Properties

Label 728.1.l.e.181.3
Level $728$
Weight $1$
Character 728.181
Analytic conductor $0.363$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,1,Mod(181,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.181"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 728.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.363319329197\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.75712.1

Embedding invariants

Embedding label 181.3
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 728.181
Dual form 728.1.l.e.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.41421 q^{3} -1.00000 q^{4} +1.41421i q^{5} -1.41421i q^{6} +1.00000i q^{7} -1.00000i q^{8} +1.00000 q^{9} -1.41421 q^{10} +1.41421 q^{12} +(-0.707107 + 0.707107i) q^{13} -1.00000 q^{14} -2.00000i q^{15} +1.00000 q^{16} +1.00000i q^{18} -1.41421i q^{19} -1.41421i q^{20} -1.41421i q^{21} -2.00000 q^{23} +1.41421i q^{24} -1.00000 q^{25} +(-0.707107 - 0.707107i) q^{26} -1.00000i q^{28} +2.00000 q^{30} +1.00000i q^{32} -1.41421 q^{35} -1.00000 q^{36} +1.41421 q^{38} +(1.00000 - 1.00000i) q^{39} +1.41421 q^{40} +1.41421 q^{42} +1.41421i q^{45} -2.00000i q^{46} -1.41421 q^{48} -1.00000 q^{49} -1.00000i q^{50} +(0.707107 - 0.707107i) q^{52} +1.00000 q^{56} +2.00000i q^{57} +1.41421i q^{59} +2.00000i q^{60} +1.41421 q^{61} +1.00000i q^{63} -1.00000 q^{64} +(-1.00000 - 1.00000i) q^{65} +2.82843 q^{69} -1.41421i q^{70} +2.00000i q^{71} -1.00000i q^{72} +1.41421 q^{75} +1.41421i q^{76} +(1.00000 + 1.00000i) q^{78} +1.41421i q^{80} -1.00000 q^{81} +1.41421i q^{83} +1.41421i q^{84} -1.41421 q^{90} +(-0.707107 - 0.707107i) q^{91} +2.00000 q^{92} +2.00000 q^{95} -1.41421i q^{96} -1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{9} - 4 q^{14} + 4 q^{16} - 8 q^{23} - 4 q^{25} + 8 q^{30} - 4 q^{36} + 4 q^{39} - 4 q^{49} + 4 q^{56} - 4 q^{64} - 4 q^{65} + 4 q^{78} - 4 q^{81} + 8 q^{92} + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i
\(3\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) −1.00000 −1.00000
\(5\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(6\) 1.41421i 1.41421i
\(7\) 1.00000i 1.00000i
\(8\) 1.00000i 1.00000i
\(9\) 1.00000 1.00000
\(10\) −1.41421 −1.41421
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.41421 1.41421
\(13\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(14\) −1.00000 −1.00000
\(15\) 2.00000i 2.00000i
\(16\) 1.00000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 1.00000i 1.00000i
\(19\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(20\) 1.41421i 1.41421i
\(21\) 1.41421i 1.41421i
\(22\) 0 0
\(23\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(24\) 1.41421i 1.41421i
\(25\) −1.00000 −1.00000
\(26\) −0.707107 0.707107i −0.707107 0.707107i
\(27\) 0 0
\(28\) 1.00000i 1.00000i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 2.00000 2.00000
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) −1.41421 −1.41421
\(36\) −1.00000 −1.00000
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 1.41421 1.41421
\(39\) 1.00000 1.00000i 1.00000 1.00000i
\(40\) 1.41421 1.41421
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 1.41421 1.41421
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 1.41421i 1.41421i
\(46\) 2.00000i 2.00000i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.41421 −1.41421
\(49\) −1.00000 −1.00000
\(50\) 1.00000i 1.00000i
\(51\) 0 0
\(52\) 0.707107 0.707107i 0.707107 0.707107i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 1.00000
\(57\) 2.00000i 2.00000i
\(58\) 0 0
\(59\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(60\) 2.00000i 2.00000i
\(61\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(62\) 0 0
\(63\) 1.00000i 1.00000i
\(64\) −1.00000 −1.00000
\(65\) −1.00000 1.00000i −1.00000 1.00000i
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 2.82843 2.82843
\(70\) 1.41421i 1.41421i
\(71\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000i 1.00000i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 1.41421 1.41421
\(76\) 1.41421i 1.41421i
\(77\) 0 0
\(78\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.41421i 1.41421i
\(81\) −1.00000 −1.00000
\(82\) 0 0
\(83\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 1.41421i 1.41421i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −1.41421 −1.41421
\(91\) −0.707107 0.707107i −0.707107 0.707107i
\(92\) 2.00000 2.00000
