Properties

Label 728.2.ds.b.293.4
Level $728$
Weight $2$
Character 728.293
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(293,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 6, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 13 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 293.4
Root \(1.35670 - 1.07674i\) of defining polynomial
Character \(\chi\) \(=\) 728.293
Dual form 728.2.ds.b.405.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(1.07674 - 1.86497i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-2.94171 - 2.94171i) q^{5} +(0.788230 - 2.94171i) q^{6} +(2.55560 + 0.684771i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-0.818745 - 1.41811i) q^{9} +(-5.09520 - 2.94171i) q^{10} -4.30697i q^{12} +(3.07000 + 1.89079i) q^{13} +3.74166 q^{14} +(-8.65368 + 2.31875i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-1.63749 - 1.63749i) q^{18} +(-1.97436 + 7.36841i) q^{19} +(-8.03691 - 2.15348i) q^{20} +(4.02880 - 4.02880i) q^{21} +(-8.21056 - 4.74037i) q^{23} +(-1.57646 - 5.88343i) q^{24} +12.3074i q^{25} +(4.88578 + 1.45917i) q^{26} +2.93414 q^{27} +(5.11120 - 1.36954i) q^{28} +(-10.9724 + 6.33493i) q^{30} +(1.46410 - 5.46410i) q^{32} +(-5.50344 - 9.53224i) q^{35} +(-2.83622 - 1.63749i) q^{36} +10.7881i q^{38} +(6.83187 - 3.68957i) q^{39} -11.7669 q^{40} +(4.02880 - 6.97808i) q^{42} +(-1.76315 + 6.58018i) q^{45} +(-12.9509 - 3.47019i) q^{46} +(-4.30697 - 7.45989i) q^{48} +(6.06218 + 3.50000i) q^{49} +(4.50480 + 16.8122i) q^{50} +(7.20819 + 0.204942i) q^{52} +(4.00811 - 1.07397i) q^{54} +(6.48074 - 3.74166i) q^{56} +(11.6160 + 11.6160i) q^{57} +(13.1424 + 3.52151i) q^{59} +(-12.6699 + 12.6699i) q^{60} +(-4.53609 - 7.85674i) q^{61} +(-1.12131 - 4.18477i) q^{63} -8.00000i q^{64} +(-3.46890 - 14.5932i) q^{65} +(-17.6813 + 10.2083i) q^{69} +(-11.0069 - 11.0069i) q^{70} +(-2.82612 + 10.5472i) q^{71} +(-4.47371 - 1.19873i) q^{72} +(22.9529 + 13.2518i) q^{75} +(3.94872 + 14.7368i) q^{76} +(7.98203 - 7.54069i) q^{78} +8.25834 q^{79} +(-16.0738 + 4.30697i) q^{80} +(5.61555 - 9.72641i) q^{81} +(4.00054 + 4.00054i) q^{83} +(2.94929 - 11.0069i) q^{84} +9.63406i q^{90} +(6.55094 + 6.93435i) q^{91} -18.9615 q^{92} +(27.4838 - 15.8678i) q^{95} +(-8.61393 - 8.61393i) q^{96} +(9.56218 + 2.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 32 q^{8} - 16 q^{9} - 56 q^{15} + 32 q^{16} - 32 q^{18} - 96 q^{30} - 32 q^{32} + 48 q^{36} + 72 q^{39} - 24 q^{46} + 56 q^{50} + 88 q^{57} - 32 q^{60} - 112 q^{63} + 16 q^{65} - 16 q^{71}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.965926 0.258819i
\(3\) 1.07674 1.86497i 0.621657 1.07674i −0.367520 0.930016i \(-0.619793\pi\)
0.989177 0.146726i \(-0.0468736\pi\)
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) −2.94171 2.94171i −1.31557 1.31557i −0.917241 0.398333i \(-0.869589\pi\)
−0.398333 0.917241i \(-0.630411\pi\)
\(6\) 0.788230 2.94171i 0.321793 1.20095i
\(7\) 2.55560 + 0.684771i 0.965926 + 0.258819i
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) −0.818745 1.41811i −0.272915 0.472703i
\(10\) −5.09520 2.94171i −1.61124 0.930251i
\(11\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(12\) 4.30697i 1.24331i
\(13\) 3.07000 + 1.89079i 0.851465 + 0.524411i
\(14\) 3.74166 1.00000
\(15\) −8.65368 + 2.31875i −2.23437 + 0.598697i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) −1.63749 1.63749i −0.385960 0.385960i
\(19\) −1.97436 + 7.36841i −0.452949 + 1.69043i 0.241098 + 0.970501i \(0.422492\pi\)
−0.694048 + 0.719929i \(0.744174\pi\)
\(20\) −8.03691 2.15348i −1.79711 0.481534i
\(21\) 4.02880 4.02880i 0.879156 0.879156i
\(22\) 0 0
\(23\) −8.21056 4.74037i −1.71202 0.988436i −0.931831 0.362892i \(-0.881789\pi\)
−0.780189 0.625543i \(-0.784877\pi\)
\(24\) −1.57646 5.88343i −0.321793 1.20095i
\(25\) 12.3074i 2.46147i
\(26\) 4.88578 + 1.45917i 0.958180 + 0.286166i
\(27\) 2.93414 0.564676
\(28\) 5.11120 1.36954i 0.965926 0.258819i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −10.9724 + 6.33493i −2.00328 + 1.15659i
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) 1.46410 5.46410i 0.258819 0.965926i
\(33\) 0 0
\(34\) 0 0
\(35\) −5.50344 9.53224i −0.930251 1.61124i
\(36\) −2.83622 1.63749i −0.472703 0.272915i
\(37\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(38\) 10.7881i 1.75006i
\(39\) 6.83187 3.68957i 1.09397 0.590805i
\(40\) −11.7669 −1.86050
\(41\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(42\) 4.02880 6.97808i 0.621657 1.07674i
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) −1.76315 + 6.58018i −0.262836 + 0.980916i
\(46\) −12.9509 3.47019i −1.90951 0.511652i
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) −4.30697 7.45989i −0.621657 1.07674i
\(49\) 6.06218 + 3.50000i 0.866025 + 0.500000i
\(50\) 4.50480 + 16.8122i 0.637075 + 2.37760i
\(51\) 0 0
\(52\) 7.20819 + 0.204942i 0.999596 + 0.0284203i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 4.00811 1.07397i 0.545435 0.146149i
