Properties

Label 728.2.a
Level $728$
Weight $2$
Character orbit 728.a
Rep. character $\chi_{728}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $9$
Sturm bound $224$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(224\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(728))\).

Total New Old
Modular forms 120 18 102
Cusp forms 105 18 87
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(11\)\(2\)\(9\)\(10\)\(2\)\(8\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(17\)\(2\)\(15\)\(15\)\(2\)\(13\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(16\)\(2\)\(14\)\(14\)\(2\)\(12\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(16\)\(2\)\(14\)\(14\)\(2\)\(12\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(19\)\(4\)\(15\)\(17\)\(4\)\(13\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(13\)\(1\)\(12\)\(11\)\(1\)\(10\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(14\)\(1\)\(13\)\(12\)\(1\)\(11\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(14\)\(4\)\(10\)\(12\)\(4\)\(8\)\(2\)\(0\)\(2\)
Plus space\(+\)\(54\)\(6\)\(48\)\(47\)\(6\)\(41\)\(7\)\(0\)\(7\)
Minus space\(-\)\(66\)\(12\)\(54\)\(58\)\(12\)\(46\)\(8\)\(0\)\(8\)

Trace form

\( 18 q - 4 q^{3} + 30 q^{9} + 8 q^{11} + 24 q^{15} + 12 q^{17} - 12 q^{19} - 4 q^{21} + 10 q^{25} + 8 q^{27} + 24 q^{33} - 12 q^{37} + 4 q^{41} - 12 q^{43} + 24 q^{45} + 8 q^{47} + 18 q^{49} - 32 q^{51} + 16 q^{53}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(728))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 13
728.2.a.a 728.a 1.a $1$ $5.813$ \(\Q\) None 728.2.a.a \(0\) \(-2\) \(-1\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\)
728.2.a.b 728.a 1.a $1$ $5.813$ \(\Q\) None 728.2.a.b \(0\) \(-1\) \(0\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}-2q^{9}+3q^{11}-q^{13}+\cdots\)
728.2.a.c 728.a 1.a $1$ $5.813$ \(\Q\) None 728.2.a.c \(0\) \(0\) \(-1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-q^{7}-3q^{9}+2q^{11}+q^{13}+\cdots\)
728.2.a.d 728.a 1.a $1$ $5.813$ \(\Q\) None 728.2.a.d \(0\) \(2\) \(3\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+3q^{5}+q^{7}+q^{9}-q^{13}+6q^{15}+\cdots\)
728.2.a.e 728.a 1.a $2$ $5.813$ \(\Q(\sqrt{2}) \) None 728.2.a.e \(0\) \(-4\) \(-2\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta )q^{3}+(-1+\beta )q^{5}+q^{7}+\cdots\)
728.2.a.f 728.a 1.a $2$ $5.813$ \(\Q(\sqrt{3}) \) None 728.2.a.f \(0\) \(-2\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}-\beta q^{5}-q^{7}+(1-2\beta )q^{9}+\cdots\)
728.2.a.g 728.a 1.a $2$ $5.813$ \(\Q(\sqrt{17}) \) None 728.2.a.g \(0\) \(1\) \(-1\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-1+\beta )q^{5}-q^{7}+(1+\beta )q^{9}+\cdots\)
728.2.a.h 728.a 1.a $4$ $5.813$ 4.4.183064.1 None 728.2.a.h \(0\) \(1\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+q^{7}+(2+\beta _{2})q^{9}+\cdots\)
728.2.a.i 728.a 1.a $4$ $5.813$ 4.4.64268.1 None 728.2.a.i \(0\) \(1\) \(2\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(1+\beta _{2})q^{5}-q^{7}+(3+\beta _{1}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(728))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(728)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 2}\)