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 2.00000
\(96\) 1.41421i 1.41421i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 1.00000i 1.00000i
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(105\) 2.00000 2.00000
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000i 1.00000i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) −2.00000 −2.00000
\(115\) 2.82843i 2.82843i
\(116\) 0 0
\(117\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(118\) −1.41421 −1.41421
\(119\) 0 0
\(120\) −2.00000 −2.00000
\(121\) −1.00000 −1.00000
\(122\) 1.41421i 1.41421i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −1.00000 −1.00000
\(127\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(128\) 1.00000i 1.00000i
\(129\) 0 0
\(130\) 1.00000 1.00000i 1.00000 1.00000i
\(131\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) 1.41421 1.41421
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 2.82843i 2.82843i
\(139\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(140\) 1.41421 1.41421
\(141\) 0 0
\(142\) −2.00000 −2.00000
\(143\) 0 0
\(144\) 1.00000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 1.41421 1.41421
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 1.41421i 1.41421i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −1.41421 −1.41421
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(157\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.41421 −1.41421
\(161\) 2.00000i 2.00000i
\(162\) 1.00000i 1.00000i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.41421 −1.41421
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) −1.41421 −1.41421
\(169\) 1.00000i 1.00000i
\(170\) 0 0
\(171\) 1.41421i 1.41421i
\(172\) 0 0
\(173\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 1.00000i 1.00000i
\(176\) 0 0
\(177\) 2.00000i 2.00000i
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.41421i 1.41421i
\(181\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(182\) 0.707107 0.707107i 0.707107 0.707107i
\(183\) −2.00000 −2.00000
\(184\) 2.00000i 2.00000i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 2.00000i 2.00000i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.41421 1.41421
\(193\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(196\) 1.00000 1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.00000i 1.00000i
\(201\) 0 0
\(202\) 1.41421i 1.41421i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.00000 −2.00000
\(208\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(209\) 0 0
\(210\) 2.00000i 2.00000i
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 2.82843i 2.82843i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −1.00000 −1.00000
\(225\) −1.00000 −1.00000
\(226\) 0 0
\(227\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 2.00000i 2.00000i
\(229\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(230\) 2.82843 2.82843
\(231\) 0 0
\(232\) 0 0
\(233\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(234\) −0.707107 0.707107i −0.707107 0.707107i
\(235\) 0 0
\(236\) 1.41421i 1.41421i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 2.00000i 2.00000i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 1.00000i 1.00000i
\(243\) 1.41421 1.41421
\(244\) −1.41421 −1.41421
\(245\) 1.41421i 1.41421i
\(246\) 0 0
\(247\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(248\) 0 0
\(249\) 2.00000i 2.00000i
\(250\) 0 0
\(251\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(252\) 1.00000i 1.00000i
\(253\) 0 0
\(254\) 2.00000i 2.00000i
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(261\) 0 0
\(262\) 1.41421i 1.41421i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.41421i 1.41421i
\(267\) 0 0
\(268\) 0 0
\(269\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(274\) 0 0
\(275\) 0 0
\(276\) −2.82843 −2.82843
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 1.41421i 1.41421i
\(279\) 0 0
\(280\) 1.41421i 1.41421i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 2.00000i 2.00000i
\(285\) −2.82843 −2.82843
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000i 1.00000i
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(294\) 1.41421i 1.41421i
\(295\) −2.00000 −2.00000
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.41421 1.41421i 1.41421 1.41421i
\(300\) −1.41421 −1.41421
\(301\) 0 0
\(302\) 0 0
\(303\) 2.00000 2.00000
\(304\) 1.41421i 1.41421i
\(305\) 2.00000i 2.00000i
