Properties

Label 728.2.bm.c.673.5
Level $728$
Weight $2$
Character 728.673
Analytic conductor $5.813$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(225,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.5
Character \(\chi\) \(=\) 728.673
Dual form 728.2.bm.c.225.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.509942 - 0.883245i) q^{3} +2.02001i q^{5} +(-0.866025 - 0.500000i) q^{7} +(0.979919 - 1.69727i) q^{9} +(-5.06414 + 2.92378i) q^{11} +(-2.41142 - 2.68049i) q^{13} +(1.78417 - 1.03009i) q^{15} +(3.04158 - 5.26816i) q^{17} +(-0.610163 - 0.352278i) q^{19} +1.01988i q^{21} +(-2.48413 - 4.30265i) q^{23} +0.919550 q^{25} -5.05846 q^{27} +(-4.92645 - 8.53286i) q^{29} +4.81518i q^{31} +(5.16483 + 2.98192i) q^{33} +(1.01001 - 1.74938i) q^{35} +(1.45284 - 0.838799i) q^{37} +(-1.13785 + 3.49677i) q^{39} +(-1.89288 + 1.09285i) q^{41} +(0.391141 - 0.677476i) q^{43} +(3.42850 + 1.97945i) q^{45} -5.26356i q^{47} +(0.500000 + 0.866025i) q^{49} -6.20411 q^{51} -10.0419 q^{53} +(-5.90608 - 10.2296i) q^{55} +0.718565i q^{57} +(-5.03891 - 2.90921i) q^{59} +(-3.48257 + 6.03200i) q^{61} +(-1.69727 + 0.979919i) q^{63} +(5.41463 - 4.87110i) q^{65} +(9.63479 - 5.56265i) q^{67} +(-2.53353 + 4.38820i) q^{69} +(-10.7862 - 6.22739i) q^{71} +11.4541i q^{73} +(-0.468917 - 0.812188i) q^{75} +5.84756 q^{77} +1.05083 q^{79} +(-0.360237 - 0.623949i) q^{81} +3.04409i q^{83} +(10.6418 + 6.14402i) q^{85} +(-5.02440 + 8.70252i) q^{87} +(-1.34250 + 0.775094i) q^{89} +(0.748104 + 3.52709i) q^{91} +(4.25299 - 2.45546i) q^{93} +(0.711606 - 1.23254i) q^{95} +(1.33021 + 0.767994i) q^{97} +11.4603i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{3} - 18 q^{9} + 12 q^{11} + 8 q^{17} - 12 q^{19} + 2 q^{23} - 28 q^{25} - 20 q^{27} + 2 q^{29} - 18 q^{33} - 8 q^{35} + 60 q^{37} + 18 q^{39} - 6 q^{41} + 24 q^{43} - 72 q^{45} + 12 q^{49} - 72 q^{51}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.509942 0.883245i −0.294415 0.509942i 0.680434 0.732810i \(-0.261791\pi\)
−0.974849 + 0.222868i \(0.928458\pi\)
\(4\) 0 0
\(5\) 2.02001i 0.903377i 0.892176 + 0.451688i \(0.149178\pi\)
−0.892176 + 0.451688i \(0.850822\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 0 0
\(9\) 0.979919 1.69727i 0.326640 0.565756i
\(10\) 0 0
\(11\) −5.06414 + 2.92378i −1.52690 + 0.881553i −0.527405 + 0.849614i \(0.676835\pi\)
−0.999490 + 0.0319397i \(0.989832\pi\)
\(12\) 0 0
\(13\) −2.41142 2.68049i −0.668808 0.743435i
\(14\) 0 0
\(15\) 1.78417 1.03009i 0.460670 0.265968i
\(16\) 0 0
\(17\) 3.04158 5.26816i 0.737690 1.27772i −0.215842 0.976428i \(-0.569250\pi\)
0.953533 0.301289i \(-0.0974169\pi\)
\(18\) 0 0
\(19\) −0.610163 0.352278i −0.139981 0.0808181i 0.428374 0.903602i \(-0.359087\pi\)
−0.568355 + 0.822783i \(0.692420\pi\)
\(20\) 0 0
\(21\) 1.01988i 0.222557i
\(22\) 0 0
\(23\) −2.48413 4.30265i −0.517978 0.897164i −0.999782 0.0208847i \(-0.993352\pi\)
0.481804 0.876279i \(-0.339982\pi\)
\(24\) 0 0
\(25\) 0.919550 0.183910
\(26\) 0 0
\(27\) −5.05846 −0.973501
\(28\) 0 0
\(29\) −4.92645 8.53286i −0.914818 1.58451i −0.807167 0.590323i \(-0.799000\pi\)
−0.107651 0.994189i \(-0.534333\pi\)
\(30\) 0 0
\(31\) 4.81518i 0.864833i 0.901674 + 0.432416i \(0.142339\pi\)
−0.901674 + 0.432416i \(0.857661\pi\)
\(32\) 0 0
\(33\) 5.16483 + 2.98192i 0.899082 + 0.519085i
\(34\) 0 0
\(35\) 1.01001 1.74938i 0.170722 0.295700i
\(36\) 0 0
\(37\) 1.45284 0.838799i 0.238846 0.137898i −0.375800 0.926701i \(-0.622632\pi\)
0.614646 + 0.788803i \(0.289299\pi\)
\(38\) 0 0
\(39\) −1.13785 + 3.49677i −0.182202 + 0.559932i
\(40\) 0 0
\(41\) −1.89288 + 1.09285i −0.295618 + 0.170675i −0.640473 0.767981i \(-0.721262\pi\)
0.344855 + 0.938656i \(0.387928\pi\)
\(42\) 0 0
\(43\) 0.391141 0.677476i 0.0596485 0.103314i −0.834659 0.550767i \(-0.814335\pi\)
0.894308 + 0.447453i \(0.147669\pi\)
\(44\) 0 0
\(45\) 3.42850 + 1.97945i 0.511091 + 0.295079i
\(46\) 0 0
\(47\) 5.26356i 0.767769i −0.923381 0.383885i \(-0.874586\pi\)
0.923381 0.383885i \(-0.125414\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) −6.20411 −0.868749
\(52\) 0 0
\(53\) −10.0419 −1.37936 −0.689681 0.724114i \(-0.742249\pi\)
−0.689681 + 0.724114i \(0.742249\pi\)
\(54\) 0 0
\(55\) −5.90608 10.2296i −0.796375 1.37936i
\(56\) 0 0
\(57\) 0.718565i 0.0951763i
\(58\) 0 0
\(59\) −5.03891 2.90921i −0.656010 0.378747i 0.134745 0.990880i \(-0.456978\pi\)
−0.790755 + 0.612133i \(0.790312\pi\)
\(60\) 0 0
\(61\) −3.48257 + 6.03200i −0.445898 + 0.772318i −0.998114 0.0613829i \(-0.980449\pi\)
0.552216 + 0.833701i \(0.313782\pi\)
\(62\) 0 0
\(63\) −1.69727 + 0.979919i −0.213836 + 0.123458i
\(64\) 0 0
\(65\) 5.41463 4.87110i 0.671602 0.604186i
\(66\) 0 0
\(67\) 9.63479 5.56265i 1.17708 0.679586i 0.221740 0.975106i \(-0.428826\pi\)
0.955337 + 0.295520i \(0.0954929\pi\)
\(68\) 0 0
\(69\) −2.53353 + 4.38820i −0.305001 + 0.528277i
\(70\) 0 0
\(71\) −10.7862 6.22739i −1.28008 0.739056i −0.303219 0.952921i \(-0.598061\pi\)
−0.976863 + 0.213865i \(0.931395\pi\)
\(72\) 0 0
\(73\) 11.4541i 1.34060i 0.742090 + 0.670301i \(0.233835\pi\)
−0.742090 + 0.670301i \(0.766165\pi\)
\(74\) 0 0
\(75\) −0.468917 0.812188i −0.0541459 0.0937834i
\(76\) 0 0
