Properties

Label 728.2.cz
Level $728$
Weight $2$
Character orbit 728.cz
Rep. character $\chi_{728}(309,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $168$
Newform subspaces $1$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.cz (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(728, [\chi])\).

Total New Old
Modular forms 232 168 64
Cusp forms 216 168 48
Eisenstein series 16 0 16

Trace form

\( 168 q - 18 q^{6} + 84 q^{9} - 8 q^{10} - 4 q^{12} + 8 q^{16} + 4 q^{17} - 18 q^{22} + 24 q^{23} + 48 q^{24} + 160 q^{25} - 30 q^{26} - 8 q^{30} + 22 q^{36} - 20 q^{38} - 48 q^{39} + 4 q^{40} + 12 q^{41}+ \cdots - 104 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
728.2.cz.a 728.cz 104.s $168$ $5.813$ None 728.2.cz.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(728, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(728, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)