\(306\) 0 0
\(307\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) −1.00000 1.00000i −1.00000 1.00000i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 1.41421i 1.41421i
\(315\) −1.41421 −1.41421
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.41421i 1.41421i
\(321\) 0 0
\(322\) 2.00000 2.00000
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0.707107 0.707107i 0.707107 0.707107i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 1.41421i 1.41421i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 1.41421i 1.41421i
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 1.00000 1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 1.41421 1.41421
\(343\) 1.00000i 1.00000i
\(344\) 0 0
\(345\) 4.00000i 4.00000i
\(346\) 1.41421i 1.41421i
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(350\) 1.00000 1.00000
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 2.00000 2.00000
\(355\) −2.82843 −2.82843
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 1.41421 1.41421
\(361\) −1.00000 −1.00000
\(362\) 1.41421i 1.41421i
\(363\) 1.41421 1.41421
\(364\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(365\) 0 0
\(366\) 2.00000i 2.00000i
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −2.00000 −2.00000
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) −2.00000 −2.00000
\(381\) −2.82843 −2.82843
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 1.41421i 1.41421i
\(385\) 0 0
\(386\) −2.00000 −2.00000
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(391\) 0 0
\(392\) 1.00000i 1.00000i
\(393\) −2.00000 −2.00000
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 0 0
\(399\) −2.00000 −2.00000
\(400\) −1.00000 −1.00000
\(401\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.41421 1.41421
\(405\) 1.41421i 1.41421i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.41421 −1.41421
\(414\) 2.00000i 2.00000i
\(415\) −2.00000 −2.00000
\(416\) −0.707107 0.707107i −0.707107 0.707107i
\(417\) 2.00000 2.00000
\(418\) 0 0
\(419\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(420\) −2.00000 −2.00000
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 2.82843 2.82843
\(427\) 1.41421i 1.41421i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.82843i 2.82843i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.00000 −1.00000
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 1.00000i 1.00000i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 1.00000i 1.00000i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −1.41421 −1.41421
\(455\) 1.00000 1.00000i 1.00000 1.00000i
\(456\) 2.00000 2.00000
\(457\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(458\) 1.41421 1.41421
\(459\) 0 0
\(460\) 2.82843i 2.82843i
\(461\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(462\) 0 0
\(463\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 2.00000i 2.00000i
\(467\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0.707107 0.707107i 0.707107 0.707107i
\(469\) 0 0
\(470\) 0 0
\(471\) 2.00000 2.00000
\(472\) 1.41421 1.41421
\(473\) 0 0
\(474\) 0 0
\(475\) 1.41421i 1.41421i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 2.00000 2.00000
\(481\) 0 0
\(482\) 0 0
\(483\) 2.82843i 2.82843i
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) 1.41421i 1.41421i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 1.41421i 1.41421i
\(489\) 0 0
\(490\) 1.41421 1.41421
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(495\) 0 0
\(496\) 0 0
\(497\) −2.00000 −2.00000
\(498\) 2.00000 2.00000
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.41421i 1.41421i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.00000 1.00000
\(505\) 2.00000i 2.00000i
\(506\) 0 0
\(507\) 1.41421i 1.41421i
\(508\) −2.00000 −2.00000
\(509\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 2.00000 2.00000
\(520\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) −1.41421 −1.41421
\(525\) 1.41421i 1.41421i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 3.00000 3.00000
\(530\) 0 0
\(531\) 1.41421i 1.41421i
\(532\) −1.41421 −1.41421
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 1.41421i 1.41421i
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) −2.00000 −2.00000
\(544\) 0 0
\(545\) 0 0
\(546\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 1.41421 1.41421
\(550\) 0 0
\(551\) 0 0