\(55\) 0 0
\(56\) 6.48074 3.74166i 0.866025 0.500000i
\(57\) 11.6160 + 11.6160i 1.53858 + 1.53858i
\(58\) 0 0
\(59\) 13.1424 + 3.52151i 1.71100 + 0.458461i 0.975670 0.219246i \(-0.0703597\pi\)
0.735332 + 0.677707i \(0.237026\pi\)
\(60\) −12.6699 + 12.6699i −1.63567 + 1.63567i
\(61\) −4.53609 7.85674i −0.580787 1.00595i −0.995386 0.0959480i \(-0.969412\pi\)
0.414600 0.910004i \(-0.363922\pi\)
\(62\) 0 0
\(63\) −1.12131 4.18477i −0.141271 0.527232i
\(64\) 8.00000i 1.00000i
\(65\) −3.46890 14.5932i −0.430265 1.81007i
\(66\) 0 0
\(67\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(68\) 0 0
\(69\) −17.6813 + 10.2083i −2.12858 + 1.22894i
\(70\) −11.0069 11.0069i −1.31557 1.31557i
\(71\) −2.82612 + 10.5472i −0.335399 + 1.25173i 0.568037 + 0.823003i \(0.307703\pi\)
−0.903436 + 0.428723i \(0.858964\pi\)
\(72\) −4.47371 1.19873i −0.527232 0.141271i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) 22.9529 + 13.2518i 2.65037 + 1.53019i
\(76\) 3.94872 + 14.7368i 0.452949 + 1.69043i
\(77\) 0 0
\(78\) 7.98203 7.54069i 0.903787 0.853815i
\(79\) 8.25834 0.929136 0.464568 0.885537i \(-0.346210\pi\)
0.464568 + 0.885537i \(0.346210\pi\)
\(80\) −16.0738 + 4.30697i −1.79711 + 0.481534i
\(81\) 5.61555 9.72641i 0.623950 1.08071i
\(82\) 0 0
\(83\) 4.00054 + 4.00054i 0.439116 + 0.439116i 0.891715 0.452598i \(-0.149503\pi\)
−0.452598 + 0.891715i \(0.649503\pi\)
\(84\) 2.94929 11.0069i 0.321793 1.20095i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(90\) 9.63406i 1.01552i
\(91\) 6.55094 + 6.93435i 0.686725 + 0.726917i
\(92\) −18.9615 −1.97687
\(93\) 0 0
\(94\) 0 0
\(95\) 27.4838 15.8678i 2.81977 1.62800i
\(96\) −8.61393 8.61393i −0.879156 0.879156i
\(97\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(98\) 9.56218 + 2.56218i 0.965926 + 0.258819i
\(99\) 0 0
\(100\) 12.3074 + 21.3170i 1.23074 + 2.13170i
\(101\) 1.20682 + 0.696757i 0.120083 + 0.0693299i 0.558838 0.829277i \(-0.311247\pi\)
−0.438755 + 0.898607i \(0.644581\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 9.92158 2.35843i 0.972891 0.231263i
\(105\) −23.7031 −2.31319
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 5.08208 2.93414i 0.489023 0.282338i
\(109\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.48331 7.48331i 0.707107 0.707107i
\(113\) 0.612486 + 1.06086i 0.0576178 + 0.0997970i 0.893396 0.449271i \(-0.148316\pi\)
−0.835778 + 0.549068i \(0.814983\pi\)
\(114\) 20.1195 + 11.6160i 1.88436 + 1.08794i
\(115\) 10.2083 + 38.0979i 0.951930 + 3.55265i
\(116\) 0 0
\(117\) 0.167795 5.90167i 0.0155127 0.545610i
\(118\) 19.2419 1.77136
\(119\) 0 0
\(120\) −12.6699 + 21.9448i −1.15659 + 2.00328i
\(121\) −9.52628 + 5.50000i −0.866025 + 0.500000i
\(122\) −9.07218 9.07218i −0.821356 0.821356i
\(123\) 0 0
\(124\) 0 0
\(125\) 21.4961 21.4961i 1.92267 1.92267i
\(126\) −3.06346 5.30608i −0.272915 0.472703i
\(127\) −11.2211 6.47851i −0.995713 0.574875i −0.0887357 0.996055i \(-0.528283\pi\)
−0.906977 + 0.421180i \(0.861616\pi\)
\(128\) −2.92820 10.9282i −0.258819 0.965926i
\(129\) 0 0
\(130\) −10.0801 18.6650i −0.884084 1.63703i
\(131\) −1.01458 −0.0886442 −0.0443221 0.999017i \(-0.514113\pi\)
−0.0443221 + 0.999017i \(0.514113\pi\)
\(132\) 0 0
\(133\) −10.0913 + 17.4787i −0.875031 + 1.51560i
\(134\) 0 0
\(135\) −8.63140 8.63140i −0.742873 0.742873i
\(136\) 0 0
\(137\) −20.5359 5.50257i −1.75450 0.470117i −0.768922 0.639343i \(-0.779207\pi\)
−0.985577 + 0.169226i \(0.945873\pi\)
\(138\) −20.4166 + 20.4166i −1.73798 + 1.73798i
\(139\) −11.4849 19.8924i −0.974133 1.68725i −0.682766 0.730637i \(-0.739223\pi\)
−0.291367 0.956611i \(-0.594110\pi\)
\(140\) −19.0645 11.0069i −1.61124 0.930251i
\(141\) 0 0
\(142\) 15.4422i 1.29588i
\(143\) 0 0
\(144\) −6.54996 −0.545830
\(145\) 0 0
\(146\) 0 0
\(147\) 13.0548 7.53719i 1.07674 0.621657i
\(148\) 0 0
\(149\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(150\) 36.2047 + 9.70102i 2.95610 + 0.792085i
\(151\) 17.1637 17.1637i 1.39676 1.39676i 0.587646 0.809118i \(-0.300055\pi\)
0.809118 0.587646i \(-0.199945\pi\)
\(152\) 10.7881 + 18.6855i 0.875031 + 1.51560i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 8.14357 13.2224i 0.652007 1.05864i
\(157\) −9.39459 −0.749770 −0.374885 0.927071i \(-0.622318\pi\)
−0.374885 + 0.927071i \(0.622318\pi\)
\(158\) 11.2811 3.02276i 0.897477 0.240478i
\(159\) 0 0
\(160\) −20.3808 + 11.7669i −1.61124 + 0.930251i
\(161\) −17.7368 17.7368i −1.39786 1.39786i
\(162\) 4.11087 15.3420i 0.322980 1.20538i
\(163\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 6.92914 + 4.00054i 0.537805 + 0.310502i
\(167\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(168\) 16.1152i 1.24331i
\(169\) 5.84983 + 11.6095i 0.449987 + 0.893035i
\(170\) 0 0
\(171\) 12.0657 3.23300i 0.922688 0.247233i
\(172\) 0 0
\(173\) −21.8129 + 12.5937i −1.65840 + 0.957480i −0.684953 + 0.728588i \(0.740177\pi\)