\(77\) 5.84756 0.666392
\(78\) 0 0
\(79\) 1.05083 0.118227 0.0591136 0.998251i \(-0.481173\pi\)
0.0591136 + 0.998251i \(0.481173\pi\)
\(80\) 0 0
\(81\) −0.360237 0.623949i −0.0400263 0.0693276i
\(82\) 0 0
\(83\) 3.04409i 0.334132i 0.985946 + 0.167066i \(0.0534293\pi\)
−0.985946 + 0.167066i \(0.946571\pi\)
\(84\) 0 0
\(85\) 10.6418 + 6.14402i 1.15426 + 0.666413i
\(86\) 0 0
\(87\) −5.02440 + 8.70252i −0.538673 + 0.933008i
\(88\) 0 0
\(89\) −1.34250 + 0.775094i −0.142305 + 0.0821598i −0.569462 0.822018i \(-0.692848\pi\)
0.427157 + 0.904177i \(0.359515\pi\)
\(90\) 0 0
\(91\) 0.748104 + 3.52709i 0.0784226 + 0.369739i
\(92\) 0 0
\(93\) 4.25299 2.45546i 0.441014 0.254620i
\(94\) 0 0
\(95\) 0.711606 1.23254i 0.0730092 0.126456i
\(96\) 0 0
\(97\) 1.33021 + 0.767994i 0.135062 + 0.0779780i 0.566008 0.824399i \(-0.308487\pi\)
−0.430947 + 0.902377i \(0.641820\pi\)
\(98\) 0 0
\(99\) 11.4603i 1.15180i
\(100\) 0 0
\(101\) 7.88894 + 13.6640i 0.784978 + 1.35962i 0.929012 + 0.370050i \(0.120659\pi\)
−0.144033 + 0.989573i \(0.546007\pi\)
\(102\) 0 0
\(103\) −0.0661752 −0.00652044 −0.00326022 0.999995i \(-0.501038\pi\)
−0.00326022 + 0.999995i \(0.501038\pi\)
\(104\) 0 0
\(105\) −2.06018 −0.201053
\(106\) 0 0
\(107\) 2.45244 + 4.24775i 0.237087 + 0.410646i 0.959877 0.280421i \(-0.0904742\pi\)
−0.722790 + 0.691067i \(0.757141\pi\)
\(108\) 0 0
\(109\) 13.7491i 1.31692i −0.752614 0.658462i \(-0.771207\pi\)
0.752614 0.658462i \(-0.228793\pi\)
\(110\) 0 0
\(111\) −1.48173 0.855478i −0.140640 0.0811984i
\(112\) 0 0
\(113\) 1.46579 2.53882i 0.137890 0.238832i −0.788808 0.614640i \(-0.789301\pi\)
0.926698 + 0.375808i \(0.122635\pi\)
\(114\) 0 0
\(115\) 8.69140 5.01798i 0.810477 0.467929i
\(116\) 0 0
\(117\) −6.91252 + 1.46616i −0.639062 + 0.135547i
\(118\) 0 0
\(119\) −5.26816 + 3.04158i −0.482932 + 0.278821i
\(120\) 0 0
\(121\) 11.5970 20.0866i 1.05427 1.82605i
\(122\) 0 0
\(123\) 1.93052 + 1.11458i 0.174069 + 0.100499i
\(124\) 0 0
\(125\) 11.9576i 1.06952i
\(126\) 0 0
\(127\) −2.86732 4.96634i −0.254433 0.440691i 0.710308 0.703891i \(-0.248556\pi\)
−0.964741 + 0.263200i \(0.915222\pi\)
\(128\) 0 0
\(129\) −0.797837 −0.0702456
\(130\) 0 0
\(131\) 18.6052 1.62554 0.812772 0.582581i \(-0.197957\pi\)
0.812772 + 0.582581i \(0.197957\pi\)
\(132\) 0 0
\(133\) 0.352278 + 0.610163i 0.0305464 + 0.0529079i
\(134\) 0 0
\(135\) 10.2181i 0.879438i
\(136\) 0 0
\(137\) 11.4279 + 6.59793i 0.976355 + 0.563699i 0.901168 0.433470i \(-0.142711\pi\)
0.0751875 + 0.997169i \(0.476044\pi\)
\(138\) 0 0
\(139\) 6.03195 10.4476i 0.511623 0.886158i −0.488286 0.872684i \(-0.662378\pi\)
0.999909 0.0134739i \(-0.00428899\pi\)
\(140\) 0 0
\(141\) −4.64902 + 2.68411i −0.391518 + 0.226043i
\(142\) 0 0
\(143\) 20.0489 + 6.52393i 1.67658 + 0.545558i
\(144\) 0 0
\(145\) 17.2365 9.95148i 1.43141 0.826426i
\(146\) 0 0
\(147\) 0.509942 0.883245i 0.0420593 0.0728488i
\(148\) 0 0
\(149\) −20.5202 11.8473i −1.68108 0.970571i −0.960947 0.276734i \(-0.910748\pi\)
−0.720132 0.693837i \(-0.755919\pi\)
\(150\) 0 0
\(151\) 18.0151i 1.46605i 0.680203 + 0.733024i \(0.261892\pi\)
−0.680203 + 0.733024i \(0.738108\pi\)
\(152\) 0 0
\(153\) −5.96099 10.3247i −0.481918 0.834706i
\(154\) 0 0
\(155\) −9.72673 −0.781270
\(156\) 0 0
\(157\) 13.3205 1.06309 0.531547 0.847028i \(-0.321611\pi\)
0.531547 + 0.847028i \(0.321611\pi\)
\(158\) 0 0
\(159\) 5.12079 + 8.86946i 0.406105 + 0.703394i
\(160\) 0 0
\(161\) 4.96827i 0.391554i
\(162\) 0 0
\(163\) −10.9382 6.31518i −0.856746 0.494643i 0.00617502 0.999981i \(-0.498034\pi\)
−0.862921 + 0.505338i \(0.831368\pi\)
\(164\) 0 0
\(165\) −6.02351 + 10.4330i −0.468930 + 0.812210i
\(166\) 0 0
\(167\) 16.0968 9.29348i 1.24561 0.719151i 0.275376 0.961336i \(-0.411198\pi\)
0.970230 + 0.242185i \(0.0778642\pi\)
\(168\) 0 0
\(169\) −1.37010 + 12.9276i −0.105392 + 0.994431i
\(170\) 0 0
\(171\) −1.19582 + 0.690408i −0.0914467 + 0.0527968i
\(172\) 0 0
\(173\) −3.60469 + 6.24350i −0.274059 + 0.474685i −0.969897 0.243514i \(-0.921700\pi\)
0.695838 + 0.718199i \(0.255033\pi\)
\(174\) 0 0
\(175\) −0.796354 0.459775i −0.0601987 0.0347557i
\(176\) 0 0
\(177\) 5.93412i 0.446036i
\(178\) 0 0
\(179\) 10.3711 + 17.9632i 0.775170 + 1.34263i 0.934699 + 0.355440i \(0.115669\pi\)
−0.159529 + 0.987193i \(0.550998\pi\)
\(180\) 0 0
\(181\) 15.2611 1.13435 0.567173 0.823599i \(-0.308037\pi\)
0.567173 + 0.823599i \(0.308037\pi\)
\(182\) 0 0
\(183\) 7.10364 0.525116
\(184\) 0 0
\(185\) 1.69439 + 2.93476i 0.124574 + 0.215768i
\(186\) 0 0
\(187\) 35.5716i 2.60125i
\(188\) 0 0
\(189\) 4.38075 + 2.52923i 0.318653 + 0.183974i
\(190\) 0 0
\(191\) −1.59564 + 2.76373i −0.115456 + 0.199976i −0.917962 0.396668i \(-0.870166\pi\)
0.802506 + 0.596645i \(0.203500\pi\)
\(192\) 0 0
\(193\) 9.04430 5.22173i 0.651023 0.375868i −0.137825 0.990457i \(-0.544011\pi\)
0.788848 + 0.614588i \(0.210678\pi\)
\(194\) 0 0
\(195\) −7.06352 2.29847i −0.505829 0.164597i
\(196\) 0 0
\(197\) −2.98736 + 1.72476i −0.212841 + 0.122884i −0.602631 0.798020i \(-0.705881\pi\)
0.389790 + 0.920904i \(0.372548\pi\)
\(198\) 0 0
\(199\) −2.49808 + 4.32679i −0.177084 + 0.306718i −0.940880 0.338739i \(-0.890000\pi\)
0.763797 + 0.645457i \(0.223333\pi\)