\(552\) 2.82843i 2.82843i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 1.41421 1.41421
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.41421 −1.41421
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.41421i 1.41421i
\(567\) 1.00000i 1.00000i
\(568\) 2.00000 2.00000
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 2.82843i 2.82843i
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.00000 2.00000
\(576\) −1.00000 −1.00000
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 1.00000i 1.00000i
\(579\) 2.82843i 2.82843i
\(580\) 0 0
\(581\) −1.41421 −1.41421
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.00000 1.00000i −1.00000 1.00000i
\(586\) 1.41421 1.41421
\(587\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(588\) −1.41421 −1.41421
\(589\) 0 0
\(590\) 2.00000i 2.00000i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 1.41421i 1.41421i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.41421i 1.41421i
\(606\) 2.00000i 2.00000i
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 1.41421 1.41421
\(609\) 0 0
\(610\) −2.00000 −2.00000
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) −1.41421 −1.41421
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(618\) 0 0
\(619\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 1.00000 1.00000i 1.00000 1.00000i
\(625\) −1.00000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 1.41421 1.41421
\(629\) 0 0
\(630\) 1.41421i 1.41421i
\(631\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.82843i 2.82843i
\(636\) 0 0
\(637\) 0.707107 0.707107i 0.707107 0.707107i
\(638\) 0 0
\(639\) 2.00000i 2.00000i
\(640\) 1.41421 1.41421
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(644\) 2.00000i 2.00000i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.00000i 1.00000i
\(649\) 0 0
\(650\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 2.00000i 2.00000i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 1.41421 1.41421
\(665\) 2.00000i 2.00000i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 1.41421 1.41421
\(673\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(674\) 0 0
\(675\) 0 0
\(676\) 1.00000i 1.00000i
\(677\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.00000i 2.00000i
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 1.41421i 1.41421i
\(685\) 0 0
\(686\) 1.00000 1.00000
\(687\) 2.00000i 2.00000i
\(688\) 0 0
\(689\) 0 0
\(690\) −4.00000 −4.00000
\(691\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(692\) 1.41421 1.41421
\(693\) 0 0
\(694\) 0 0
\(695\) 2.00000i 2.00000i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.41421 −1.41421
\(699\) −2.82843 −2.82843
\(700\) 1.00000i 1.00000i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.41421i 1.41421i
\(708\) 2.00000i 2.00000i
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 2.82843i 2.82843i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 1.41421i 1.41421i
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) −1.41421 −1.41421
\(725\) 0 0
\(726\) 1.41421i 1.41421i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 2.00000 2.00000
\(733\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) 2.00000i 2.00000i
\(736\) 2.00000i 2.00000i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) −1.41421 1.41421i −1.41421 1.41421i
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.41421i 1.41421i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 2.00000 2.00000
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 2.00000i 2.00000i
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 2.82843i 2.82843i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.00000 1.00000i −1.00000 1.00000i
\(768\) −1.41421 −1.41421
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.00000i 2.00000i
\(773\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −1.41421 1.41421i −1.41421 1.41421i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1.00000 −1.00000
\(785\) 2.00000i 2.00000i
\(786\) 2.00000i 2.00000i
\(787\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(794\) −1.41421 −1.41421
\(795\) 0 0
\(796\) 0 0
\(797\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 2.00000i 2.00000i
\(799\) 0 0
\(800\) 1.00000i 1.00000i
\(801\) 0 0
\(802\) −2.00000 −2.00000
\(803\) 0 0
\(804\) 0 0
\(805\) 2.82843 2.82843
\(806\) 0 0
\(807\) −2.00000 −2.00000
\(808\) 1.41421i 1.41421i
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 1.41421 1.41421
