0
\(94\) 0 0
\(95\) 27.4838 + 15.8678i 2.81977 + 1.62800i
\(96\) −8.61393 + 8.61393i −0.879156 + 0.879156i
\(97\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(98\) 9.56218 2.56218i 0.965926 0.258819i
\(99\) 0 0
\(100\) 12.3074 21.3170i 1.23074 2.13170i
\(101\) 1.20682 0.696757i 0.120083 0.0693299i −0.438755 0.898607i \(-0.644581\pi\)
0.558838 + 0.829277i \(0.311247\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 9.92158 + 2.35843i 0.972891 + 0.231263i
\(105\) −23.7031 −2.31319
\(106\) 0 0
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) 5.08208 + 2.93414i 0.489023 + 0.282338i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.48331 + 7.48331i 0.707107 + 0.707107i
\(113\) 0.612486 1.06086i 0.0576178 0.0997970i −0.835778 0.549068i \(-0.814983\pi\)
0.893396 + 0.449271i \(0.148316\pi\)
\(114\) 20.1195 11.6160i 1.88436 1.08794i
\(115\) 10.2083 38.0979i 0.951930 3.55265i
\(116\) 0 0
\(117\) 0.167795 + 5.90167i 0.0155127 + 0.545610i
\(118\) 19.2419 1.77136
\(119\) 0 0
\(120\) −12.6699 21.9448i −1.15659 2.00328i
\(121\) −9.52628 5.50000i −0.866025 0.500000i
\(122\) −9.07218 + 9.07218i −0.821356 + 0.821356i
\(123\) 0 0
\(124\) 0 0
\(125\) 21.4961 + 21.4961i 1.92267 + 1.92267i
\(126\) −3.06346 + 5.30608i −0.272915 + 0.472703i
\(127\) −11.2211 + 6.47851i −0.995713 + 0.574875i −0.906977 0.421180i \(-0.861616\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) −2.92820 + 10.9282i −0.258819 + 0.965926i
\(129\) 0 0
\(130\) −10.0801 + 18.6650i −0.884084 + 1.63703i
\(131\) −1.01458 −0.0886442 −0.0443221 0.999017i \(-0.514113\pi\)
−0.0443221 + 0.999017i \(0.514113\pi\)
\(132\) 0 0
\(133\) −10.0913 17.4787i −0.875031 1.51560i
\(134\) 0 0
\(135\) −8.63140 + 8.63140i −0.742873 + 0.742873i
\(136\) 0 0
\(137\) −20.5359 + 5.50257i −1.75450 + 0.470117i −0.985577 0.169226i \(-0.945873\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) −20.4166 20.4166i −1.73798 1.73798i
\(139\) −11.4849 + 19.8924i −0.974133 + 1.68725i −0.291367 + 0.956611i \(0.594110\pi\)
−0.682766 + 0.730637i \(0.739223\pi\)
\(140\) −19.0645 + 11.0069i −1.61124 + 0.930251i
\(141\) 0 0
\(142\) 15.4422i 1.29588i
\(143\) 0 0
\(144\) −6.54996 −0.545830
\(145\) 0 0
\(146\) 0 0
\(147\) 13.0548 + 7.53719i 1.07674 + 0.621657i
\(148\) 0 0
\(149\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(150\) 36.2047 9.70102i 2.95610 0.792085i
\(151\) 17.1637 + 17.1637i 1.39676 + 1.39676i 0.809118 + 0.587646i \(0.199945\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(152\) 10.7881 18.6855i 0.875031 1.51560i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 8.14357 + 13.2224i 0.652007 + 1.05864i
\(157\) −9.39459 −0.749770 −0.374885 0.927071i \(-0.622318\pi\)
−0.374885 + 0.927071i \(0.622318\pi\)
\(158\) 11.2811 + 3.02276i 0.897477 + 0.240478i
\(159\) 0 0
\(160\) −20.3808 11.7669i −1.61124 0.930251i
\(161\) −17.7368 + 17.7368i −1.39786 + 1.39786i
\(162\) 4.11087 + 15.3420i 0.322980 + 1.20538i
\(163\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 6.92914 4.00054i 0.537805 0.310502i
\(167\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(168\) 16.1152i 1.24331i
\(169\) 5.84983 11.6095i 0.449987 0.893035i
\(170\) 0 0
\(171\) 12.0657 + 3.23300i 0.922688 + 0.247233i
\(172\) 0 0
\(173\) −21.8129 12.5937i −1.65840 0.957480i −0.973452 0.228893i \(-0.926490\pi\)
−0.684953 0.728588i \(-0.740177\pi\)
\(174\) 0 0
\(175\) −8.42772 31.4527i −0.637075 2.37760i
\(176\) 0 0
\(177\) 20.7185 + 20.7185i 1.55730 + 1.55730i
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 3.52631 13.1604i 0.262836 0.980916i
\(181\) 13.7788i 1.02417i 0.858936 + 0.512084i \(0.171126\pi\)
−0.858936 + 0.512084i \(0.828874\pi\)
\(182\) 11.4869 7.07469i 0.851465 0.524411i
\(183\) −19.5368 −1.44420
\(184\) −25.9019 6.94038i −1.90951 0.511652i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 7.49849 2.00921i 0.545435 0.146149i
\(190\) 31.7355 + 31.7355i 2.30234 + 2.30234i
\(191\) 13.6125 23.5775i 0.984965 1.70601i 0.342873 0.939382i \(-0.388600\pi\)
0.642092 0.766627i \(-0.278067\pi\)
\(192\) −14.9198 + 8.61393i −1.07674 + 0.621657i