\(200\) 0 0
\(201\) −9.82636 5.67325i −0.693098 0.400161i
\(202\) 0 0
\(203\) 9.85289i 0.691538i
\(204\) 0 0
\(205\) −2.20758 3.82364i −0.154184 0.267054i
\(206\) 0 0
\(207\) −9.73699 −0.676768
\(208\) 0 0
\(209\) 4.11994 0.284982
\(210\) 0 0
\(211\) −11.3510 19.6604i −0.781432 1.35348i −0.931108 0.364745i \(-0.881156\pi\)
0.149676 0.988735i \(-0.452177\pi\)
\(212\) 0 0
\(213\) 12.7024i 0.870356i
\(214\) 0 0
\(215\) 1.36851 + 0.790110i 0.0933316 + 0.0538850i
\(216\) 0 0
\(217\) 2.40759 4.17007i 0.163438 0.283083i
\(218\) 0 0
\(219\) 10.1168 5.84093i 0.683629 0.394693i
\(220\) 0 0
\(221\) −21.4558 + 4.55083i −1.44327 + 0.306122i
\(222\) 0 0
\(223\) −7.64573 + 4.41426i −0.511996 + 0.295601i −0.733654 0.679524i \(-0.762187\pi\)
0.221658 + 0.975125i \(0.428853\pi\)
\(224\) 0 0
\(225\) 0.901084 1.56072i 0.0600723 0.104048i
\(226\) 0 0
\(227\) −13.6744 7.89493i −0.907603 0.524005i −0.0279438 0.999609i \(-0.508896\pi\)
−0.879659 + 0.475605i \(0.842229\pi\)
\(228\) 0 0
\(229\) 7.89653i 0.521818i 0.965363 + 0.260909i \(0.0840222\pi\)
−0.965363 + 0.260909i \(0.915978\pi\)
\(230\) 0 0
\(231\) −2.98192 5.16483i −0.196196 0.339821i
\(232\) 0 0
\(233\) −12.8845 −0.844089 −0.422045 0.906575i \(-0.638687\pi\)
−0.422045 + 0.906575i \(0.638687\pi\)
\(234\) 0 0
\(235\) 10.6325 0.693585
\(236\) 0 0
\(237\) −0.535860 0.928137i −0.0348079 0.0602890i
\(238\) 0 0
\(239\) 15.9013i 1.02857i −0.857620 0.514283i \(-0.828058\pi\)
0.857620 0.514283i \(-0.171942\pi\)
\(240\) 0 0
\(241\) −20.9790 12.1122i −1.35137 0.780216i −0.362931 0.931816i \(-0.618224\pi\)
−0.988442 + 0.151600i \(0.951557\pi\)
\(242\) 0 0
\(243\) −7.95509 + 13.7786i −0.510319 + 0.883898i
\(244\) 0 0
\(245\) −1.74938 + 1.01001i −0.111764 + 0.0645269i
\(246\) 0 0
\(247\) 0.527081 + 2.48503i 0.0335374 + 0.158119i
\(248\) 0 0
\(249\) 2.68867 1.55231i 0.170388 0.0983735i
\(250\) 0 0
\(251\) 11.8183 20.4699i 0.745966 1.29205i −0.203777 0.979017i \(-0.565322\pi\)
0.949742 0.313033i \(-0.101345\pi\)
\(252\) 0 0
\(253\) 25.1600 + 14.5261i 1.58180 + 0.913250i
\(254\) 0 0
\(255\) 12.5324i 0.784808i
\(256\) 0 0
\(257\) 4.36835 + 7.56620i 0.272490 + 0.471966i 0.969499 0.245096i \(-0.0788195\pi\)
−0.697009 + 0.717063i \(0.745486\pi\)
\(258\) 0 0
\(259\) −1.67760 −0.104241
\(260\) 0 0
\(261\) −19.3101 −1.19526
\(262\) 0 0
\(263\) 3.71086 + 6.42740i 0.228822 + 0.396330i 0.957459 0.288569i \(-0.0931794\pi\)
−0.728638 + 0.684899i \(0.759846\pi\)
\(264\) 0 0
\(265\) 20.2848i 1.24608i
\(266\) 0 0
\(267\) 1.36920 + 0.790505i 0.0837934 + 0.0483782i
\(268\) 0 0
\(269\) −14.1475 + 24.5042i −0.862589 + 1.49405i 0.00683299 + 0.999977i \(0.497825\pi\)
−0.869422 + 0.494071i \(0.835508\pi\)
\(270\) 0 0
\(271\) 10.2435 5.91408i 0.622248 0.359255i −0.155496 0.987837i \(-0.549698\pi\)
0.777744 + 0.628582i \(0.216364\pi\)
\(272\) 0 0
\(273\) 2.73379 2.45937i 0.165457 0.148848i
\(274\) 0 0
\(275\) −4.65673 + 2.68856i −0.280811 + 0.162126i
\(276\) 0 0
\(277\) 0.106240 0.184013i 0.00638335 0.0110563i −0.862816 0.505518i \(-0.831301\pi\)
0.869199 + 0.494462i \(0.164635\pi\)
\(278\) 0 0
\(279\) 8.17266 + 4.71849i 0.489285 + 0.282489i
\(280\) 0 0
\(281\) 20.2326i 1.20698i −0.797371 0.603489i \(-0.793777\pi\)
0.797371 0.603489i \(-0.206223\pi\)
\(282\) 0 0
\(283\) 10.1574 + 17.5931i 0.603793 + 1.04580i 0.992241 + 0.124330i \(0.0396781\pi\)
−0.388448 + 0.921471i \(0.626989\pi\)
\(284\) 0 0
\(285\) −1.45151 −0.0859801
\(286\) 0 0
\(287\) 2.18571 0.129018
\(288\) 0 0
\(289\) −10.0024 17.3246i −0.588374 1.01909i
\(290\) 0 0
\(291\) 1.56653i 0.0918316i
\(292\) 0 0
\(293\) −11.8479 6.84038i −0.692161 0.399619i 0.112260 0.993679i \(-0.464191\pi\)
−0.804421 + 0.594059i \(0.797524\pi\)
\(294\) 0 0
\(295\) 5.87665 10.1787i 0.342152 0.592624i
\(296\) 0 0
\(297\) 25.6167 14.7898i 1.48643 0.858193i
\(298\) 0 0
\(299\) −5.54293 + 17.0342i −0.320556 + 0.985113i
\(300\) 0 0
\(301\) −0.677476 + 0.391141i −0.0390491 + 0.0225450i
\(302\) 0 0
\(303\) 8.04580 13.9357i 0.462219 0.800587i
\(304\) 0 0
\(305\) −12.1847 7.03484i −0.697694 0.402814i
\(306\) 0 0
\(307\) 9.17060i 0.523394i −0.965150 0.261697i \(-0.915718\pi\)
0.965150 0.261697i \(-0.0842821\pi\)
\(308\) 0 0
\(309\) 0.0337455 + 0.0584490i 0.00191972 + 0.00332505i
\(310\) 0 0
\(311\) −19.7022 −1.11721 −0.558604 0.829435i \(-0.688663\pi\)
−0.558604 + 0.829435i \(0.688663\pi\)
\(312\) 0 0
\(313\) −18.7782 −1.06141 −0.530703 0.847558i \(-0.678072\pi\)
−0.530703 + 0.847558i \(0.678072\pi\)
\(314\) 0 0
\(315\) −1.97945 3.42850i −0.111529 0.193174i
\(316\) 0 0
\(317\) 16.5701i 0.930667i 0.885135 + 0.465334i \(0.154066\pi\)
−0.885135 + 0.465334i \(0.845934\pi\)
\(318\) 0 0
\(319\) 49.8964 + 28.8077i 2.79366 + 1.61292i
\(320\) 0 0
\(321\) 2.50121 4.33222i 0.139604 0.241801i
\(322\) 0 0
\(323\) −3.71172 + 2.14296i −0.206525 + 0.119238i
\(324\) 0 0
\(325\) −2.21742 2.46485i −0.123000 0.136725i
\(326\) 0 0
\(327\) −12.1438 + 7.01124i −0.671555 + 0.387722i
\(328\) 0 0
\(329\) −2.63178 + 4.55838i −0.145095 + 0.251312i
\(330\) 0 0
\(331\) −16.7899 9.69363i −0.922854 0.532810i −0.0383097 0.999266i \(-0.512197\pi\)
−0.884545 + 0.466456i \(0.845531\pi\)
\(332\) 0 0
\(333\) 3.28782i 0.180171i