−0.973452 + 0.228893i \(0.926490\pi\)
\(174\) 0 0
\(175\) −8.42772 + 31.4527i −0.637075 + 2.37760i
\(176\) 0 0
\(177\) 20.7185 20.7185i 1.55730 1.55730i
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 3.52631 + 13.1604i 0.262836 + 0.980916i
\(181\) 13.7788i 1.02417i −0.858936 0.512084i \(-0.828874\pi\)
0.858936 0.512084i \(-0.171126\pi\)
\(182\) 11.4869 + 7.07469i 0.851465 + 0.524411i
\(183\) −19.5368 −1.44420
\(184\) −25.9019 + 6.94038i −1.90951 + 0.511652i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 7.49849 + 2.00921i 0.545435 + 0.146149i
\(190\) 31.7355 31.7355i 2.30234 2.30234i
\(191\) 13.6125 + 23.5775i 0.984965 + 1.70601i 0.642092 + 0.766627i \(0.278067\pi\)
0.342873 + 0.939382i \(0.388600\pi\)
\(192\) −14.9198 8.61393i −1.07674 0.621657i
\(193\) 5.32578 + 19.8761i 0.383358 + 1.43071i 0.840739 + 0.541440i \(0.182121\pi\)
−0.457381 + 0.889271i \(0.651213\pi\)
\(194\) 0 0
\(195\) −30.9511 9.24373i −2.21645 0.661957i
\(196\) 14.0000 1.00000
\(197\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 24.6147 + 24.6147i 1.74052 + 1.74052i
\(201\) 0 0
\(202\) 1.90357 + 0.510061i 0.133935 + 0.0358878i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 15.5246i 1.07904i
\(208\) 12.6899 6.85322i 0.879886 0.475185i
\(209\) 0 0
\(210\) −32.3791 + 8.67595i −2.23437 + 0.598697i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 16.6273 + 16.6273i 1.13928 + 1.13928i
\(214\) 0 0
\(215\) 0 0
\(216\) 5.86828 5.86828i 0.399286 0.399286i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(224\) 7.48331 12.9615i 0.500000 0.866025i
\(225\) 17.4532 10.0766i 1.16354 0.671773i
\(226\) 1.22497 + 1.22497i 0.0814839 + 0.0814839i
\(227\) −7.74458 + 28.9031i −0.514025 + 1.91837i −0.143094 + 0.989709i \(0.545705\pi\)
−0.370932 + 0.928660i \(0.620962\pi\)
\(228\) 31.7355 + 8.50350i 2.10174 + 0.563158i
\(229\) −13.3951 + 13.3951i −0.885175 + 0.885175i −0.994055 0.108880i \(-0.965274\pi\)
0.108880 + 0.994055i \(0.465274\pi\)
\(230\) 27.8896 + 48.3062i 1.83899 + 3.18522i
\(231\) 0 0
\(232\) 0 0
\(233\) 9.77048i 0.640085i −0.947403 0.320043i \(-0.896303\pi\)
0.947403 0.320043i \(-0.103697\pi\)
\(234\) −1.93095 8.12325i −0.126230 0.531034i
\(235\) 0 0
\(236\) 26.2849 7.04302i 1.71100 0.458461i
\(237\) 8.89210 15.4016i 0.577604 1.00044i
\(238\) 0 0
\(239\) 19.1208 + 19.1208i 1.23682 + 1.23682i 0.961292 + 0.275533i \(0.0888542\pi\)
0.275533 + 0.961292i \(0.411146\pi\)
\(240\) −9.27498 + 34.6147i −0.598697 + 2.23437i
\(241\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(242\) −11.0000 + 11.0000i −0.707107 + 0.707107i
\(243\) −7.69178 13.3226i −0.493428 0.854642i
\(244\) −15.7135 9.07218i −1.00595 0.580787i
\(245\) −7.53719 28.1292i −0.481534 1.79711i
\(246\) 0 0
\(247\) −19.9934 + 18.8879i −1.27215 + 1.20181i
\(248\) 0 0
\(249\) 11.7684 3.15334i 0.745794 0.199835i
\(250\) 21.4961 37.2324i 1.35953 2.35478i
\(251\) 15.8898 9.17399i 1.00296 0.579057i 0.0938349 0.995588i \(-0.470087\pi\)
0.909122 + 0.416530i \(0.136754\pi\)
\(252\) −6.12693 6.12693i −0.385960 0.385960i
\(253\) 0 0
\(254\) −17.6996 4.74260i −1.11057 0.297577i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −20.6015 21.8073i −1.27765 1.35243i
\(261\) 0 0
\(262\) −1.38594 + 0.371362i −0.0856237 + 0.0229428i
\(263\) −15.7146 + 27.2184i −0.969002 + 1.67836i −0.270546 + 0.962707i \(0.587204\pi\)
−0.698456 + 0.715653i \(0.746129\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −7.38738 + 27.5701i −0.452949 + 1.69043i
\(267\) 0 0
\(268\) 0 0
\(269\) 0.348854 + 0.604233i 0.0212700 + 0.0368407i 0.876464 0.481467i \(-0.159896\pi\)
−0.855194 + 0.518307i \(0.826562\pi\)
\(270\) −14.9500 8.63140i −0.909830 0.525290i
\(271\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(272\) 0 0
\(273\) 19.9860 4.75081i 1.20961 0.287532i
\(274\) −30.0666 −1.81639
\(275\) 0 0
\(276\) −20.4166 + 35.3626i −1.22894 + 2.12858i
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) −22.9697 22.9697i −1.37763 1.37763i
\(279\) 0 0
\(280\) −30.0714 8.05760i −1.79711 0.481534i
\(281\) −22.4833 + 22.4833i −1.34124 + 1.34124i −0.446417 + 0.894825i \(0.647300\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) −4.73120 2.73156i −0.281241 0.162374i 0.352744 0.935720i \(-0.385249\pi\)
−0.633985 + 0.773345i \(0.718582\pi\)
\(284\) 5.65225 + 21.0945i 0.335399 + 1.25173i
\(285\) 68.3419i 4.04822i
\(286\) 0 0
\(287\) 0 0
\(288\) −8.94742 + 2.39745i −0.527232 + 0.141271i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −33.0349 8.85168i −1.92992 0.517121i −0.976531 0.215378i \(-0.930902\pi\)
−0.953390 0.301742i \(-0.902432\pi\)
\(294\) 15.0744 15.0744i 0.879156 0.879156i
\(295\) −28.3020 49.0206i −1.64781 2.85409i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.2434 30.0774i −0.939380 1.73942i
\(300\) 53.0074 3.06038
\(301\) 0 0
\(302\) 17.1637 29.7284i 0.987661 1.71068i