\(193\) 5.32578 19.8761i 0.383358 1.43071i −0.457381 0.889271i \(-0.651213\pi\)
0.840739 0.541440i \(-0.182121\pi\)
\(194\) 0 0
\(195\) −30.9511 + 9.24373i −2.21645 + 0.661957i
\(196\) 14.0000 1.00000
\(197\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 24.6147 24.6147i 1.74052 1.74052i
\(201\) 0 0
\(202\) 1.90357 0.510061i 0.133935 0.0358878i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 15.5246i 1.07904i
\(208\) 12.6899 + 6.85322i 0.879886 + 0.475185i
\(209\) 0 0
\(210\) −32.3791 8.67595i −2.23437 0.598697i
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 16.6273 16.6273i 1.13928 1.13928i
\(214\) 0 0
\(215\) 0 0
\(216\) 5.86828 + 5.86828i 0.399286 + 0.399286i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(224\) 7.48331 + 12.9615i 0.500000 + 0.866025i
\(225\) 17.4532 + 10.0766i 1.16354 + 0.671773i
\(226\) 1.22497 1.22497i 0.0814839 0.0814839i
\(227\) −7.74458 28.9031i −0.514025 1.91837i −0.370932 0.928660i \(-0.620962\pi\)
−0.143094 0.989709i \(-0.545705\pi\)
\(228\) 31.7355 8.50350i 2.10174 0.563158i
\(229\) −13.3951 13.3951i −0.885175 0.885175i 0.108880 0.994055i \(-0.465274\pi\)
−0.994055 + 0.108880i \(0.965274\pi\)
\(230\) 27.8896 48.3062i 1.83899 3.18522i
\(231\) 0 0
\(232\) 0 0
\(233\) 9.77048i 0.640085i 0.947403 + 0.320043i \(0.103697\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) −1.93095 + 8.12325i −0.126230 + 0.531034i
\(235\) 0 0
\(236\) 26.2849 + 7.04302i 1.71100 + 0.458461i
\(237\) 8.89210 + 15.4016i 0.577604 + 1.00044i
\(238\) 0 0
\(239\) 19.1208 19.1208i 1.23682 1.23682i 0.275533 0.961292i \(-0.411146\pi\)
0.961292 0.275533i \(-0.0888542\pi\)
\(240\) −9.27498 34.6147i −0.598697 2.23437i
\(241\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) −7.69178 + 13.3226i −0.493428 + 0.854642i
\(244\) −15.7135 + 9.07218i −1.00595 + 0.580787i
\(245\) −7.53719 + 28.1292i −0.481534 + 1.79711i
\(246\) 0 0
\(247\) −19.9934 18.8879i −1.27215 1.20181i
\(248\) 0 0
\(249\) 11.7684 + 3.15334i 0.745794 + 0.199835i
\(250\) 21.4961 + 37.2324i 1.35953 + 2.35478i
\(251\) 15.8898 + 9.17399i 1.00296 + 0.579057i 0.909122 0.416530i \(-0.136754\pi\)
0.0938349 + 0.995588i \(0.470087\pi\)
\(252\) −6.12693 + 6.12693i −0.385960 + 0.385960i
\(253\) 0 0
\(254\) −17.6996 + 4.74260i −1.11057 + 0.297577i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −20.6015 + 21.8073i −1.27765 + 1.35243i
\(261\) 0 0
\(262\) −1.38594 0.371362i −0.0856237 0.0229428i
\(263\) −15.7146 27.2184i −0.969002 1.67836i −0.698456 0.715653i \(-0.746129\pi\)
−0.270546 0.962707i \(-0.587204\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −7.38738 27.5701i −0.452949 1.69043i
\(267\) 0 0
\(268\) 0 0
\(269\) 0.348854 0.604233i 0.0212700 0.0368407i −0.855194 0.518307i \(-0.826562\pi\)
0.876464 + 0.481467i \(0.159896\pi\)
\(270\) −14.9500 + 8.63140i −0.909830 + 0.525290i
\(271\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(272\) 0 0
\(273\) 19.9860 + 4.75081i 1.20961 + 0.287532i
\(274\) −30.0666 −1.81639
\(275\) 0 0
\(276\) −20.4166 35.3626i −1.22894 2.12858i
\(277\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) −22.9697 + 22.9697i −1.37763 + 1.37763i
\(279\) 0 0
\(280\) −30.0714 + 8.05760i −1.79711 + 0.481534i
\(281\) −22.4833 22.4833i −1.34124 1.34124i −0.894825 0.446417i \(-0.852700\pi\)
−0.446417 0.894825i \(-0.647300\pi\)
\(282\) 0 0
\(283\) −4.73120 + 2.73156i −0.281241 + 0.162374i −0.633985 0.773345i \(-0.718582\pi\)
0.352744 + 0.935720i \(0.385249\pi\)
\(284\) 5.65225 21.0945i 0.335399 1.25173i
\(285\) 68.3419i 4.04822i
\(286\) 0 0
\(287\) 0 0
\(288\) −8.94742 2.39745i −0.527232 0.141271i
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −33.0349 + 8.85168i −1.92992 + 0.517121i −0.953390 + 0.301742i \(0.902432\pi\)
−0.976531 + 0.215378i \(0.930902\pi\)
\(294\) 15.0744 + 15.0744i 0.879156 + 0.879156i
\(295\) −28.3020 + 49.0206i −1.64781 + 2.85409i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.2434 + 30.0774i −0.939380 + 1.73942i
\(300\) 53.0074 3.06038
\(301\) 0 0
\(302\) 17.1637 + 29.7284i 0.987661 + 1.71068i
