Properties

Label 726.2.i
Level $726$
Weight $2$
Character orbit 726.i
Rep. character $\chi_{726}(67,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $220$
Newform subspaces $4$
Sturm bound $264$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.i (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 4 \)
Sturm bound: \(264\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(726, [\chi])\).

Total New Old
Modular forms 1360 220 1140
Cusp forms 1280 220 1060
Eisenstein series 80 0 80

Trace form

\( 220 q - 22 q^{4} + 8 q^{5} + 2 q^{6} + 12 q^{7} + 220 q^{9} - 14 q^{10} - 32 q^{11} - 68 q^{13} - 28 q^{14} + 12 q^{15} - 22 q^{16} + 24 q^{17} + 20 q^{19} + 8 q^{20} + 4 q^{21} - 34 q^{22} + 16 q^{23}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(726, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
726.2.i.a 726.i 121.e $50$ $5.797$ None 726.2.i.a \(-5\) \(50\) \(10\) \(9\) $\mathrm{SU}(2)[C_{11}]$
726.2.i.b 726.i 121.e $50$ $5.797$ None 726.2.i.b \(5\) \(-50\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{11}]$
726.2.i.c 726.i 121.e $60$ $5.797$ None 726.2.i.c \(-6\) \(-60\) \(-2\) \(5\) $\mathrm{SU}(2)[C_{11}]$
726.2.i.d 726.i 121.e $60$ $5.797$ None 726.2.i.d \(6\) \(60\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{2}^{\mathrm{old}}(726, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(726, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)