\(334\) 0 0
\(335\) 11.2366 + 19.4624i 0.613922 + 1.06334i
\(336\) 0 0
\(337\) 4.37084 0.238095 0.119047 0.992889i \(-0.462016\pi\)
0.119047 + 0.992889i \(0.462016\pi\)
\(338\) 0 0
\(339\) −2.98987 −0.162388
\(340\) 0 0
\(341\) −14.0786 24.3848i −0.762396 1.32051i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −8.86421 5.11776i −0.477233 0.275531i
\(346\) 0 0
\(347\) 10.7824 18.6756i 0.578828 1.00256i −0.416786 0.909005i \(-0.636844\pi\)
0.995614 0.0935548i \(-0.0298230\pi\)
\(348\) 0 0
\(349\) 16.6767 9.62828i 0.892682 0.515390i 0.0178632 0.999840i \(-0.494314\pi\)
0.874819 + 0.484450i \(0.160980\pi\)
\(350\) 0 0
\(351\) 12.1981 + 13.5592i 0.651085 + 0.723735i
\(352\) 0 0
\(353\) 7.66898 4.42769i 0.408179 0.235662i −0.281828 0.959465i \(-0.590941\pi\)
0.690007 + 0.723803i \(0.257607\pi\)
\(354\) 0 0
\(355\) 12.5794 21.7882i 0.667646 1.15640i
\(356\) 0 0
\(357\) 5.37291 + 3.10205i 0.284365 + 0.164178i
\(358\) 0 0
\(359\) 24.2377i 1.27922i −0.768700 0.639609i \(-0.779096\pi\)
0.768700 0.639609i \(-0.220904\pi\)
\(360\) 0 0
\(361\) −9.25180 16.0246i −0.486937 0.843399i
\(362\) 0 0
\(363\) −23.6552 −1.24158
\(364\) 0 0
\(365\) −23.1374 −1.21107
\(366\) 0 0
\(367\) −1.12828 1.95423i −0.0588955 0.102010i 0.835074 0.550137i \(-0.185425\pi\)
−0.893970 + 0.448127i \(0.852091\pi\)
\(368\) 0 0
\(369\) 4.28363i 0.222997i
\(370\) 0 0
\(371\) 8.69654 + 5.02095i 0.451502 + 0.260675i
\(372\) 0 0
\(373\) −1.00315 + 1.73750i −0.0519409 + 0.0899643i −0.890827 0.454343i \(-0.849874\pi\)
0.838886 + 0.544307i \(0.183207\pi\)
\(374\) 0 0
\(375\) 10.5615 6.09766i 0.545392 0.314882i
\(376\) 0 0
\(377\) −10.9925 + 33.7816i −0.566145 + 1.73984i
\(378\) 0 0
\(379\) 4.46530 2.57804i 0.229367 0.132425i −0.380913 0.924611i \(-0.624390\pi\)
0.610280 + 0.792186i \(0.291057\pi\)
\(380\) 0 0
\(381\) −2.92433 + 5.06509i −0.149818 + 0.259492i
\(382\) 0 0
\(383\) −18.5542 10.7123i −0.948077 0.547373i −0.0555943 0.998453i \(-0.517705\pi\)
−0.892483 + 0.451081i \(0.851039\pi\)
\(384\) 0 0
\(385\) 11.8122i 0.602003i
\(386\) 0 0
\(387\) −0.766573 1.32774i −0.0389671 0.0674930i
\(388\) 0 0
\(389\) −24.3103 −1.23258 −0.616291 0.787518i \(-0.711366\pi\)
−0.616291 + 0.787518i \(0.711366\pi\)
\(390\) 0 0
\(391\) −30.2227 −1.52843
\(392\) 0 0
\(393\) −9.48757 16.4330i −0.478585 0.828933i
\(394\) 0 0
\(395\) 2.12268i 0.106804i
\(396\) 0 0
\(397\) 1.43301 + 0.827347i 0.0719206 + 0.0415234i 0.535529 0.844517i \(-0.320112\pi\)
−0.463608 + 0.886040i \(0.653446\pi\)
\(398\) 0 0
\(399\) 0.359283 0.622296i 0.0179866 0.0311538i
\(400\) 0 0
\(401\) 3.33602 1.92605i 0.166593 0.0961825i −0.414385 0.910102i \(-0.636003\pi\)
0.580978 + 0.813919i \(0.302670\pi\)
\(402\) 0 0
\(403\) 12.9071 11.6114i 0.642947 0.578407i
\(404\) 0 0
\(405\) 1.26038 0.727683i 0.0626290 0.0361589i
\(406\) 0 0
\(407\) −4.90493 + 8.49559i −0.243129 + 0.421111i
\(408\) 0 0
\(409\) 20.7527 + 11.9816i 1.02615 + 0.592450i 0.915880 0.401451i \(-0.131494\pi\)
0.110273 + 0.993901i \(0.464827\pi\)
\(410\) 0 0
\(411\) 13.4582i 0.663846i
\(412\) 0 0
\(413\) 2.90921 + 5.03891i 0.143153 + 0.247948i
\(414\) 0 0
\(415\) −6.14909 −0.301847
\(416\) 0 0
\(417\) −12.3038 −0.602518
\(418\) 0 0
\(419\) −16.9634 29.3815i −0.828717 1.43538i −0.899045 0.437856i \(-0.855738\pi\)
0.0703279 0.997524i \(-0.477595\pi\)
\(420\) 0 0
\(421\) 32.0785i 1.56341i −0.623648 0.781705i \(-0.714350\pi\)
0.623648 0.781705i \(-0.285650\pi\)
\(422\) 0 0
\(423\) −8.93368 5.15786i −0.434370 0.250784i
\(424\) 0 0
\(425\) 2.79688 4.84434i 0.135669 0.234985i
\(426\) 0 0
\(427\) 6.03200 3.48257i 0.291909 0.168534i
\(428\) 0 0
\(429\) −4.46157 21.0350i −0.215407 1.01558i
\(430\) 0 0
\(431\) −4.66521 + 2.69346i −0.224715 + 0.129739i −0.608132 0.793836i \(-0.708081\pi\)
0.383416 + 0.923576i \(0.374747\pi\)
\(432\) 0 0
\(433\) −2.29422 + 3.97371i −0.110253 + 0.190964i −0.915872 0.401470i \(-0.868500\pi\)
0.805619 + 0.592434i \(0.201833\pi\)
\(434\) 0 0
\(435\) −17.5792 10.1494i −0.842858 0.486624i
\(436\) 0 0
\(437\) 3.50042i 0.167448i
\(438\) 0 0
\(439\) 9.95016 + 17.2342i 0.474895 + 0.822542i 0.999587 0.0287501i \(-0.00915269\pi\)
−0.524692 + 0.851292i \(0.675819\pi\)
\(440\) 0 0
\(441\) 1.95984 0.0933256
\(442\) 0 0
\(443\) 12.3708 0.587757 0.293878 0.955843i \(-0.405054\pi\)
0.293878 + 0.955843i \(0.405054\pi\)
\(444\) 0 0
\(445\) −1.56570 2.71187i −0.0742213 0.128555i
\(446\) 0 0
\(447\) 24.1658i 1.14300i
\(448\) 0 0
\(449\) 15.8252 + 9.13666i 0.746835 + 0.431186i 0.824549 0.565790i \(-0.191429\pi\)
−0.0777140 + 0.996976i \(0.524762\pi\)
\(450\) 0 0
\(451\) 6.39053 11.0687i 0.300918 0.521206i
\(452\) 0 0
\(453\) 15.9117 9.18665i 0.747599 0.431627i
\(454\) 0 0
\(455\) −7.12476 + 1.51118i −0.334014 + 0.0708452i
\(456\) 0 0
\(457\) 23.4033 13.5119i 1.09476 0.632060i 0.159921 0.987130i \(-0.448876\pi\)
0.934840 + 0.355069i \(0.115543\pi\)
\(458\) 0 0
\(459\) −15.3857 + 26.6488i −0.718142 + 1.24386i
\(460\) 0 0
\(461\) −18.4766 10.6675i −0.860540 0.496833i 0.00365309 0.999993i \(-0.498837\pi\)
−0.864193 + 0.503160i \(0.832171\pi\)
\(462\) 0 0
\(463\) 22.2481i 1.03396i 0.855998 + 0.516979i \(0.172943\pi\)
−0.855998 + 0.516979i \(0.827057\pi\)