\(303\) 2.59886 + 1.50045i 0.149301 + 0.0861988i
\(304\) 21.5762 21.5762i 1.23748 1.23748i
\(305\) −9.76839 36.4561i −0.559336 2.08747i
\(306\) 0 0
\(307\) 6.84906 + 6.84906i 0.390896 + 0.390896i 0.875007 0.484110i \(-0.160857\pi\)
−0.484110 + 0.875007i \(0.660857\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 6.28459 + 21.0429i 0.355795 + 1.19132i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −12.8333 3.43866i −0.724222 0.194055i
\(315\) −9.01183 15.6090i −0.507759 0.879465i
\(316\) 14.3039 + 8.25834i 0.804655 + 0.464568i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −23.5337 23.5337i −1.31557 1.31557i
\(321\) 0 0
\(322\) −30.7211 + 17.7368i −1.71202 + 0.988436i
\(323\) 0 0
\(324\) 22.4622i 1.24790i
\(325\) −23.2706 37.7836i −1.29082 2.09586i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(332\) 10.9297 2.92860i 0.599844 0.160728i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −5.89857 + 22.0138i −0.321793 + 1.20095i
\(337\) 36.7083i 1.99963i 0.0192914 + 0.999814i \(0.493859\pi\)
−0.0192914 + 0.999814i \(0.506141\pi\)
\(338\) 12.2404 13.7176i 0.665788 0.746141i
\(339\) 2.63796 0.143274
\(340\) 0 0
\(341\) 0 0
\(342\) 15.2987 + 8.83271i 0.827259 + 0.477618i
\(343\) 13.0958 13.0958i 0.707107 0.707107i
\(344\) 0 0
\(345\) 82.0433 21.9834i 4.41706 1.18355i
\(346\) −25.1874 25.1874i −1.35408 1.35408i
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 6.53573 24.3917i 0.349849 1.30566i −0.536994 0.843586i \(-0.680440\pi\)
0.886843 0.462070i \(-0.152893\pi\)
\(350\) 46.0499i 2.46147i
\(351\) 9.00782 5.54784i 0.480802 0.296122i
\(352\) 0 0
\(353\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(354\) 20.7185 + 35.8856i 1.10118 + 1.90730i
\(355\) 39.3406 + 22.7133i 2.08798 + 1.20550i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.9458 + 10.9458i 0.577696 + 0.577696i 0.934268 0.356572i \(-0.116054\pi\)
−0.356572 + 0.934268i \(0.616054\pi\)
\(360\) 9.63406 16.6867i 0.507759 0.879465i
\(361\) −33.9409 + 19.5958i −1.78636 + 1.03136i
\(362\) −5.04338 + 18.8221i −0.265074 + 0.989270i
\(363\) 23.6883i 1.24331i
\(364\) 18.2809 5.45971i 0.958180 0.286166i
\(365\) 0 0
\(366\) −26.6877 7.15096i −1.39499 0.373787i
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) −32.8422 18.9615i −1.71202 0.988436i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) −16.9439 + 63.2355i −0.874979 + 3.26546i
\(376\) 0 0
\(377\) 0 0
\(378\) 10.9785 0.564676
\(379\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(380\) 31.7355 + 54.9675i 1.62800 + 2.81977i
\(381\) −24.1645 13.9514i −1.23798 0.714750i
\(382\) 27.2250 27.2250i 1.39295 1.39295i
\(383\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(384\) −23.5337 + 6.30584i −1.20095 + 0.321793i
\(385\) 0 0
\(386\) 14.5503 25.2019i 0.740591 1.28274i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −45.6634 + 1.29829i −2.31226 + 0.0657415i
\(391\) 0 0
\(392\) 19.1244 + 5.12436i 0.965926 + 0.258819i
\(393\) −1.09244 1.89216i −0.0551063 0.0954469i
\(394\) 0 0
\(395\) −24.2937 + 24.2937i −1.22235 + 1.22235i
\(396\) 0 0
\(397\) 32.0100 8.57705i 1.60654 0.430470i 0.659528 0.751680i \(-0.270756\pi\)
0.947008 + 0.321211i \(0.104090\pi\)
\(398\) 0 0
\(399\) 21.7316 37.6401i 1.08794 1.88436i
\(400\) 42.6339 24.6147i 2.13170 1.23074i
\(401\) −4.10862 + 15.3336i −0.205175 + 0.765723i 0.784221 + 0.620481i \(0.213063\pi\)
−0.989396 + 0.145242i \(0.953604\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 2.78703 0.138660
\(405\) −45.1317 12.0930i −2.24261 0.600905i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(410\) 0 0
\(411\) −32.3740 32.3740i −1.59689 1.59689i
\(412\) 0 0
\(413\) 31.1754 17.9991i 1.53404 0.885679i
\(414\) 5.68241 21.2070i 0.279275 1.04227i
\(415\) 23.5369i 1.15538i
\(416\) 14.8263 + 14.0065i 0.726917 + 0.686725i
\(417\) −49.4649 −2.42231
\(418\) 0 0
\(419\) 15.4854 + 26.8215i 0.756511 + 1.31032i 0.944619 + 0.328168i \(0.106431\pi\)
−0.188108 + 0.982148i \(0.560236\pi\)
\(420\) −41.0550 23.7031i −2.00328 1.15659i
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 28.7993 16.6273i 1.39533 0.805595i