\(303\) 2.59886 1.50045i 0.149301 0.0861988i
\(304\) 21.5762 + 21.5762i 1.23748 + 1.23748i
\(305\) −9.76839 + 36.4561i −0.559336 + 2.08747i
\(306\) 0 0
\(307\) 6.84906 6.84906i 0.390896 0.390896i −0.484110 0.875007i \(-0.660857\pi\)
0.875007 + 0.484110i \(0.160857\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 6.28459 21.0429i 0.355795 1.19132i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −12.8333 + 3.43866i −0.724222 + 0.194055i
\(315\) −9.01183 + 15.6090i −0.507759 + 0.879465i
\(316\) 14.3039 8.25834i 0.804655 0.464568i
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −23.5337 + 23.5337i −1.31557 + 1.31557i
\(321\) 0 0
\(322\) −30.7211 17.7368i −1.71202 0.988436i
\(323\) 0 0
\(324\) 22.4622i 1.24790i
\(325\) −23.2706 + 37.7836i −1.29082 + 2.09586i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(332\) 10.9297 + 2.92860i 0.599844 + 0.160728i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −5.89857 22.0138i −0.321793 1.20095i
\(337\) 36.7083i 1.99963i −0.0192914 0.999814i \(-0.506141\pi\)
0.0192914 0.999814i \(-0.493859\pi\)
\(338\) 12.2404 + 13.7176i 0.665788 + 0.746141i
\(339\) 2.63796 0.143274
\(340\) 0 0
\(341\) 0 0
\(342\) 15.2987 8.83271i 0.827259 0.477618i
\(343\) 13.0958 + 13.0958i 0.707107 + 0.707107i
\(344\) 0 0
\(345\) 82.0433 + 21.9834i 4.41706 + 1.18355i
\(346\) −25.1874 + 25.1874i −1.35408 + 1.35408i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 6.53573 + 24.3917i 0.349849 + 1.30566i 0.886843 + 0.462070i \(0.152893\pi\)
−0.536994 + 0.843586i \(0.680440\pi\)
\(350\) 46.0499i 2.46147i
\(351\) 9.00782 + 5.54784i 0.480802 + 0.296122i
\(352\) 0 0
\(353\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(354\) 20.7185 35.8856i 1.10118 1.90730i
\(355\) 39.3406 22.7133i 2.08798 1.20550i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.9458 10.9458i 0.577696 0.577696i −0.356572 0.934268i \(-0.616054\pi\)
0.934268 + 0.356572i \(0.116054\pi\)
\(360\) 9.63406 + 16.6867i 0.507759 + 0.879465i
\(361\) −33.9409 19.5958i −1.78636 1.03136i
\(362\) −5.04338 18.8221i −0.265074 0.989270i
\(363\) 23.6883i 1.24331i
\(364\) 18.2809 + 5.45971i 0.958180 + 0.286166i
\(365\) 0 0
\(366\) −26.6877 + 7.15096i −1.39499 + 0.373787i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −32.8422 + 18.9615i −1.71202 + 0.988436i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −16.9439 63.2355i −0.874979 3.26546i
\(376\) 0 0
\(377\) 0 0
\(378\) 10.9785 0.564676
\(379\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(380\) 31.7355 54.9675i 1.62800 2.81977i
\(381\) −24.1645 + 13.9514i −1.23798 + 0.714750i
\(382\) 27.2250 + 27.2250i 1.39295 + 1.39295i
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) −23.5337 6.30584i −1.20095 0.321793i
\(385\) 0 0
\(386\) 14.5503 + 25.2019i 0.740591 + 1.28274i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −45.6634 1.29829i −2.31226 0.0657415i
\(391\) 0 0
\(392\) 19.1244 5.12436i 0.965926 0.258819i
\(393\) −1.09244 + 1.89216i −0.0551063 + 0.0954469i
\(394\) 0 0
\(395\) −24.2937 24.2937i −1.22235 1.22235i
\(396\) 0 0
\(397\) 32.0100 + 8.57705i 1.60654 + 0.430470i 0.947008 0.321211i \(-0.104090\pi\)
0.659528 + 0.751680i \(0.270756\pi\)
\(398\) 0 0
\(399\) 21.7316 + 37.6401i 1.08794 + 1.88436i
\(400\) 42.6339 + 24.6147i 2.13170 + 1.23074i
\(401\) −4.10862 15.3336i −0.205175 0.765723i −0.989396 0.145242i \(-0.953604\pi\)
0.784221 0.620481i \(-0.213063\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 2.78703 0.138660
\(405\) −45.1317 + 12.0930i −2.24261 + 0.600905i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(410\) 0 0
\(411\) −32.3740 + 32.3740i −1.59689 + 1.59689i
\(412\) 0 0
\(413\) 31.1754 + 17.9991i 1.53404 + 0.885679i
\(414\) 5.68241 + 21.2070i 0.279275 + 1.04227i
\(415\) 23.5369i 1.15538i
\(416\) 14.8263 14.0065i 0.726917 0.686725i
\(417\) −49.4649 −2.42231
\(418\) 0 0
\(419\) 15.4854 26.8215i 0.756511 1.31032i −0.188108 0.982148i \(-0.560236\pi\)
0.944619 0.328168i \(-0.106431\pi\)
\(420\) −41.0550 + 23.7031i −2.00328 + 1.15659i
\(421\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 28.7993 + 16.6273i 1.39533 + 0.805595i
\(427\) −6.21236 23.1849i −0.300637 1.12199i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −30.4101 + 8.14837i −1.46480 + 0.392493i −0.901146 0.433515i \(-0.857273\pi\)
−0.563658 + 0.826008i \(0.690607\pi\)
\(432\) 5.86828 10.1642i 0.282338 0.489023i
\(433\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 51.1396 51.1396i 2.44634 2.44634i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 11.4624i 0.545830i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 5.47817 20.4448i 0.258819 0.965926i
\(449\) 20.4281 + 5.47370i 0.964062 + 0.258320i 0.706319 0.707894i \(-0.250354\pi\)
0.257743 + 0.966213i \(0.417021\pi\)
\(450\) 20.1532 20.1532i 0.950030 0.950030i
\(451\) 0 0
\(452\) 2.12171 + 1.22497i 0.0997970 + 0.0576178i
\(453\) −13.5290 50.4908i −0.635646 2.37226i