\(464\) 0 0
\(465\) 4.96007 + 8.59109i 0.230018 + 0.398402i
\(466\) 0 0
\(467\) 39.4841 1.82711 0.913553 0.406719i \(-0.133327\pi\)
0.913553 + 0.406719i \(0.133327\pi\)
\(468\) 0 0
\(469\) −11.1253 −0.513718
\(470\) 0 0
\(471\) −6.79270 11.7653i −0.312991 0.542117i
\(472\) 0 0
\(473\) 4.57444i 0.210333i
\(474\) 0 0
\(475\) −0.561076 0.323937i −0.0257439 0.0148633i
\(476\) 0 0
\(477\) −9.84025 + 17.0438i −0.450554 + 0.780382i
\(478\) 0 0
\(479\) −32.4927 + 18.7597i −1.48463 + 0.857151i −0.999847 0.0174844i \(-0.994434\pi\)
−0.484782 + 0.874635i \(0.661101\pi\)
\(480\) 0 0
\(481\) −5.75181 1.87164i −0.262260 0.0853394i
\(482\) 0 0
\(483\) 4.38820 2.53353i 0.199670 0.115279i
\(484\) 0 0
\(485\) −1.55136 + 2.68703i −0.0704436 + 0.122012i
\(486\) 0 0
\(487\) 4.59317 + 2.65187i 0.208136 + 0.120168i 0.600445 0.799666i \(-0.294990\pi\)
−0.392309 + 0.919834i \(0.628323\pi\)
\(488\) 0 0
\(489\) 12.8815i 0.582521i
\(490\) 0 0
\(491\) 16.3430 + 28.3069i 0.737550 + 1.27747i 0.953596 + 0.301090i \(0.0973506\pi\)
−0.216046 + 0.976383i \(0.569316\pi\)
\(492\) 0 0
\(493\) −59.9366 −2.69941
\(494\) 0 0
\(495\) −23.1499 −1.04051
\(496\) 0 0
\(497\) 6.22739 + 10.7862i 0.279337 + 0.483825i
\(498\) 0 0
\(499\) 11.9976i 0.537086i 0.963268 + 0.268543i \(0.0865421\pi\)
−0.963268 + 0.268543i \(0.913458\pi\)
\(500\) 0 0
\(501\) −16.4168 9.47827i −0.733451 0.423458i
\(502\) 0 0
\(503\) 18.0640 31.2878i 0.805435 1.39505i −0.110563 0.993869i \(-0.535265\pi\)
0.915997 0.401184i \(-0.131401\pi\)
\(504\) 0 0
\(505\) −27.6015 + 15.9357i −1.22825 + 0.709131i
\(506\) 0 0
\(507\) 12.1169 5.38219i 0.538131 0.239031i
\(508\) 0 0
\(509\) −7.09320 + 4.09526i −0.314401 + 0.181519i −0.648894 0.760879i \(-0.724768\pi\)
0.334493 + 0.942398i \(0.391435\pi\)
\(510\) 0 0
\(511\) 5.72705 9.91954i 0.253350 0.438815i
\(512\) 0 0
\(513\) 3.08649 + 1.78198i 0.136272 + 0.0786765i
\(514\) 0 0
\(515\) 0.133675i 0.00589042i
\(516\) 0 0
\(517\) 15.3895 + 26.6554i 0.676830 + 1.17230i
\(518\) 0 0
\(519\) 7.35272 0.322749
\(520\) 0 0
\(521\) −22.0138 −0.964442 −0.482221 0.876050i \(-0.660170\pi\)
−0.482221 + 0.876050i \(0.660170\pi\)
\(522\) 0 0
\(523\) 3.45843 + 5.99017i 0.151226 + 0.261932i 0.931679 0.363284i \(-0.118344\pi\)
−0.780452 + 0.625215i \(0.785011\pi\)
\(524\) 0 0
\(525\) 0.937834i 0.0409304i
\(526\) 0 0
\(527\) 25.3672 + 14.6457i 1.10501 + 0.637979i
\(528\) 0 0
\(529\) −0.841838 + 1.45811i −0.0366016 + 0.0633959i
\(530\) 0 0
\(531\) −9.87544 + 5.70159i −0.428557 + 0.247428i
\(532\) 0 0
\(533\) 7.49391 + 2.43852i 0.324597 + 0.105624i
\(534\) 0 0
\(535\) −8.58052 + 4.95396i −0.370968 + 0.214179i
\(536\) 0 0
\(537\) 10.5773 18.3204i 0.456443 0.790583i
\(538\) 0 0
\(539\) −5.06414 2.92378i −0.218128 0.125936i
\(540\) 0 0
\(541\) 15.6696i 0.673690i 0.941560 + 0.336845i \(0.109360\pi\)
−0.941560 + 0.336845i \(0.890640\pi\)
\(542\) 0 0
\(543\) −7.78225 13.4793i −0.333968 0.578450i
\(544\) 0 0
\(545\) 27.7733 1.18968
\(546\) 0 0
\(547\) 8.28824 0.354379 0.177190 0.984177i \(-0.443299\pi\)
0.177190 + 0.984177i \(0.443299\pi\)
\(548\) 0 0
\(549\) 6.82528 + 11.8217i 0.291296 + 0.504539i
\(550\) 0 0
\(551\) 6.94192i 0.295736i
\(552\) 0 0
\(553\) −0.910042 0.525413i −0.0386989 0.0223428i
\(554\) 0 0
\(555\) 1.72808 2.99312i 0.0733527 0.127051i
\(556\) 0 0
\(557\) 33.9659 19.6102i 1.43918 0.830911i 0.441387 0.897317i \(-0.354486\pi\)
0.997793 + 0.0664056i \(0.0211531\pi\)
\(558\) 0 0
\(559\) −2.75918 + 0.585229i −0.116701 + 0.0247525i
\(560\) 0 0
\(561\) 31.4185 18.1395i 1.32649 0.765848i
\(562\) 0 0
\(563\) 14.4692 25.0613i 0.609803 1.05621i −0.381470 0.924381i \(-0.624582\pi\)
0.991273 0.131828i \(-0.0420846\pi\)
\(564\) 0 0
\(565\) 5.12845 + 2.96091i 0.215756 + 0.124567i
\(566\) 0 0
\(567\) 0.720474i 0.0302571i
\(568\) 0 0
\(569\) −14.8904 25.7910i −0.624240 1.08122i −0.988687 0.149991i \(-0.952075\pi\)
0.364448 0.931224i \(-0.381258\pi\)
\(570\) 0 0
\(571\) −2.44165 −0.102180 −0.0510900 0.998694i \(-0.516270\pi\)
−0.0510900 + 0.998694i \(0.516270\pi\)
\(572\) 0 0
\(573\) 3.25473 0.135968
\(574\) 0 0
\(575\) −2.28429 3.95650i −0.0952613 0.164997i
\(576\) 0 0
\(577\) 27.7941i 1.15708i −0.815652 0.578542i \(-0.803622\pi\)
0.815652 0.578542i \(-0.196378\pi\)
\(578\) 0 0
\(579\) −9.22414 5.32556i −0.383342 0.221323i
\(580\) 0 0
\(581\) 1.52204 2.63626i 0.0631450 0.109370i
\(582\) 0 0
\(583\) 50.8536 29.3603i 2.10614 1.21598i
\(584\) 0 0
\(585\) −2.96167 13.9634i −0.122450 0.577314i
\(586\) 0 0
\(587\) −18.2317 + 10.5261i −0.752502 + 0.434457i −0.826597 0.562794i \(-0.809726\pi\)
0.0740954 + 0.997251i \(0.476393\pi\)
\(588\) 0 0
\(589\) 1.69628 2.93805i 0.0698942 0.121060i
\(590\) 0 0
\(591\) 3.04676 + 1.75905i 0.125327 + 0.0723576i
\(592\) 0 0
\(593\) 8.12990i 0.333855i 0.985969 + 0.166927i \(0.0533846\pi\)
−0.985969 + 0.166927i \(0.946615\pi\)
\(594\) 0 0
\(595\) −6.14402 10.6418i −0.251880 0.436269i
\(596\) 0 0
\(597\) 5.09549 0.208545
\(598\) 0 0
\(599\) −18.1382 −0.741105 −0.370552 0.928812i \(-0.620832\pi\)
−0.370552 + 0.928812i \(0.620832\pi\)
\(600\) 0 0
\(601\) 8.72037 + 15.1041i 0.355711 + 0.616110i 0.987239 0.159243i \(-0.0509053\pi\)
−0.631528 + 0.775353i \(0.717572\pi\)