\(427\) −6.21236 + 23.1849i −0.300637 + 1.12199i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −30.4101 8.14837i −1.46480 0.392493i −0.563658 0.826008i \(-0.690607\pi\)
−0.901146 + 0.433515i \(0.857273\pi\)
\(432\) 5.86828 + 10.1642i 0.282338 + 0.489023i
\(433\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 51.1396 + 51.1396i 2.44634 + 2.44634i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 11.4624i 0.545830i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 5.47817 + 20.4448i 0.258819 + 0.965926i
\(449\) 20.4281 5.47370i 0.964062 0.258320i 0.257743 0.966213i \(-0.417021\pi\)
0.706319 + 0.707894i \(0.250354\pi\)
\(450\) 20.1532 + 20.1532i 0.950030 + 0.950030i
\(451\) 0 0
\(452\) 2.12171 1.22497i 0.0997970 0.0576178i
\(453\) −13.5290 + 50.4908i −0.635646 + 2.37226i
\(454\) 42.3171i 1.98604i
\(455\) 1.12788 + 39.6698i 0.0528760 + 1.85975i
\(456\) 46.4640 2.17588
\(457\) −32.9348 8.82485i −1.54062 0.412809i −0.614157 0.789184i \(-0.710504\pi\)
−0.926467 + 0.376375i \(0.877170\pi\)
\(458\) −13.3951 23.2010i −0.625913 1.08411i
\(459\) 0 0
\(460\) 55.7792 55.7792i 2.60072 2.60072i
\(461\) 5.42413 + 20.2431i 0.252627 + 0.942817i 0.969395 + 0.245505i \(0.0789539\pi\)
−0.716768 + 0.697312i \(0.754379\pi\)
\(462\) 0 0
\(463\) 4.20185 + 4.20185i 0.195277 + 0.195277i 0.797972 0.602695i \(-0.205906\pi\)
−0.602695 + 0.797972i \(0.705906\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −3.57624 + 13.3467i −0.165666 + 0.618275i
\(467\) 16.9526i 0.784471i 0.919865 + 0.392236i \(0.128298\pi\)
−0.919865 + 0.392236i \(0.871702\pi\)
\(468\) −5.61104 + 10.3898i −0.259371 + 0.480268i
\(469\) 0 0
\(470\) 0 0
\(471\) −10.1155 17.5206i −0.466100 0.807309i
\(472\) 33.3279 + 19.2419i 1.53404 + 0.885679i
\(473\) 0 0
\(474\) 6.50947 + 24.2937i 0.298990 + 1.11585i
\(475\) −90.6856 + 24.2991i −4.16094 + 1.11492i
\(476\) 0 0
\(477\) 0 0
\(478\) 33.1183 19.1208i 1.51479 0.874567i
\(479\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(480\) 50.6794i 2.31319i
\(481\) 0 0
\(482\) 0 0
\(483\) −52.1767 13.9807i −2.37412 0.636144i
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) −15.3836 + 15.3836i −0.697812 + 0.697812i
\(487\) 7.99614 + 29.8420i 0.362340 + 1.35227i 0.870992 + 0.491298i \(0.163477\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) −24.7856 + 6.64129i −1.12199 + 0.300637i
\(489\) 0 0
\(490\) −20.5920 + 35.6664i −0.930251 + 1.61124i
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −20.3980 33.1195i −0.917751 1.49012i
\(495\) 0 0
\(496\) 0 0
\(497\) −14.4449 25.0193i −0.647941 1.12227i
\(498\) 14.9218 + 8.61509i 0.668661 + 0.386052i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) 15.7363 + 58.7285i 0.703747 + 2.62642i
\(501\) 0 0
\(502\) 18.3480 + 18.3480i 0.818911 + 0.818911i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) −10.6122 + 6.12693i −0.472703 + 0.272915i
\(505\) −1.50045 + 5.59977i −0.0667693 + 0.249187i
\(506\) 0 0
\(507\) 27.9501 1.59063i 1.24131 0.0706422i
\(508\) −25.9140 −1.14975
\(509\) −41.2960 11.0652i −1.83041 0.490457i −0.832440 0.554115i \(-0.813057\pi\)
−0.997972 + 0.0636579i \(0.979723\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) −5.79305 21.6200i −0.255769 0.954545i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 54.2406i 2.38090i
\(520\) −36.1243 + 22.2486i −1.58415 + 0.975668i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −7.55031 13.0775i −0.330152 0.571840i 0.652390 0.757884i \(-0.273767\pi\)
−0.982541 + 0.186044i \(0.940433\pi\)
\(524\) −1.75730 1.01458i −0.0767681 0.0443221i
\(525\) 49.5838 49.5838i 2.16402 2.16402i
\(526\) −11.5039 42.9330i −0.501592 1.87197i
\(527\) 0 0
\(528\) 0 0
\(529\) 33.4422 57.9236i 1.45401 2.51842i
\(530\) 0 0
\(531\) −5.76644 + 21.5206i −0.250242 + 0.933916i
\(532\) 40.3654i 1.75006i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.697708 0.697708i 0.0300803 0.0300803i
\(539\) 0 0
\(540\) −23.5814 + 6.31862i −1.01478 + 0.271910i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) 0 0
\(543\) −25.6970 + 14.8362i −1.10276 + 0.636681i
\(544\) 0 0