\(454\) 42.3171i 1.98604i
\(455\) 1.12788 39.6698i 0.0528760 1.85975i
\(456\) 46.4640 2.17588
\(457\) −32.9348 + 8.82485i −1.54062 + 0.412809i −0.926467 0.376375i \(-0.877170\pi\)
−0.614157 + 0.789184i \(0.710504\pi\)
\(458\) −13.3951 + 23.2010i −0.625913 + 1.08411i
\(459\) 0 0
\(460\) 55.7792 + 55.7792i 2.60072 + 2.60072i
\(461\) 5.42413 20.2431i 0.252627 0.942817i −0.716768 0.697312i \(-0.754379\pi\)
0.969395 0.245505i \(-0.0789539\pi\)
\(462\) 0 0
\(463\) 4.20185 4.20185i 0.195277 0.195277i −0.602695 0.797972i \(-0.705906\pi\)
0.797972 + 0.602695i \(0.205906\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −3.57624 13.3467i −0.165666 0.618275i
\(467\) 16.9526i 0.784471i −0.919865 0.392236i \(-0.871702\pi\)
0.919865 0.392236i \(-0.128298\pi\)
\(468\) −5.61104 10.3898i −0.259371 0.480268i
\(469\) 0 0
\(470\) 0 0
\(471\) −10.1155 + 17.5206i −0.466100 + 0.807309i
\(472\) 33.3279 19.2419i 1.53404 0.885679i
\(473\) 0 0
\(474\) 6.50947 24.2937i 0.298990 1.11585i
\(475\) −90.6856 24.2991i −4.16094 1.11492i
\(476\) 0 0
\(477\) 0 0
\(478\) 33.1183 + 19.1208i 1.51479 + 0.874567i
\(479\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(480\) 50.6794i 2.31319i
\(481\) 0 0
\(482\) 0 0
\(483\) −52.1767 + 13.9807i −2.37412 + 0.636144i
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) −15.3836 15.3836i −0.697812 0.697812i
\(487\) 7.99614 29.8420i 0.362340 1.35227i −0.508652 0.860972i \(-0.669856\pi\)
0.870992 0.491298i \(-0.163477\pi\)
\(488\) −24.7856 6.64129i −1.12199 0.300637i
\(489\) 0 0
\(490\) −20.5920 35.6664i −0.930251 1.61124i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −20.3980 + 33.1195i −0.917751 + 1.49012i
\(495\) 0 0
\(496\) 0 0
\(497\) −14.4449 + 25.0193i −0.647941 + 1.12227i
\(498\) 14.9218 8.61509i 0.668661 0.386052i
\(499\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) 15.7363 58.7285i 0.703747 2.62642i
\(501\) 0 0
\(502\) 18.3480 18.3480i 0.818911 0.818911i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) −10.6122 6.12693i −0.472703 0.272915i
\(505\) −1.50045 5.59977i −0.0667693 0.249187i
\(506\) 0 0
\(507\) 27.9501 + 1.59063i 1.24131 + 0.0706422i
\(508\) −25.9140 −1.14975
\(509\) −41.2960 + 11.0652i −1.83041 + 0.490457i −0.997972 0.0636579i \(-0.979723\pi\)
−0.832440 + 0.554115i \(0.813057\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) −5.79305 + 21.6200i −0.255769 + 0.954545i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 54.2406i 2.38090i
\(520\) −36.1243 22.2486i −1.58415 0.975668i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −7.55031 + 13.0775i −0.330152 + 0.571840i −0.982541 0.186044i \(-0.940433\pi\)
0.652390 + 0.757884i \(0.273767\pi\)
\(524\) −1.75730 + 1.01458i −0.0767681 + 0.0443221i
\(525\) 49.5838 + 49.5838i 2.16402 + 2.16402i
\(526\) −11.5039 + 42.9330i −0.501592 + 1.87197i
\(527\) 0 0
\(528\) 0 0
\(529\) 33.4422 + 57.9236i 1.45401 + 2.51842i
\(530\) 0 0
\(531\) −5.76644 21.5206i −0.250242 0.933916i
\(532\) 40.3654i 1.75006i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.697708 + 0.697708i 0.0300803 + 0.0300803i
\(539\) 0 0
\(540\) −23.5814 6.31862i −1.01478 0.271910i
\(541\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) 0 0
\(543\) −25.6970 14.8362i −1.10276 0.636681i
\(544\) 0 0
\(545\) 0 0
\(546\) 25.5625 13.8051i 1.09397 0.590805i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −41.0718 + 11.0051i −1.75450 + 0.470117i
\(549\) −7.42780 + 12.8653i −0.317011 + 0.549079i
\(550\) 0 0
\(551\) 0 0
\(552\) −14.9460 + 55.7792i −0.636144 + 2.37412i
\(553\) 21.1050 + 5.65507i 0.897477 + 0.240478i
\(554\) 0 0
\(555\) 0 0
\(556\) −39.7847 22.9697i −1.68725 0.974133i
\(557\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −44.0275 −1.86050
\(561\) 0 0
\(562\) −22.4833 + 38.9422i −0.948401 + 1.64268i
\(563\) 22.3060 12.8784i 0.940086 0.542759i 0.0500986 0.998744i \(-0.484046\pi\)
0.889987 + 0.455985i \(0.150713\pi\)
\(564\) 0 0
\(565\) 1.31898 4.92250i 0.0554898 0.207091i
\(566\) −7.46276 1.99964i −0.313683 0.0840511i
\(567\) 21.0115 21.0115i 0.882398 0.882398i
\(568\) 15.4422 + 26.7467i 0.647941 + 1.12227i
\(569\) −40.4718 23.3664i −1.69667 0.979571i −0.948882 0.315631i \(-0.897784\pi\)
−0.747785 0.663941i \(-0.768883\pi\)
\(570\) −25.0149 93.3568i −1.04776 3.91028i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 58.6285 2.44924
\(574\) 0 0
\(575\) 58.3414 101.050i 2.43300 4.21409i
\(576\) −11.3449 + 6.54996i −0.472703 + 0.272915i
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 6.22243 23.2224i 0.258819 0.965926i
\(579\) 42.8028 + 11.4690i 1.77882 + 0.476634i
\(580\) 0 0
\(581\) 7.48432 + 12.9632i 0.310502 + 0.537805i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −17.8546 + 16.8674i −0.738198 + 0.697382i
\(586\) −48.3665 −1.99800
\(587\) 46.7186 12.5182i 1.92828 0.516681i 0.948412 0.317041i \(-0.102689\pi\)
0.979869 0.199641i \(-0.0639775\pi\)
