Defining parameters
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(728))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 18 | 102 |
Cusp forms | 105 | 18 | 87 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(11\) | \(2\) | \(9\) | \(10\) | \(2\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(17\) | \(2\) | \(15\) | \(15\) | \(2\) | \(13\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(16\) | \(2\) | \(14\) | \(14\) | \(2\) | \(12\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(16\) | \(2\) | \(14\) | \(14\) | \(2\) | \(12\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(19\) | \(4\) | \(15\) | \(17\) | \(4\) | \(13\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(13\) | \(1\) | \(12\) | \(11\) | \(1\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(14\) | \(1\) | \(13\) | \(12\) | \(1\) | \(11\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(14\) | \(4\) | \(10\) | \(12\) | \(4\) | \(8\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(54\) | \(6\) | \(48\) | \(47\) | \(6\) | \(41\) | \(7\) | \(0\) | \(7\) | |||||
Minus space | \(-\) | \(66\) | \(12\) | \(54\) | \(58\) | \(12\) | \(46\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(728))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(728))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(728)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 2}\)