\(545\) 0 0
\(546\) 25.5625 + 13.8051i 1.09397 + 0.590805i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −41.0718 11.0051i −1.75450 0.470117i
\(549\) −7.42780 12.8653i −0.317011 0.549079i
\(550\) 0 0
\(551\) 0 0
\(552\) −14.9460 55.7792i −0.636144 2.37412i
\(553\) 21.1050 5.65507i 0.897477 0.240478i
\(554\) 0 0
\(555\) 0 0
\(556\) −39.7847 + 22.9697i −1.68725 + 0.974133i
\(557\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −44.0275 −1.86050
\(561\) 0 0
\(562\) −22.4833 38.9422i −0.948401 1.64268i
\(563\) 22.3060 + 12.8784i 0.940086 + 0.542759i 0.889987 0.455985i \(-0.150713\pi\)
0.0500986 + 0.998744i \(0.484046\pi\)
\(564\) 0 0
\(565\) 1.31898 + 4.92250i 0.0554898 + 0.207091i
\(566\) −7.46276 + 1.99964i −0.313683 + 0.0840511i
\(567\) 21.0115 + 21.0115i 0.882398 + 0.882398i
\(568\) 15.4422 26.7467i 0.647941 1.12227i
\(569\) −40.4718 + 23.3664i −1.69667 + 0.979571i −0.747785 + 0.663941i \(0.768883\pi\)
−0.948882 + 0.315631i \(0.897784\pi\)
\(570\) −25.0149 + 93.3568i −1.04776 + 3.91028i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 58.6285 2.44924
\(574\) 0 0
\(575\) 58.3414 + 101.050i 2.43300 + 4.21409i
\(576\) −11.3449 6.54996i −0.472703 0.272915i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 6.22243 + 23.2224i 0.258819 + 0.965926i
\(579\) 42.8028 11.4690i 1.77882 0.476634i
\(580\) 0 0
\(581\) 7.48432 12.9632i 0.310502 0.537805i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −17.8546 16.8674i −0.738198 0.697382i
\(586\) −48.3665 −1.99800
\(587\) 46.7186 + 12.5182i 1.92828 + 0.516681i 0.979869 + 0.199641i \(0.0639775\pi\)
0.948412 + 0.317041i \(0.102689\pi\)
\(588\) 15.0744 + 26.1096i 0.621657 + 1.07674i
\(589\) 0 0
\(590\) −56.6041 + 56.6041i −2.33035 + 2.33035i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −33.1980 + 35.1410i −1.35757 + 1.43702i
\(599\) 23.2541 0.950136 0.475068 0.879949i \(-0.342423\pi\)
0.475068 + 0.879949i \(0.342423\pi\)
\(600\) 72.4094 + 19.4020i 2.95610 + 0.792085i
\(601\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 12.5647 + 46.8922i 0.511251 + 1.90802i
\(605\) 44.2030 11.8442i 1.79711 0.481534i
\(606\) 3.00091 + 3.00091i 0.121904 + 0.121904i
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 37.3711 21.5762i 1.51560 0.875031i
\(609\) 0 0
\(610\) 53.3755i 2.16111i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(614\) 6.84906 + 11.8629i 0.276405 + 0.478748i
\(615\) 0 0
\(616\) 0 0
\(617\) −2.99306 11.1703i −0.120496 0.449698i 0.879143 0.476558i \(-0.158116\pi\)
−0.999639 + 0.0268600i \(0.991449\pi\)
\(618\) 0 0
\(619\) −27.1731 27.1731i −1.09218 1.09218i −0.995296 0.0968845i \(-0.969112\pi\)
−0.0968845 0.995296i \(-0.530888\pi\)
\(620\) 0 0
\(621\) −24.0909 + 13.9089i −0.966736 + 0.558146i
\(622\) 0 0
\(623\) 0 0
\(624\) 0.882677 + 31.0454i 0.0353354 + 1.24281i
\(625\) −64.9341 −2.59737
\(626\) 0 0
\(627\) 0 0
\(628\) −16.2719 9.39459i −0.649320 0.374885i
\(629\) 0 0
\(630\) −6.59712 24.6208i −0.262836 0.980916i
\(631\) 46.2815 12.4011i 1.84244 0.493680i 0.843389 0.537303i \(-0.180557\pi\)
0.999048 + 0.0436231i \(0.0138901\pi\)
\(632\) 16.5167 + 16.5167i 0.656998 + 0.656998i
\(633\) 0 0
\(634\) 0 0
\(635\) 13.9514 52.0672i 0.553643 2.06622i
\(636\) 0 0
\(637\) 11.9931 22.2073i 0.475185 0.879886i
\(638\) 0 0
\(639\) 17.2710 + 4.62775i 0.683230 + 0.183071i
\(640\) −23.5337 40.7616i −0.930251 1.61124i
\(641\) 2.50172 + 1.44437i 0.0988119 + 0.0570491i 0.548592 0.836090i \(-0.315164\pi\)
−0.449780 + 0.893140i \(0.648498\pi\)
\(642\) 0 0
\(643\) 5.55067 + 20.7154i 0.218897 + 0.816935i 0.984758 + 0.173929i \(0.0556463\pi\)
−0.765861 + 0.643006i \(0.777687\pi\)
\(644\) −48.4580 + 12.9843i −1.90951 + 0.511652i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) −8.22173 + 30.6839i −0.322980 + 1.20538i
\(649\) 0 0
\(650\) −17.9585 60.1310i −0.704390 2.35853i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 2.98460 2.98460i 0.116618 0.116618i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 13.3064 49.6603i 0.517560 1.93156i 0.242012 0.970273i \(-0.422193\pi\)