\(588\) 15.0744 26.1096i 0.621657 1.07674i
\(589\) 0 0
\(590\) −56.6041 56.6041i −2.33035 2.33035i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −33.1980 35.1410i −1.35757 1.43702i
\(599\) 23.2541 0.950136 0.475068 0.879949i \(-0.342423\pi\)
0.475068 + 0.879949i \(0.342423\pi\)
\(600\) 72.4094 19.4020i 2.95610 0.792085i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 12.5647 46.8922i 0.511251 1.90802i
\(605\) 44.2030 + 11.8442i 1.79711 + 0.481534i
\(606\) 3.00091 3.00091i 0.121904 0.121904i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 37.3711 + 21.5762i 1.51560 + 0.875031i
\(609\) 0 0
\(610\) 53.3755i 2.16111i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(614\) 6.84906 11.8629i 0.276405 0.478748i
\(615\) 0 0
\(616\) 0 0
\(617\) −2.99306 + 11.1703i −0.120496 + 0.449698i −0.999639 0.0268600i \(-0.991449\pi\)
0.879143 + 0.476558i \(0.158116\pi\)
\(618\) 0 0
\(619\) −27.1731 + 27.1731i −1.09218 + 1.09218i −0.0968845 + 0.995296i \(0.530888\pi\)
−0.995296 + 0.0968845i \(0.969112\pi\)
\(620\) 0 0
\(621\) −24.0909 13.9089i −0.966736 0.558146i
\(622\) 0 0
\(623\) 0 0
\(624\) 0.882677 31.0454i 0.0353354 1.24281i
\(625\) −64.9341 −2.59737
\(626\) 0 0
\(627\) 0 0
\(628\) −16.2719 + 9.39459i −0.649320 + 0.374885i
\(629\) 0 0
\(630\) −6.59712 + 24.6208i −0.262836 + 0.980916i
\(631\) 46.2815 + 12.4011i 1.84244 + 0.493680i 0.999048 0.0436231i \(-0.0138901\pi\)
0.843389 + 0.537303i \(0.180557\pi\)
\(632\) 16.5167 16.5167i 0.656998 0.656998i
\(633\) 0 0
\(634\) 0 0
\(635\) 13.9514 + 52.0672i 0.553643 + 2.06622i
\(636\) 0 0
\(637\) 11.9931 + 22.2073i 0.475185 + 0.879886i
\(638\) 0 0
\(639\) 17.2710 4.62775i 0.683230 0.183071i
\(640\) −23.5337 + 40.7616i −0.930251 + 1.61124i
\(641\) 2.50172 1.44437i 0.0988119 0.0570491i −0.449780 0.893140i \(-0.648498\pi\)
0.548592 + 0.836090i \(0.315164\pi\)
\(642\) 0 0
\(643\) 5.55067 20.7154i 0.218897 0.816935i −0.765861 0.643006i \(-0.777687\pi\)
0.984758 0.173929i \(-0.0556463\pi\)
\(644\) −48.4580 12.9843i −1.90951 0.511652i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) −8.22173 30.6839i −0.322980 1.20538i
\(649\) 0 0
\(650\) −17.9585 + 60.1310i −0.704390 + 2.35853i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 2.98460 + 2.98460i 0.116618 + 0.116618i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) 13.3064 + 49.6603i 0.517560 + 1.93156i 0.275548 + 0.961287i \(0.411141\pi\)
0.242012 + 0.970273i \(0.422193\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 16.0022 0.621004
\(665\) 81.1033 21.7316i 3.14505 0.842713i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −16.1152 27.9123i −0.621657 1.07674i
\(673\) −38.8844 22.4499i −1.49889 0.865382i −0.498886 0.866668i \(-0.666257\pi\)
−0.999999 + 0.00128586i \(0.999591\pi\)
\(674\) −13.4362 50.1445i −0.517542 1.93149i
\(675\) 36.1115i 1.38993i
\(676\) 21.7417 + 14.2583i 0.836218 + 0.548398i
\(677\) 2.69123 0.103433 0.0517163 0.998662i \(-0.483531\pi\)
0.0517163 + 0.998662i \(0.483531\pi\)
\(678\) 3.60352 0.965559i 0.138392 0.0370821i
\(679\) 0 0
\(680\) 0 0
\(681\) 45.5646 + 45.5646i 1.74604 + 1.74604i
\(682\) 0 0
\(683\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(684\) 17.6654 17.6654i 0.675454 0.675454i
\(685\) 44.2237 + 76.5977i 1.68970 + 2.92665i
\(686\) 22.6826 + 13.0958i 0.866025 + 0.500000i
\(687\) 10.5584 + 39.4046i 0.402830 + 1.50338i
\(688\) 0 0
\(689\) 0 0
\(690\) 120.120 4.57288
\(691\) −11.1023 + 2.97485i −0.422351 + 0.113168i −0.463733 0.885975i \(-0.653490\pi\)
0.0413827 + 0.999143i \(0.486824\pi\)
\(692\) −25.1874 + 43.6258i −0.957480 + 1.65840i
\(693\) 0 0
\(694\) 0 0
\(695\) −24.7325 + 92.3028i −0.938156 + 3.50124i
\(696\) 0 0
\(697\) 0 0
\(698\) 17.8559 + 30.9274i 0.675857 + 1.17062i
\(699\) −18.2217 10.5203i −0.689206 0.397914i
\(700\) 16.8554 + 62.9053i 0.637075 + 2.37760i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 14.3356 + 4.28140i 0.541061 + 0.161591i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.60703 + 2.60703i 0.0980473 + 0.0980473i
\(708\) 15.1670 56.6041i 0.570012 2.12731i
\(709\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(710\) 45.4266 45.4266i 1.70483 1.70483i
\(711\) −6.76148 11.7112i −0.253575 0.439205i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 56.2480 15.0716i 2.10062 0.562860i
\(718\) 10.9458 18.9587i 0.408493 0.707531i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 19.2681 + 19.2681i 0.718080 + 0.718080i
\(721\) 0 0
\(722\) −53.5367 14.3451i −1.99243 0.533870i
\(723\) 0 0
\(724\) −13.7788 23.8655i −0.512084 0.886955i
\(725\) 0 0
\(726\) 8.67053 + 32.3588i 0.321793 + 1.20095i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 26.9706 + 0.766821i 0.999596 + 0.0284203i
\(729\) 0.565054 0.0209279
\(730\) 0 0
\(731\) 0 0
\(732\) −33.8387 + 19.5368i −1.25071 + 0.722100i
\(733\) −38.2883 38.2883i −1.41421 1.41421i −0.708038 0.706175i \(-0.750419\pi\)