\(811\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −0.707107 0.707107i −0.707107 0.707107i
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 1.41421i 1.41421i
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 2.00000 2.00000
\(829\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(830\) 2.00000i 2.00000i
\(831\) 0 0
\(832\) 0.707107 0.707107i 0.707107 0.707107i
\(833\) 0 0
\(834\) 2.00000i 2.00000i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 1.41421i 1.41421i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 2.00000i 2.00000i
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.41421 1.41421
\(846\) 0 0
\(847\) 1.00000i 1.00000i
\(848\) 0 0
\(849\) −2.00000 −2.00000
\(850\) 0 0
\(851\) 0 0
\(852\) 2.82843i 2.82843i
\(853\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) −1.41421 −1.41421
\(855\) 2.00000 2.00000
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(864\) 0 0
\(865\) 2.00000i 2.00000i
\(866\) 0 0
\(867\) −1.41421 −1.41421
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −2.82843 −2.82843
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 2.00000i 2.00000i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.00000i 1.00000i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 2.82843 2.82843
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 2.00000i 2.00000i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 1.00000
\(897\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.00000i 2.00000i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 1.41421i 1.41421i
\(909\) −1.41421 −1.41421
\(910\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(911\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(912\) 2.00000i 2.00000i
\(913\) 0 0
\(914\) 2.00000 2.00000
\(915\) 2.82843i 2.82843i
\(916\) 1.41421i 1.41421i
\(917\) 1.41421i 1.41421i
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) −2.82843 −2.82843
\(921\) 2.00000i 2.00000i
\(922\) 1.41421 1.41421
\(923\) −1.41421 1.41421i −1.41421 1.41421i
\(924\) 0 0
\(925\) 0 0
\(926\) 2.00000 2.00000
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 1.41421i 1.41421i
\(932\) −2.00000 −2.00000
\(933\) 0 0
\(934\) 1.41421i 1.41421i
\(935\) 0 0
\(936\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(942\) 2.00000i 2.00000i
\(943\) 0 0
\(944\) 1.41421i 1.41421i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.41421 −1.41421
\(951\) 0 0
\(952\) 0 0
\(953\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 2.00000i 2.00000i
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.82843 −2.82843
\(966\) −2.82843 −2.82843
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.00000i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(972\) −1.41421 −1.41421
\(973\) 1.41421i 1.41421i
\(974\) 0 0
\(975\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(976\) 1.41421 1.41421
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.41421i 1.41421i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1.00000 1.00000i −1.00000 1.00000i
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 2.00000i 2.00000i
\(995\) 0 0
\(996\) 2.00000i 2.00000i
\(997\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.1.l.e.181.3 yes 4
4.3 odd 2 2912.1.l.e.2001.4 4
7.6 odd 2 inner 728.1.l.e.181.4 yes 4
8.3 odd 2 2912.1.l.e.2001.1 4
8.5 even 2 inner 728.1.l.e.181.4 yes 4
13.12 even 2 inner 728.1.l.e.181.1 4
28.27 even 2 2912.1.l.e.2001.1 4
52.51 odd 2 2912.1.l.e.2001.3 4
56.13 odd 2 CM 728.1.l.e.181.3 yes 4
56.27 even 2 2912.1.l.e.2001.4 4
91.90 odd 2 inner 728.1.l.e.181.2 yes 4
104.51 odd 2 2912.1.l.e.2001.2 4
104.77 even 2 inner 728.1.l.e.181.2 yes 4
364.363 even 2 2912.1.l.e.2001.2 4
728.181 odd 2 inner 728.1.l.e.181.1 4
728.363 even 2 2912.1.l.e.2001.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.1.l.e.181.1 4 13.12 even 2 inner
728.1.l.e.181.1 4 728.181 odd 2 inner
728.1.l.e.181.2 yes 4 91.90 odd 2 inner
728.1.l.e.181.2 yes 4 104.77 even 2 inner
728.1.l.e.181.3 yes 4 1.1 even 1 trivial
728.1.l.e.181.3 yes 4 56.13 odd 2 CM
728.1.l.e.181.4 yes 4 7.6 odd 2 inner
728.1.l.e.181.4 yes 4 8.5 even 2 inner
2912.1.l.e.2001.1 4 8.3 odd 2
2912.1.l.e.2001.1 4 28.27 even 2
2912.1.l.e.2001.2 4 104.51 odd 2
2912.1.l.e.2001.2 4 364.363 even 2
2912.1.l.e.2001.3 4 52.51 odd 2
2912.1.l.e.2001.3 4 728.363 even 2
2912.1.l.e.2001.4 4 4.3 odd 2
2912.1.l.e.2001.4 4 56.27 even 2