0.275548 0.961287i \(-0.411141\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 16.0022 0.621004
\(665\) 81.1033 + 21.7316i 3.14505 + 0.842713i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −16.1152 + 27.9123i −0.621657 + 1.07674i
\(673\) −38.8844 + 22.4499i −1.49889 + 0.865382i −0.999999 0.00128586i \(-0.999591\pi\)
−0.498886 + 0.866668i \(0.666257\pi\)
\(674\) −13.4362 + 50.1445i −0.517542 + 1.93149i
\(675\) 36.1115i 1.38993i
\(676\) 21.7417 14.2583i 0.836218 0.548398i
\(677\) 2.69123 0.103433 0.0517163 0.998662i \(-0.483531\pi\)
0.0517163 + 0.998662i \(0.483531\pi\)
\(678\) 3.60352 + 0.965559i 0.138392 + 0.0370821i
\(679\) 0 0
\(680\) 0 0
\(681\) 45.5646 45.5646i 1.74604 1.74604i
\(682\) 0 0
\(683\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(684\) 17.6654 + 17.6654i 0.675454 + 0.675454i
\(685\) 44.2237 76.5977i 1.68970 2.92665i
\(686\) 22.6826 13.0958i 0.866025 0.500000i
\(687\) 10.5584 39.4046i 0.402830 1.50338i
\(688\) 0 0
\(689\) 0 0
\(690\) 120.120 4.57288
\(691\) −11.1023 2.97485i −0.422351 0.113168i 0.0413827 0.999143i \(-0.486824\pi\)
−0.463733 + 0.885975i \(0.653490\pi\)
\(692\) −25.1874 43.6258i −0.957480 1.65840i
\(693\) 0 0
\(694\) 0 0
\(695\) −24.7325 92.3028i −0.938156 3.50124i
\(696\) 0 0
\(697\) 0 0
\(698\) 17.8559 30.9274i 0.675857 1.17062i
\(699\) −18.2217 + 10.5203i −0.689206 + 0.397914i
\(700\) 16.8554 62.9053i 0.637075 2.37760i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 14.3356 4.28140i 0.541061 0.161591i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.60703 2.60703i 0.0980473 0.0980473i
\(708\) 15.1670 + 56.6041i 0.570012 + 2.12731i
\(709\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(710\) 45.4266 + 45.4266i 1.70483 + 1.70483i
\(711\) −6.76148 + 11.7112i −0.253575 + 0.439205i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 56.2480 + 15.0716i 2.10062 + 0.562860i
\(718\) 10.9458 + 18.9587i 0.408493 + 0.707531i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 19.2681 19.2681i 0.718080 0.718080i
\(721\) 0 0
\(722\) −53.5367 + 14.3451i −1.99243 + 0.533870i
\(723\) 0 0
\(724\) −13.7788 + 23.8655i −0.512084 + 0.886955i
\(725\) 0 0
\(726\) 8.67053 32.3588i 0.321793 1.20095i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 26.9706 0.766821i 0.999596 0.0284203i
\(729\) 0.565054 0.0209279
\(730\) 0 0
\(731\) 0 0
\(732\) −33.8387 19.5368i −1.25071 0.722100i
\(733\) −38.2883 + 38.2883i −1.41421 + 1.41421i −0.706175 + 0.708038i \(0.749581\pi\)
−0.708038 + 0.706175i \(0.750419\pi\)
\(734\) 0 0
\(735\) −60.5757 + 16.2312i −2.23437 + 0.598697i
\(736\) −37.9230 37.9230i −1.39786 1.39786i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(740\) 0 0
\(741\) 13.6977 57.6246i 0.503199 2.11689i
\(742\) 0 0
\(743\) −41.9939 11.2522i −1.54061 0.412804i −0.614145 0.789193i \(-0.710499\pi\)
−0.926462 + 0.376389i \(0.877166\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.39778 + 8.94862i 0.0877300 + 0.327413i
\(748\) 0 0
\(749\) 0 0
\(750\) −46.2916 + 80.1793i −1.69033 + 2.92774i
\(751\) 27.7789 16.0381i 1.01367 0.585240i 0.101403 0.994845i \(-0.467667\pi\)
0.912263 + 0.409605i \(0.134333\pi\)
\(752\) 0 0
\(753\) 39.5121i 1.43990i
\(754\) 0 0
\(755\) −100.982 −3.67509
\(756\) 14.9970 + 4.01843i 0.545435 + 0.146149i
\(757\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 23.2320 + 86.7030i 0.842713 + 3.14505i
\(761\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(762\) −27.9027 27.9027i −1.01081 1.01081i
\(763\) 0 0
\(764\) 47.1550 27.2250i 1.70601 0.984965i
\(765\) 0 0
\(766\) 0 0
\(767\) 33.6889 35.6606i 1.21644 1.28763i
\(768\) −34.4557 −1.24331
\(769\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 29.1006 29.1006i 1.04735 1.04735i
\(773\) 14.3306 + 53.4825i 0.515435 + 1.92363i 0.346735 + 0.937963i \(0.387290\pi\)
0.168700 + 0.985667i \(0.446043\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −62.8525 14.9405i −2.25048 0.534954i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 24.2487 + 14.0000i 0.866025 + 0.500000i
\(785\) 27.6362 27.6362i 0.986378 0.986378i
\(786\) −0.799722 2.98460i −0.0285251 0.106457i