\(602\) 0 0
\(603\) 21.8038i 0.887918i
\(604\) 0 0
\(605\) 40.5752 + 23.4261i 1.64962 + 0.952406i
\(606\) 0 0
\(607\) −3.03573 + 5.25803i −0.123216 + 0.213417i −0.921034 0.389481i \(-0.872654\pi\)
0.797818 + 0.602898i \(0.205988\pi\)
\(608\) 0 0
\(609\) 8.70252 5.02440i 0.352644 0.203599i
\(610\) 0 0
\(611\) −14.1090 + 12.6927i −0.570787 + 0.513490i
\(612\) 0 0
\(613\) −12.3808 + 7.14804i −0.500054 + 0.288707i −0.728736 0.684795i \(-0.759892\pi\)
0.228682 + 0.973501i \(0.426559\pi\)
\(614\) 0 0
\(615\) −2.25147 + 3.89967i −0.0907882 + 0.157250i
\(616\) 0 0
\(617\) 28.5296 + 16.4716i 1.14856 + 0.663120i 0.948535 0.316672i \(-0.102565\pi\)
0.200022 + 0.979791i \(0.435899\pi\)
\(618\) 0 0
\(619\) 14.2687i 0.573506i 0.958005 + 0.286753i \(0.0925759\pi\)
−0.958005 + 0.286753i \(0.907424\pi\)
\(620\) 0 0
\(621\) 12.5659 + 21.7647i 0.504251 + 0.873389i
\(622\) 0 0
\(623\) 1.55019 0.0621070
\(624\) 0 0
\(625\) −19.5567 −0.782267
\(626\) 0 0
\(627\) −2.10093 3.63891i −0.0839030 0.145324i
\(628\) 0 0
\(629\) 10.2051i 0.406903i
\(630\) 0 0
\(631\) −20.4636 11.8147i −0.814644 0.470335i 0.0339220 0.999424i \(-0.489200\pi\)
−0.848566 + 0.529090i \(0.822534\pi\)
\(632\) 0 0
\(633\) −11.5767 + 20.0514i −0.460131 + 0.796970i
\(634\) 0 0
\(635\) 10.0321 5.79202i 0.398110 0.229849i
\(636\) 0 0
\(637\) 1.11567 3.42860i 0.0442043 0.135846i
\(638\) 0 0
\(639\) −21.1391 + 12.2047i −0.836251 + 0.482810i
\(640\) 0 0
\(641\) −18.5168 + 32.0720i −0.731368 + 1.26677i 0.224931 + 0.974375i \(0.427784\pi\)
−0.956299 + 0.292392i \(0.905549\pi\)
\(642\) 0 0
\(643\) −28.9127 16.6927i −1.14021 0.658298i −0.193724 0.981056i \(-0.562057\pi\)
−0.946481 + 0.322758i \(0.895390\pi\)
\(644\) 0 0
\(645\) 1.61164i 0.0634583i
\(646\) 0 0
\(647\) −12.1505 21.0454i −0.477687 0.827379i 0.521986 0.852954i \(-0.325191\pi\)
−0.999673 + 0.0255756i \(0.991858\pi\)
\(648\) 0 0
\(649\) 34.0236 1.33554
\(650\) 0 0
\(651\) −4.91093 −0.192474
\(652\) 0 0
\(653\) 2.73619 + 4.73922i 0.107075 + 0.185460i 0.914584 0.404395i \(-0.132518\pi\)
−0.807509 + 0.589856i \(0.799185\pi\)
\(654\) 0 0
\(655\) 37.5828i 1.46848i
\(656\) 0 0
\(657\) 19.4407 + 11.2241i 0.758454 + 0.437893i
\(658\) 0 0
\(659\) −0.668430 + 1.15775i −0.0260383 + 0.0450997i −0.878751 0.477281i \(-0.841623\pi\)
0.852713 + 0.522380i \(0.174956\pi\)
\(660\) 0 0
\(661\) 36.5902 21.1254i 1.42319 0.821682i 0.426624 0.904429i \(-0.359703\pi\)
0.996571 + 0.0827471i \(0.0263694\pi\)
\(662\) 0 0
\(663\) 14.9607 + 16.6301i 0.581026 + 0.645859i
\(664\) 0 0
\(665\) −1.23254 + 0.711606i −0.0477958 + 0.0275949i
\(666\) 0 0
\(667\) −24.4759 + 42.3935i −0.947711 + 1.64148i
\(668\) 0 0
\(669\) 7.79775 + 4.50204i 0.301479 + 0.174059i
\(670\) 0 0
\(671\) 40.7292i 1.57233i
\(672\) 0 0
\(673\) −1.50029 2.59858i −0.0578320 0.100168i 0.835660 0.549247i \(-0.185085\pi\)
−0.893492 + 0.449079i \(0.851752\pi\)
\(674\) 0 0
\(675\) −4.65150 −0.179036
\(676\) 0 0
\(677\) −8.36881 −0.321639 −0.160820 0.986984i \(-0.551414\pi\)
−0.160820 + 0.986984i \(0.551414\pi\)
\(678\) 0 0
\(679\) −0.767994 1.33021i −0.0294729 0.0510486i
\(680\) 0 0
\(681\) 16.1038i 0.617100i
\(682\) 0 0
\(683\) 27.4304 + 15.8369i 1.04959 + 0.605984i 0.922536 0.385911i \(-0.126113\pi\)
0.127059 + 0.991895i \(0.459446\pi\)
\(684\) 0 0
\(685\) −13.3279 + 23.0846i −0.509233 + 0.882017i
\(686\) 0 0
\(687\) 6.97457 4.02677i 0.266097 0.153631i
\(688\) 0 0
\(689\) 24.2153 + 26.9173i 0.922528 + 1.02547i
\(690\) 0 0
\(691\) 9.92153 5.72820i 0.377433 0.217911i −0.299268 0.954169i \(-0.596742\pi\)
0.676701 + 0.736258i \(0.263409\pi\)
\(692\) 0 0
\(693\) 5.73014 9.92489i 0.217670 0.377015i
\(694\) 0 0
\(695\) 21.1044 + 12.1846i 0.800534 + 0.462189i
\(696\) 0 0
\(697\) 13.2960i 0.503622i
\(698\) 0 0
\(699\) 6.57033 + 11.3801i 0.248513 + 0.430436i
\(700\) 0 0
\(701\) 34.2672 1.29426 0.647128 0.762382i \(-0.275970\pi\)
0.647128 + 0.762382i \(0.275970\pi\)
\(702\) 0 0
\(703\) −1.18196 −0.0445786
\(704\) 0 0
\(705\) −5.42194 9.39107i −0.204202 0.353688i
\(706\) 0 0
\(707\) 15.7779i 0.593388i
\(708\) 0 0
\(709\) 33.3838 + 19.2742i 1.25376 + 0.723857i 0.971853 0.235586i \(-0.0757010\pi\)
0.281903 + 0.959443i \(0.409034\pi\)
\(710\) 0 0
\(711\) 1.02972 1.78353i 0.0386177 0.0668878i
\(712\) 0 0
\(713\) 20.7180 11.9616i 0.775896 0.447964i
\(714\) 0 0
\(715\) −13.1784 + 40.4991i −0.492845 + 1.51458i
\(716\) 0 0
\(717\) −14.0447 + 8.10872i −0.524509 + 0.302826i
\(718\) 0 0
\(719\) −16.6621 + 28.8596i −0.621392 + 1.07628i 0.367834 + 0.929891i \(0.380099\pi\)
−0.989227 + 0.146392i \(0.953234\pi\)
\(720\) 0 0
\(721\) 0.0573094 + 0.0330876i 0.00213432 + 0.00123225i
\(722\) 0 0
\(723\) 24.7061i 0.918829i
\(724\) 0 0
\(725\) −4.53011 7.84639i −0.168244 0.291408i
\(726\) 0 0
\(727\) 1.38332 0.0513045 0.0256523 0.999671i \(-0.491834\pi\)
0.0256523 + 0.999671i \(0.491834\pi\)
\(728\) 0 0
\(729\) 14.0651 0.520930
\(730\) 0 0
\(731\) −2.37937 4.12119i −0.0880042 0.152428i
\(732\) 0 0
\(733\) 1.82716i 0.0674877i −0.999431 0.0337439i \(-0.989257\pi\)
0.999431 0.0337439i \(-0.0107430\pi\)
\(734\) 0 0
\(735\) 1.78417 + 1.03009i 0.0658100 + 0.0379954i
\(736\) 0 0
\(737\) −32.5279 + 56.3400i −1.19818 + 2.07531i