−0.706175 0.708038i \(-0.749581\pi\)
\(734\) 0 0
\(735\) −60.5757 16.2312i −2.23437 0.598697i
\(736\) −37.9230 + 37.9230i −1.39786 + 1.39786i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(740\) 0 0
\(741\) 13.6977 + 57.6246i 0.503199 + 2.11689i
\(742\) 0 0
\(743\) −41.9939 + 11.2522i −1.54061 + 0.412804i −0.926462 0.376389i \(-0.877166\pi\)
−0.614145 + 0.789193i \(0.710499\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.39778 8.94862i 0.0877300 0.327413i
\(748\) 0 0
\(749\) 0 0
\(750\) −46.2916 80.1793i −1.69033 2.92774i
\(751\) 27.7789 + 16.0381i 1.01367 + 0.585240i 0.912263 0.409605i \(-0.134333\pi\)
0.101403 + 0.994845i \(0.467667\pi\)
\(752\) 0 0
\(753\) 39.5121i 1.43990i
\(754\) 0 0
\(755\) −100.982 −3.67509
\(756\) 14.9970 4.01843i 0.545435 0.146149i
\(757\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 23.2320 86.7030i 0.842713 3.14505i
\(761\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(762\) −27.9027 + 27.9027i −1.01081 + 1.01081i
\(763\) 0 0
\(764\) 47.1550 + 27.2250i 1.70601 + 0.984965i
\(765\) 0 0
\(766\) 0 0
\(767\) 33.6889 + 35.6606i 1.21644 + 1.28763i
\(768\) −34.4557 −1.24331
\(769\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 29.1006 + 29.1006i 1.04735 + 1.04735i
\(773\) 14.3306 53.4825i 0.515435 1.92363i 0.168700 0.985667i \(-0.446043\pi\)
0.346735 0.937963i \(-0.387290\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −62.8525 + 14.9405i −2.25048 + 0.534954i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 24.2487 14.0000i 0.866025 0.500000i
\(785\) 27.6362 + 27.6362i 0.986378 + 0.986378i
\(786\) −0.799722 + 2.98460i −0.0285251 + 0.106457i
\(787\) 15.1244 + 4.05257i 0.539126 + 0.144458i 0.518099 0.855321i \(-0.326640\pi\)
0.0210268 + 0.999779i \(0.493306\pi\)
\(788\) 0 0
\(789\) 33.8411 + 58.6144i 1.20477 + 2.08673i
\(790\) −42.0779 24.2937i −1.49706 0.864330i
\(791\) 0.838825 + 3.13054i 0.0298252 + 0.111309i
\(792\) 0 0
\(793\) 0.929633 32.6970i 0.0330122 1.16110i
\(794\) 46.8659 1.66321
\(795\) 0 0
\(796\) 0 0
\(797\) 34.9921 20.2027i 1.23948 0.715617i 0.270496 0.962721i \(-0.412812\pi\)
0.968989 + 0.247104i \(0.0794790\pi\)
\(798\) 43.4631 + 43.4631i 1.53858 + 1.53858i
\(799\) 0 0
\(800\) 67.2486 + 18.0192i 2.37760 + 0.637075i
\(801\) 0 0
\(802\) −11.2250 19.4422i −0.396368 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 104.353i 3.67797i
\(806\) 0 0
\(807\) 1.50250 0.0528906
\(808\) 3.80715 1.02012i 0.133935 0.0358878i
\(809\) 27.8375 48.2159i 0.978713 1.69518i 0.311619 0.950207i \(-0.399129\pi\)
0.667094 0.744973i \(-0.267538\pi\)
\(810\) −57.2246 + 33.0387i −2.01067 + 1.16086i
\(811\) 4.05159 + 4.05159i 0.142270 + 0.142270i 0.774655 0.632384i \(-0.217924\pi\)
−0.632384 + 0.774655i \(0.717924\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 4.47011 14.9674i 0.156198 0.523004i
\(820\) 0 0
\(821\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(822\) −32.3740 + 56.0734i −1.12917 + 1.95578i
\(823\) −36.6582 + 21.1646i −1.27782 + 0.737752i −0.976448 0.215754i \(-0.930779\pi\)
−0.301376 + 0.953506i \(0.597446\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 49.1745 + 13.1763i 1.71100 + 0.458461i
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 15.5246 + 26.8894i 0.539518 + 0.934473i
\(829\) 31.2622 + 18.0492i 1.08578 + 0.626876i 0.932450 0.361299i \(-0.117667\pi\)
0.153331 + 0.988175i \(0.451000\pi\)
\(830\) −8.61509 32.1520i −0.299034 1.11601i
\(831\) 0 0
\(832\) 15.1263 24.5600i 0.524411 0.851465i
\(833\) 0 0
\(834\) −67.5703 + 18.1054i −2.33977 + 0.626939i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 11.3361 42.3069i 0.391599 1.46147i
\(839\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(840\) −47.4063 + 47.4063i −1.63567 + 1.63567i
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) 17.7220 + 66.1395i 0.610379 + 2.27796i
\(844\) 0 0
\(845\) 16.9432 51.3602i 0.582863 1.76684i
\(846\) 0 0
\(847\) −28.1116 + 7.53248i −0.965926 + 0.258819i
\(848\) 0 0
\(849\) −10.1886 + 5.88237i −0.349670 + 0.201882i
\(850\) 0 0
\(851\) 0 0
\(852\) 45.4266 + 12.1720i 1.55629 + 0.417006i
\(853\) −39.8697 + 39.8697i −1.36511 + 1.36511i −0.497849 + 0.867264i \(0.665877\pi\)
−0.867264 + 0.497849i \(0.834123\pi\)
\(854\) −16.9725 29.3972i −0.580787 1.00595i
\(855\) −45.0044 25.9833i −1.53912 0.888610i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 41.7589 1.42480 0.712398 0.701776i \(-0.247609\pi\)
0.712398 + 0.701776i \(0.247609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −38.5585 + 22.2618i −1.31331 + 0.758239i
\(863\) −40.2535 40.2535i −1.37025 1.37025i −0.860071 0.510174i \(-0.829581\pi\)
−0.510174 0.860071i \(-0.670419\pi\)
\(864\) 4.29588 16.0324i 0.146149 0.545435i
\(865\) 101.214 + 27.1203i 3.44139 + 0.922118i
\(866\) 0 0
\(867\) −18.3046 31.7045i −0.621657 1.07674i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 51.1396 88.5764i 1.72982 2.99614i