\(787\) 15.1244 4.05257i 0.539126 0.144458i 0.0210268 0.999779i \(-0.493306\pi\)
0.518099 + 0.855321i \(0.326640\pi\)
\(788\) 0 0
\(789\) 33.8411 58.6144i 1.20477 2.08673i
\(790\) −42.0779 + 24.2937i −1.49706 + 0.864330i
\(791\) 0.838825 3.13054i 0.0298252 0.111309i
\(792\) 0 0
\(793\) 0.929633 + 32.6970i 0.0330122 + 1.16110i
\(794\) 46.8659 1.66321
\(795\) 0 0
\(796\) 0 0
\(797\) 34.9921 + 20.2027i 1.23948 + 0.715617i 0.968989 0.247104i \(-0.0794790\pi\)
0.270496 + 0.962721i \(0.412812\pi\)
\(798\) 43.4631 43.4631i 1.53858 1.53858i
\(799\) 0 0
\(800\) 67.2486 18.0192i 2.37760 0.637075i
\(801\) 0 0
\(802\) −11.2250 + 19.4422i −0.396368 + 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 104.353i 3.67797i
\(806\) 0 0
\(807\) 1.50250 0.0528906
\(808\) 3.80715 + 1.02012i 0.133935 + 0.0358878i
\(809\) 27.8375 + 48.2159i 0.978713 + 1.69518i 0.667094 + 0.744973i \(0.267538\pi\)
0.311619 + 0.950207i \(0.399129\pi\)
\(810\) −57.2246 33.0387i −2.01067 1.16086i
\(811\) 4.05159 4.05159i 0.142270 0.142270i −0.632384 0.774655i \(-0.717924\pi\)
0.774655 + 0.632384i \(0.217924\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 4.47011 + 14.9674i 0.156198 + 0.523004i
\(820\) 0 0
\(821\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(822\) −32.3740 56.0734i −1.12917 1.95578i
\(823\) −36.6582 21.1646i −1.27782 0.737752i −0.301376 0.953506i \(-0.597446\pi\)
−0.976448 + 0.215754i \(0.930779\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 49.1745 13.1763i 1.71100 0.458461i
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 15.5246 26.8894i 0.539518 0.934473i
\(829\) 31.2622 18.0492i 1.08578 0.626876i 0.153331 0.988175i \(-0.451000\pi\)
0.932450 + 0.361299i \(0.117667\pi\)
\(830\) −8.61509 + 32.1520i −0.299034 + 1.11601i
\(831\) 0 0
\(832\) 15.1263 + 24.5600i 0.524411 + 0.851465i
\(833\) 0 0
\(834\) −67.5703 18.1054i −2.33977 0.626939i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 11.3361 + 42.3069i 0.391599 + 1.46147i
\(839\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(840\) −47.4063 47.4063i −1.63567 1.63567i
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 17.7220 66.1395i 0.610379 2.27796i
\(844\) 0 0
\(845\) 16.9432 + 51.3602i 0.582863 + 1.76684i
\(846\) 0 0
\(847\) −28.1116 7.53248i −0.965926 0.258819i
\(848\) 0 0
\(849\) −10.1886 5.88237i −0.349670 0.201882i
\(850\) 0 0
\(851\) 0 0
\(852\) 45.4266 12.1720i 1.55629 0.417006i
\(853\) −39.8697 39.8697i −1.36511 1.36511i −0.867264 0.497849i \(-0.834123\pi\)
−0.497849 0.867264i \(-0.665877\pi\)
\(854\) −16.9725 + 29.3972i −0.580787 + 1.00595i
\(855\) −45.0044 + 25.9833i −1.53912 + 0.888610i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 41.7589 1.42480 0.712398 0.701776i \(-0.247609\pi\)
0.712398 + 0.701776i \(0.247609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −38.5585 22.2618i −1.31331 0.758239i
\(863\) −40.2535 + 40.2535i −1.37025 + 1.37025i −0.510174 + 0.860071i \(0.670419\pi\)
−0.860071 + 0.510174i \(0.829581\pi\)
\(864\) 4.29588 + 16.0324i 0.146149 + 0.545435i
\(865\) 101.214 27.1203i 3.44139 0.922118i
\(866\) 0 0
\(867\) −18.3046 + 31.7045i −0.621657 + 1.07674i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 51.1396 + 88.5764i 1.72982 + 2.99614i
\(875\) 69.6554 + 40.2156i 2.35478 + 1.35953i
\(876\) 0 0
\(877\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(878\) 0 0
\(879\) −52.0782 52.0782i −1.75655 1.75655i
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) −4.19554 + 15.6580i −0.141271 + 0.527232i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) −121.896 −4.09749
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) −24.2404 + 24.2404i −0.812996 + 0.812996i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) −73.5834 + 2.09211i −2.45688 + 0.0698534i
\(898\) 29.9088 0.998071
\(899\) 0 0
\(900\) 20.1532 + 34.9063i 0.671773 + 1.16354i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 3.34669 0.896742i 0.111309 0.0298252i
\(905\) −40.5332 40.5332i −1.34737 1.34737i
\(906\) −36.9618 + 64.0197i −1.22797 + 2.12691i