\(738\) 0 0
\(739\) 6.76651 3.90665i 0.248910 0.143708i −0.370355 0.928890i \(-0.620764\pi\)
0.619265 + 0.785182i \(0.287431\pi\)
\(740\) 0 0
\(741\) 1.92611 1.73276i 0.0707574 0.0636546i
\(742\) 0 0
\(743\) 14.3038 8.25828i 0.524754 0.302967i −0.214123 0.976807i \(-0.568689\pi\)
0.738878 + 0.673840i \(0.235356\pi\)
\(744\) 0 0
\(745\) 23.9318 41.4510i 0.876792 1.51865i
\(746\) 0 0
\(747\) 5.16663 + 2.98296i 0.189037 + 0.109141i
\(748\) 0 0
\(749\) 4.90488i 0.179221i
\(750\) 0 0
\(751\) 3.63615 + 6.29801i 0.132685 + 0.229817i 0.924711 0.380670i \(-0.124307\pi\)
−0.792026 + 0.610488i \(0.790973\pi\)
\(752\) 0 0
\(753\) −24.1066 −0.878494
\(754\) 0 0
\(755\) −36.3907 −1.32439
\(756\) 0 0
\(757\) −10.0239 17.3618i −0.364324 0.631027i 0.624344 0.781150i \(-0.285366\pi\)
−0.988667 + 0.150123i \(0.952033\pi\)
\(758\) 0 0
\(759\) 29.6299i 1.07550i
\(760\) 0 0
\(761\) −36.2244 20.9142i −1.31313 0.758138i −0.330520 0.943799i \(-0.607224\pi\)
−0.982614 + 0.185661i \(0.940557\pi\)
\(762\) 0 0
\(763\) −6.87455 + 11.9071i −0.248875 + 0.431065i
\(764\) 0 0
\(765\) 20.8561 12.0413i 0.754054 0.435353i
\(766\) 0 0
\(767\) 4.35279 + 20.5221i 0.157170 + 0.741010i
\(768\) 0 0
\(769\) 12.4644 7.19634i 0.449479 0.259507i −0.258131 0.966110i \(-0.583107\pi\)
0.707610 + 0.706603i \(0.249773\pi\)
\(770\) 0 0
\(771\) 4.45521 7.71664i 0.160450 0.277908i
\(772\) 0 0
\(773\) −0.184965 0.106790i −0.00665272 0.00384095i 0.496670 0.867939i \(-0.334556\pi\)
−0.503323 + 0.864099i \(0.667889\pi\)
\(774\) 0 0
\(775\) 4.42780i 0.159051i
\(776\) 0 0
\(777\) 0.855478 + 1.48173i 0.0306901 + 0.0531568i
\(778\) 0 0
\(779\) 1.53995 0.0551746
\(780\) 0 0
\(781\) 72.8302 2.60607
\(782\) 0 0
\(783\) 24.9202 + 43.1631i 0.890576 + 1.54252i
\(784\) 0 0
\(785\) 26.9077i 0.960376i
\(786\) 0 0
\(787\) 11.5580 + 6.67299i 0.411996 + 0.237866i 0.691647 0.722236i \(-0.256885\pi\)
−0.279651 + 0.960102i \(0.590219\pi\)
\(788\) 0 0
\(789\) 3.78465 6.55520i 0.134737 0.233371i
\(790\) 0 0
\(791\) −2.53882 + 1.46579i −0.0902702 + 0.0521175i
\(792\) 0 0
\(793\) 24.5667 5.21066i 0.872389 0.185036i
\(794\) 0 0
\(795\) −17.9164 + 10.3441i −0.635430 + 0.366866i
\(796\) 0 0
\(797\) 21.3259 36.9376i 0.755403 1.30840i −0.189770 0.981829i \(-0.560774\pi\)
0.945174 0.326569i \(-0.105892\pi\)
\(798\) 0 0
\(799\) −27.7293 16.0095i −0.980992 0.566376i
\(800\) 0 0
\(801\) 3.03812i 0.107347i
\(802\) 0 0
\(803\) −33.4893 58.0052i −1.18181 2.04696i
\(804\) 0 0
\(805\) −10.0360 −0.353721
\(806\) 0 0
\(807\) 28.8576 1.01584
\(808\) 0 0
\(809\) −19.1725 33.2077i −0.674067 1.16752i −0.976741 0.214425i \(-0.931212\pi\)
0.302673 0.953094i \(-0.402121\pi\)
\(810\) 0 0
\(811\) 16.6127i 0.583352i 0.956517 + 0.291676i \(0.0942129\pi\)
−0.956517 + 0.291676i \(0.905787\pi\)
\(812\) 0 0
\(813\) −10.4472 6.03167i −0.366398 0.211540i
\(814\) 0 0
\(815\) 12.7567 22.0953i 0.446849 0.773965i
\(816\) 0 0
\(817\) −0.477320 + 0.275581i −0.0166993 + 0.00964135i
\(818\) 0 0
\(819\) 6.71950 + 2.18652i 0.234798 + 0.0764033i
\(820\) 0 0
\(821\) −14.8271 + 8.56041i −0.517468 + 0.298760i −0.735898 0.677092i \(-0.763240\pi\)
0.218430 + 0.975853i \(0.429906\pi\)
\(822\) 0 0
\(823\) 18.9613 32.8419i 0.660948 1.14480i −0.319419 0.947614i \(-0.603488\pi\)
0.980367 0.197182i \(-0.0631789\pi\)
\(824\) 0 0
\(825\) 4.74932 + 2.74202i 0.165350 + 0.0954650i
\(826\) 0 0
\(827\) 45.5918i 1.58538i −0.609624 0.792691i \(-0.708679\pi\)
0.609624 0.792691i \(-0.291321\pi\)
\(828\) 0 0
\(829\) −1.04770 1.81467i −0.0363882 0.0630262i 0.847258 0.531182i \(-0.178252\pi\)
−0.883646 + 0.468156i \(0.844919\pi\)
\(830\) 0 0
\(831\) −0.216705 −0.00751742
\(832\) 0 0
\(833\) 6.08315 0.210769
\(834\) 0 0
\(835\) 18.7729 + 32.5157i 0.649665 + 1.12525i
\(836\) 0 0
\(837\) 24.3574i 0.841915i
\(838\) 0 0
\(839\) 14.3831 + 8.30408i 0.496560 + 0.286689i 0.727292 0.686329i \(-0.240779\pi\)
−0.230732 + 0.973017i \(0.574112\pi\)
\(840\) 0 0
\(841\) −34.0398 + 58.9586i −1.17378 + 2.03305i
\(842\) 0 0
\(843\) −17.8704 + 10.3175i −0.615489 + 0.355353i
\(844\) 0 0
\(845\) −26.1139 2.76762i −0.898346 0.0952091i
\(846\) 0 0
\(847\) −20.0866 + 11.5970i −0.690184 + 0.398478i
\(848\) 0 0
\(849\) 10.3593 17.9429i 0.355532 0.615799i
\(850\) 0 0
\(851\) −7.21811 4.16738i −0.247434 0.142856i
\(852\) 0 0
\(853\) 12.2314i 0.418795i 0.977831 + 0.209397i \(0.0671502\pi\)
−0.977831 + 0.209397i \(0.932850\pi\)
\(854\) 0 0
\(855\) −1.39463 2.41557i −0.0476954 0.0826109i
\(856\) 0 0
\(857\) 50.3302 1.71925 0.859623 0.510929i \(-0.170699\pi\)
0.859623 + 0.510929i \(0.170699\pi\)
\(858\) 0 0
\(859\) 51.4997 1.75715 0.878573 0.477608i \(-0.158496\pi\)
0.878573 + 0.477608i \(0.158496\pi\)
\(860\) 0 0
\(861\) −1.11458 1.93052i −0.0379849 0.0657918i
\(862\) 0 0
\(863\) 2.82545i 0.0961793i −0.998843 0.0480896i \(-0.984687\pi\)
0.998843 0.0480896i \(-0.0153133\pi\)
\(864\) 0 0
\(865\) −12.6120 7.28151i −0.428819 0.247579i
\(866\) 0 0
\(867\) −10.2012 + 17.6691i −0.346453 + 0.600073i
\(868\) 0 0
\(869\) −5.32153 + 3.07239i −0.180520 + 0.104224i
\(870\) 0 0
\(871\) −38.1442 12.4121i −1.29247 0.420569i
\(872\) 0 0
\(873\) 2.60699 1.50514i 0.0882331 0.0509414i
\(874\) 0 0