\(875\) 69.6554 40.2156i 2.35478 1.35953i
\(876\) 0 0
\(877\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(878\) 0 0
\(879\) −52.0782 + 52.0782i −1.75655 + 1.75655i
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) −4.19554 15.6580i −0.141271 0.527232i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) −121.896 −4.09749
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) −24.2404 24.2404i −0.812996 0.812996i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) −73.5834 2.09211i −2.45688 0.0698534i
\(898\) 29.9088 0.998071
\(899\) 0 0
\(900\) 20.1532 34.9063i 0.671773 1.16354i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 3.34669 + 0.896742i 0.111309 + 0.0298252i
\(905\) −40.5332 + 40.5332i −1.34737 + 1.34737i
\(906\) −36.9618 64.0197i −1.22797 2.12691i
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 15.4892 + 57.8063i 0.514025 + 1.91837i
\(909\) 2.28187i 0.0756847i
\(910\) −12.9795 54.6029i −0.430265 1.81007i
\(911\) 0.210840 0.00698543 0.00349271 0.999994i \(-0.498888\pi\)
0.00349271 + 0.999994i \(0.498888\pi\)
\(912\) 63.4710 17.0070i 2.10174 0.563158i
\(913\) 0 0
\(914\) −41.7596 + 24.1099i −1.38129 + 0.797486i
\(915\) 57.4716 + 57.4716i 1.89995 + 1.89995i
\(916\) −9.80592 + 36.5962i −0.323997 + 1.20917i
\(917\) −2.59286 0.694754i −0.0856237 0.0229428i
\(918\) 0 0
\(919\) −25.9154 44.8869i −0.854872 1.48068i −0.876764 0.480921i \(-0.840303\pi\)
0.0218926 0.999760i \(-0.493031\pi\)
\(920\) 96.6125 + 55.7792i 3.18522 + 1.83899i
\(921\) −5.39863 20.1480i −0.177891 0.663898i
\(922\) 29.6380i 0.976076i
\(923\) −28.6188 + 27.0364i −0.941999 + 0.889915i
\(924\) 0 0
\(925\) 0 0
\(926\) 4.20185 7.27782i 0.138081 0.239164i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(930\) 0 0
\(931\) −37.7584 + 37.7584i −1.23748 + 1.23748i
\(932\) −9.77048 16.9230i −0.320043 0.554330i
\(933\) 0 0
\(934\) −6.20507 23.1576i −0.203036 0.757741i
\(935\) 0 0
\(936\) −11.4678 12.1389i −0.374835 0.396773i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.6416 42.6416i −1.39008 1.39008i −0.825123 0.564953i \(-0.808894\pi\)
−0.564953 0.825123i \(-0.691106\pi\)
\(942\) −7.40510 + 27.6362i −0.241271 + 0.900436i
\(943\) 0 0
\(944\) 38.4838 38.4838i 1.25254 1.25254i
\(945\) −16.1479 27.9689i −0.525290 0.909830i
\(946\) 0 0
\(947\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(948\) 35.5684i 1.15521i
\(949\) 0 0
\(950\) −132.773 −4.30772
\(951\) 0 0
\(952\) 0 0
\(953\) 0.932742 0.538519i 0.0302145 0.0174443i −0.484817 0.874616i \(-0.661114\pi\)
0.515031 + 0.857171i \(0.327780\pi\)
\(954\) 0 0
\(955\) 29.3143 109.402i 0.948587 3.54018i
\(956\) 52.2391 + 13.9974i 1.68953 + 0.452709i
\(957\) 0 0
\(958\) 0 0
\(959\) −48.7135 28.1248i −1.57304 0.908196i
\(960\) 18.5500 + 69.2294i 0.598697 + 2.23437i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 42.8028 74.1366i 1.37787 2.38654i
\(966\) −66.1574 + 38.1960i −2.12858 + 1.22894i
\(967\) 40.2250 + 40.2250i 1.29355 + 1.29355i 0.932577 + 0.360971i \(0.117555\pi\)
0.360971 + 0.932577i \(0.382445\pi\)
\(968\) −8.05256 + 30.0526i −0.258819 + 0.965926i
\(969\) 0 0
\(970\) 0 0
\(971\) 24.6801 + 42.7472i 0.792021 + 1.37182i 0.924713 + 0.380664i \(0.124305\pi\)
−0.132692 + 0.991157i \(0.542362\pi\)
\(972\) −26.6451 15.3836i −0.854642 0.493428i
\(973\) −15.7290 58.7014i −0.504248 1.88188i
\(974\) 43.6917i 1.39997i
\(975\) 45.4089 + 84.0822i 1.45425 + 2.69279i
\(976\) −36.2887 −1.16157
\(977\) 60.3562 16.1724i 1.93097 0.517401i 0.957650 0.287936i \(-0.0929689\pi\)
0.973317 0.229465i \(-0.0736978\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −41.1840 41.1840i −1.31557 1.31557i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −15.7417 + 52.7083i −0.500809 + 1.67687i
\(989\) 0 0
\(990\) 0 0
\(991\) −11.3007 + 19.5735i −0.358980 + 0.621771i −0.987791 0.155787i \(-0.950209\pi\)
0.628811 + 0.777558i \(0.283542\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −10.5744 + 39.4641i −0.335399 + 1.25173i
\(995\) 0 0
\(996\) 17.2302 17.2302i 0.545959 0.545959i
\(997\) −30.9701 53.6418i −0.980834 1.69885i −0.659158 0.752004i \(-0.729087\pi\)
−0.321675 0.946850i \(-0.604246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.b.293.4 yes 16
7.6 odd 2 inner 728.2.ds.b.293.1 16
8.5 even 2 inner 728.2.ds.b.293.1 16
13.2 odd 12 inner 728.2.ds.b.405.4 yes 16
56.13 odd 2 CM 728.2.ds.b.293.4 yes 16
91.41 even 12 inner 728.2.ds.b.405.1 yes 16
104.93 odd 12 inner 728.2.ds.b.405.1 yes 16
728.405 even 12 inner 728.2.ds.b.405.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.b.293.1 16 7.6 odd 2 inner
728.2.ds.b.293.1 16 8.5 even 2 inner
728.2.ds.b.293.4 yes 16 1.1 even 1 trivial
728.2.ds.b.293.4 yes 16 56.13 odd 2 CM
728.2.ds.b.405.1 yes 16 91.41 even 12 inner
728.2.ds.b.405.1 yes 16 104.93 odd 12 inner
728.2.ds.b.405.4 yes 16 13.2 odd 12 inner
728.2.ds.b.405.4 yes 16 728.405 even 12 inner