\(907\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) 15.4892 57.8063i 0.514025 1.91837i
\(909\) 2.28187i 0.0756847i
\(910\) −12.9795 + 54.6029i −0.430265 + 1.81007i
\(911\) 0.210840 0.00698543 0.00349271 0.999994i \(-0.498888\pi\)
0.00349271 + 0.999994i \(0.498888\pi\)
\(912\) 63.4710 + 17.0070i 2.10174 + 0.563158i
\(913\) 0 0
\(914\) −41.7596 24.1099i −1.38129 0.797486i
\(915\) 57.4716 57.4716i 1.89995 1.89995i
\(916\) −9.80592 36.5962i −0.323997 1.20917i
\(917\) −2.59286 + 0.694754i −0.0856237 + 0.0229428i
\(918\) 0 0
\(919\) −25.9154 + 44.8869i −0.854872 + 1.48068i 0.0218926 + 0.999760i \(0.493031\pi\)
−0.876764 + 0.480921i \(0.840303\pi\)
\(920\) 96.6125 55.7792i 3.18522 1.83899i
\(921\) −5.39863 + 20.1480i −0.177891 + 0.663898i
\(922\) 29.6380i 0.976076i
\(923\) −28.6188 27.0364i −0.941999 0.889915i
\(924\) 0 0
\(925\) 0 0
\(926\) 4.20185 + 7.27782i 0.138081 + 0.239164i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(930\) 0 0
\(931\) −37.7584 37.7584i −1.23748 1.23748i
\(932\) −9.77048 + 16.9230i −0.320043 + 0.554330i
\(933\) 0 0
\(934\) −6.20507 + 23.1576i −0.203036 + 0.757741i
\(935\) 0 0
\(936\) −11.4678 + 12.1389i −0.374835 + 0.396773i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.6416 + 42.6416i −1.39008 + 1.39008i −0.564953 + 0.825123i \(0.691106\pi\)
−0.825123 + 0.564953i \(0.808894\pi\)
\(942\) −7.40510 27.6362i −0.241271 0.900436i
\(943\) 0 0
\(944\) 38.4838 + 38.4838i 1.25254 + 1.25254i
\(945\) −16.1479 + 27.9689i −0.525290 + 0.909830i
\(946\) 0 0
\(947\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(948\) 35.5684i 1.15521i
\(949\) 0 0
\(950\) −132.773 −4.30772
\(951\) 0 0
\(952\) 0 0
\(953\) 0.932742 + 0.538519i 0.0302145 + 0.0174443i 0.515031 0.857171i \(-0.327780\pi\)
−0.484817 + 0.874616i \(0.661114\pi\)
\(954\) 0 0
\(955\) 29.3143 + 109.402i 0.948587 + 3.54018i
\(956\) 52.2391 13.9974i 1.68953 0.452709i
\(957\) 0 0
\(958\) 0 0
\(959\) −48.7135 + 28.1248i −1.57304 + 0.908196i
\(960\) 18.5500 69.2294i 0.598697 2.23437i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 42.8028 + 74.1366i 1.37787 + 2.38654i
\(966\) −66.1574 38.1960i −2.12858 1.22894i
\(967\) 40.2250 40.2250i 1.29355 1.29355i 0.360971 0.932577i \(-0.382445\pi\)
0.932577 0.360971i \(-0.117555\pi\)
\(968\) −8.05256 30.0526i −0.258819 0.965926i
\(969\) 0 0
\(970\) 0 0
\(971\) 24.6801 42.7472i 0.792021 1.37182i −0.132692 0.991157i \(-0.542362\pi\)
0.924713 0.380664i \(-0.124305\pi\)
\(972\) −26.6451 + 15.3836i −0.854642 + 0.493428i
\(973\) −15.7290 + 58.7014i −0.504248 + 1.88188i
\(974\) 43.6917i 1.39997i
\(975\) 45.4089 84.0822i 1.45425 2.69279i
\(976\) −36.2887 −1.16157
\(977\) 60.3562 + 16.1724i 1.93097 + 0.517401i 0.973317 + 0.229465i \(0.0736978\pi\)
0.957650 + 0.287936i \(0.0929689\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −41.1840 + 41.1840i −1.31557 + 1.31557i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −15.7417 52.7083i −0.500809 1.67687i
\(989\) 0 0
\(990\) 0 0
\(991\) −11.3007 19.5735i −0.358980 0.621771i 0.628811 0.777558i \(-0.283542\pi\)
−0.987791 + 0.155787i \(0.950209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −10.5744 39.4641i −0.335399 1.25173i
\(995\) 0 0
\(996\) 17.2302 + 17.2302i 0.545959 + 0.545959i
\(997\) −30.9701 + 53.6418i −0.980834 + 1.69885i −0.321675 + 0.946850i \(0.604246\pi\)
−0.659158 + 0.752004i \(0.729087\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.b.405.4 yes 16
7.6 odd 2 inner 728.2.ds.b.405.1 yes 16
8.5 even 2 inner 728.2.ds.b.405.1 yes 16
13.7 odd 12 inner 728.2.ds.b.293.4 yes 16
56.13 odd 2 CM 728.2.ds.b.405.4 yes 16
91.20 even 12 inner 728.2.ds.b.293.1 16
104.85 odd 12 inner 728.2.ds.b.293.1 16
728.293 even 12 inner 728.2.ds.b.293.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.b.293.1 16 91.20 even 12 inner
728.2.ds.b.293.1 16 104.85 odd 12 inner
728.2.ds.b.293.4 yes 16 13.7 odd 12 inner
728.2.ds.b.293.4 yes 16 728.293 even 12 inner
728.2.ds.b.405.1 yes 16 7.6 odd 2 inner
728.2.ds.b.405.1 yes 16 8.5 even 2 inner
728.2.ds.b.405.4 yes 16 1.1 even 1 trivial
728.2.ds.b.405.4 yes 16 56.13 odd 2 CM