Properties

Label 725.2.k.a.291.1
Level $725$
Weight $2$
Character 725.291
Analytic conductor $5.789$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(146,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([6, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 291.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 725.291
Dual form 725.2.k.a.436.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.118034 + 0.363271i) q^{3} +(-0.618034 - 1.90211i) q^{4} +(-0.690983 + 2.12663i) q^{5} -3.00000 q^{7} +(2.30902 - 1.67760i) q^{9} +(2.11803 + 1.53884i) q^{11} +(0.618034 - 0.449028i) q^{12} +(0.809017 - 0.587785i) q^{13} -0.854102 q^{15} +(-3.23607 + 2.35114i) q^{16} +(1.00000 - 3.07768i) q^{17} +(2.57295 - 7.91872i) q^{19} +4.47214 q^{20} +(-0.354102 - 1.08981i) q^{21} +(6.73607 + 4.89404i) q^{23} +(-4.04508 - 2.93893i) q^{25} +(1.80902 + 1.31433i) q^{27} +(1.85410 + 5.70634i) q^{28} +(0.309017 + 0.951057i) q^{29} +(2.80902 - 8.64527i) q^{31} +(-0.309017 + 0.951057i) q^{33} +(2.07295 - 6.37988i) q^{35} +(-4.61803 - 3.35520i) q^{36} +(8.85410 - 6.43288i) q^{37} +(0.309017 + 0.224514i) q^{39} +(-0.500000 + 0.363271i) q^{41} -6.70820 q^{43} +(1.61803 - 4.97980i) q^{44} +(1.97214 + 6.06961i) q^{45} +(1.50000 + 4.61653i) q^{47} +(-1.23607 - 0.898056i) q^{48} +2.00000 q^{49} +1.23607 q^{51} +(-1.61803 - 1.17557i) q^{52} +(-3.00000 - 9.23305i) q^{53} +(-4.73607 + 3.44095i) q^{55} +3.18034 q^{57} +(6.28115 - 4.56352i) q^{59} +(0.527864 + 1.62460i) q^{60} +(7.92705 + 5.75934i) q^{61} +(-6.92705 + 5.03280i) q^{63} +(6.47214 + 4.70228i) q^{64} +(0.690983 + 2.12663i) q^{65} +(-3.78115 + 11.6372i) q^{67} -6.47214 q^{68} +(-0.982779 + 3.02468i) q^{69} +(1.95492 + 6.01661i) q^{71} +(-6.35410 - 4.61653i) q^{73} +(0.590170 - 1.81636i) q^{75} -16.6525 q^{76} +(-6.35410 - 4.61653i) q^{77} +(-4.30902 - 13.2618i) q^{79} +(-2.76393 - 8.50651i) q^{80} +(2.38197 - 7.33094i) q^{81} +(-2.78115 + 8.55951i) q^{83} +(-1.85410 + 1.34708i) q^{84} +(5.85410 + 4.25325i) q^{85} +(-0.309017 + 0.224514i) q^{87} +(-3.61803 - 2.62866i) q^{89} +(-2.42705 + 1.76336i) q^{91} +(5.14590 - 15.8374i) q^{92} +3.47214 q^{93} +(15.0623 + 10.9434i) q^{95} +(0.927051 + 2.85317i) q^{97} +7.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 2 q^{4} - 5 q^{5} - 12 q^{7} + 7 q^{9} + 4 q^{11} - 2 q^{12} + q^{13} + 10 q^{15} - 4 q^{16} + 4 q^{17} + 17 q^{19} + 12 q^{21} + 18 q^{23} - 5 q^{25} + 5 q^{27} - 6 q^{28} - q^{29} + 9 q^{31}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(3\) 0.118034 + 0.363271i 0.0681470 + 0.209735i 0.979331 0.202265i \(-0.0648303\pi\)
−0.911184 + 0.412000i \(0.864830\pi\)