\(875\) 5.97878 10.3556i 0.202120 0.350082i
\(876\) 0 0
\(877\) 9.67508 + 5.58591i 0.326704 + 0.188623i 0.654377 0.756169i \(-0.272931\pi\)
−0.327673 + 0.944791i \(0.606264\pi\)
\(878\) 0 0
\(879\) 13.9528i 0.470616i
\(880\) 0 0
\(881\) −10.8598 18.8098i −0.365877 0.633718i 0.623039 0.782190i \(-0.285898\pi\)
−0.988916 + 0.148473i \(0.952564\pi\)
\(882\) 0 0
\(883\) −48.0644 −1.61750 −0.808748 0.588155i \(-0.799854\pi\)
−0.808748 + 0.588155i \(0.799854\pi\)
\(884\) 0 0
\(885\) −11.9870 −0.402938
\(886\) 0 0
\(887\) −16.6014 28.7544i −0.557420 0.965480i −0.997711 0.0676244i \(-0.978458\pi\)
0.440291 0.897855i \(-0.354875\pi\)
\(888\) 0 0
\(889\) 5.73463i 0.192333i
\(890\) 0 0
\(891\) 3.64858 + 2.10651i 0.122232 + 0.0705707i
\(892\) 0 0
\(893\) −1.85424 + 3.21163i −0.0620497 + 0.107473i
\(894\) 0 0
\(895\) −36.2859 + 20.9497i −1.21290 + 0.700271i
\(896\) 0 0
\(897\) 17.8719 3.79068i 0.596727 0.126567i
\(898\) 0 0
\(899\) 41.0873 23.7218i 1.37034 0.791165i
\(900\) 0 0
\(901\) −30.5432 + 52.9024i −1.01754 + 1.76243i
\(902\) 0 0
\(903\) 0.690947 + 0.398918i 0.0229933 + 0.0132752i
\(904\) 0 0
\(905\) 30.8275i 1.02474i
\(906\) 0 0
\(907\) −8.44403 14.6255i −0.280379 0.485631i 0.691099 0.722760i \(-0.257127\pi\)
−0.971478 + 0.237129i \(0.923794\pi\)
\(908\) 0 0
\(909\) 30.9221 1.02562
\(910\) 0 0
\(911\) 3.77644 0.125119 0.0625595 0.998041i \(-0.480074\pi\)
0.0625595 + 0.998041i \(0.480074\pi\)
\(912\) 0 0
\(913\) −8.90024 15.4157i −0.294555 0.510184i
\(914\) 0 0
\(915\) 14.3494i 0.474378i
\(916\) 0 0
\(917\) −16.1126 9.30260i −0.532084 0.307199i
\(918\) 0 0
\(919\) 24.8491 43.0399i 0.819696 1.41976i −0.0862102 0.996277i \(-0.527476\pi\)
0.905906 0.423478i \(-0.139191\pi\)
\(920\) 0 0
\(921\) −8.09989 + 4.67647i −0.266900 + 0.154095i
\(922\) 0 0
\(923\) 9.31748 + 43.9291i 0.306689 + 1.44594i
\(924\) 0 0
\(925\) 1.33596 0.771318i 0.0439262 0.0253608i
\(926\) 0 0
\(927\) −0.0648464 + 0.112317i −0.00212983 + 0.00368898i
\(928\) 0 0
\(929\) −35.5455 20.5222i −1.16621 0.673311i −0.213425 0.976959i \(-0.568462\pi\)
−0.952784 + 0.303648i \(0.901795\pi\)
\(930\) 0 0
\(931\) 0.704556i 0.0230909i
\(932\) 0 0
\(933\) 10.0470 + 17.4018i 0.328923 + 0.569711i
\(934\) 0 0
\(935\) −71.8551 −2.34991
\(936\) 0 0
\(937\) 24.0211 0.784735 0.392368 0.919808i \(-0.371656\pi\)
0.392368 + 0.919808i \(0.371656\pi\)
\(938\) 0 0
\(939\) 9.57579 + 16.5857i 0.312494 + 0.541255i
\(940\) 0 0
\(941\) 30.9571i 1.00917i −0.863361 0.504586i \(-0.831645\pi\)
0.863361 0.504586i \(-0.168355\pi\)
\(942\) 0 0
\(943\) 9.40433 + 5.42959i 0.306247 + 0.176812i
\(944\) 0 0
\(945\) −5.10907 + 8.84917i −0.166198 + 0.287864i
\(946\) 0 0
\(947\) −49.4060 + 28.5246i −1.60548 + 0.926924i −0.615115 + 0.788437i \(0.710891\pi\)
−0.990364 + 0.138487i \(0.955776\pi\)
\(948\) 0 0
\(949\) 30.7027 27.6207i 0.996650 0.896604i
\(950\) 0 0
\(951\) 14.6354 8.44977i 0.474586 0.274002i
\(952\) 0 0
\(953\) −21.7078 + 37.5989i −0.703183 + 1.21795i 0.264160 + 0.964479i \(0.414905\pi\)
−0.967343 + 0.253470i \(0.918428\pi\)
\(954\) 0 0
\(955\) −5.58277 3.22321i −0.180654 0.104301i
\(956\) 0 0
\(957\) 58.7610i 1.89947i
\(958\) 0 0
\(959\) −6.59793 11.4279i −0.213058 0.369028i
\(960\) 0 0
\(961\) 7.81399 0.252064
\(962\) 0 0
\(963\) 9.61278 0.309767
\(964\) 0 0
\(965\) 10.5480 + 18.2696i 0.339551 + 0.588119i
\(966\) 0 0
\(967\) 26.4842i 0.851675i −0.904800 0.425837i \(-0.859980\pi\)
0.904800 0.425837i \(-0.140020\pi\)
\(968\) 0 0
\(969\) 3.78552 + 2.18557i 0.121608 + 0.0702106i
\(970\) 0 0
\(971\) 0.686676 1.18936i 0.0220365 0.0381683i −0.854797 0.518963i \(-0.826318\pi\)
0.876833 + 0.480794i \(0.159652\pi\)
\(972\) 0 0
\(973\) −10.4476 + 6.03195i −0.334936 + 0.193375i
\(974\) 0 0
\(975\) −1.04631 + 3.21546i −0.0335087 + 0.102977i
\(976\) 0 0
\(977\) 5.57241 3.21723i 0.178277 0.102928i −0.408206 0.912890i \(-0.633845\pi\)
0.586483 + 0.809962i \(0.300512\pi\)
\(978\) 0 0
\(979\) 4.53241 7.85036i 0.144856 0.250899i
\(980\) 0 0
\(981\) −23.3359 13.4730i −0.745058 0.430159i
\(982\) 0 0
\(983\) 25.2739i 0.806113i 0.915175 + 0.403056i \(0.132052\pi\)
−0.915175 + 0.403056i \(0.867948\pi\)
\(984\) 0 0
\(985\) −3.48403 6.03451i −0.111010 0.192276i
\(986\) 0 0
\(987\) 5.36822 0.170872
\(988\) 0 0
\(989\) −3.88659 −0.123586
\(990\) 0 0
\(991\) −24.2738 42.0434i −0.771082 1.33555i −0.936970 0.349409i \(-0.886382\pi\)
0.165888 0.986145i \(-0.446951\pi\)
\(992\) 0 0
\(993\) 19.7728i 0.627469i
\(994\) 0 0
\(995\) −8.74018 5.04614i −0.277082 0.159973i
\(996\) 0 0
\(997\) 9.21146 15.9547i 0.291730 0.505291i −0.682489 0.730896i \(-0.739102\pi\)
0.974219 + 0.225605i \(0.0724358\pi\)
\(998\) 0 0
\(999\) −7.34915 + 4.24303i −0.232517 + 0.134244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.bm.c.673.5 yes 24
4.3 odd 2 1456.2.cc.g.673.8 24
13.2 odd 12 9464.2.a.bl.1.8 12
13.4 even 6 inner 728.2.bm.c.225.5 24
13.11 odd 12 9464.2.a.bm.1.8 12
52.43 odd 6 1456.2.cc.g.225.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.c.225.5 24 13.4 even 6 inner
728.2.bm.c.673.5 yes 24 1.1 even 1 trivial
1456.2.cc.g.225.8 24 52.43 odd 6
1456.2.cc.g.673.8 24 4.3 odd 2
9464.2.a.bl.1.8 12 13.2 odd 12
9464.2.a.bm.1.8 12 13.11 odd 12