\(4\) −0.618034 1.90211i −0.309017 0.951057i
\(5\) −0.690983 + 2.12663i −0.309017 + 0.951057i
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 2.30902 1.67760i 0.769672 0.559200i
\(10\) 0 0
\(11\) 2.11803 + 1.53884i 0.638611 + 0.463978i 0.859373 0.511350i \(-0.170854\pi\)
−0.220762 + 0.975328i \(0.570854\pi\)
\(12\) 0.618034 0.449028i 0.178411 0.129623i
\(13\) 0.809017 0.587785i 0.224381 0.163022i −0.469916 0.882711i \(-0.655716\pi\)
0.694297 + 0.719689i \(0.255716\pi\)
\(14\) 0 0
\(15\) −0.854102 −0.220528
\(16\) −3.23607 + 2.35114i −0.809017 + 0.587785i
\(17\) 1.00000 3.07768i 0.242536 0.746448i −0.753496 0.657452i \(-0.771634\pi\)
0.996032 0.0889958i \(-0.0283658\pi\)
\(18\) 0 0
\(19\) 2.57295 7.91872i 0.590275 1.81668i 0.0133090 0.999911i \(-0.495763\pi\)
0.576966 0.816768i \(-0.304237\pi\)
\(20\) 4.47214 1.00000
\(21\) −0.354102 1.08981i −0.0772714 0.237817i
\(22\) 0 0
\(23\) 6.73607 + 4.89404i 1.40457 + 1.02048i 0.994084 + 0.108610i \(0.0346398\pi\)
0.410483 + 0.911868i \(0.365360\pi\)
\(24\) 0 0
\(25\) −4.04508 2.93893i −0.809017 0.587785i
\(26\) 0 0
\(27\) 1.80902 + 1.31433i 0.348145 + 0.252942i
\(28\) 1.85410 + 5.70634i 0.350392 + 1.07840i
\(29\) 0.309017 + 0.951057i 0.0573830 + 0.176607i
\(30\) 0 0
\(31\) 2.80902 8.64527i 0.504514 1.55274i −0.297071 0.954855i \(-0.596010\pi\)
0.801586 0.597880i \(-0.203990\pi\)
\(32\) 0 0
\(33\) −0.309017 + 0.951057i −0.0537930 + 0.165558i
\(34\) 0 0
\(35\) 2.07295 6.37988i 0.350392 1.07840i
\(36\) −4.61803 3.35520i −0.769672 0.559200i
\(37\) 8.85410 6.43288i 1.45561 1.05756i 0.471125 0.882067i \(-0.343848\pi\)
0.984481 0.175493i \(-0.0561518\pi\)
\(38\) 0 0
\(39\) 0.309017 + 0.224514i 0.0494823 + 0.0359510i
\(40\) 0 0
\(41\) −0.500000 + 0.363271i −0.0780869 + 0.0567334i −0.626144 0.779708i \(-0.715368\pi\)
0.548057 + 0.836441i \(0.315368\pi\)
\(42\) 0 0
\(43\) −6.70820 −1.02299 −0.511496 0.859286i \(-0.670908\pi\)
−0.511496 + 0.859286i \(0.670908\pi\)
\(44\) 1.61803 4.97980i 0.243928 0.750733i
\(45\) 1.97214 + 6.06961i 0.293989 + 0.904804i
\(46\) 0 0
\(47\) 1.50000 + 4.61653i 0.218797 + 0.673389i 0.998862 + 0.0476905i \(0.0151861\pi\)
−0.780065 + 0.625699i \(0.784814\pi\)
\(48\) −1.23607 0.898056i −0.178411 0.129623i
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 1.23607 0.173084
\(52\) −1.61803 1.17557i −0.224381 0.163022i
\(53\) −3.00000 9.23305i −0.412082 1.26826i −0.914835 0.403827i \(-0.867680\pi\)
0.502754 0.864430i \(-0.332320\pi\)
\(54\) 0 0
\(55\) −4.73607 + 3.44095i −0.638611 + 0.463978i
\(56\) 0 0
\(57\) 3.18034 0.421246
\(58\) 0 0
\(59\) 6.28115 4.56352i 0.817736 0.594120i −0.0983268 0.995154i \(-0.531349\pi\)
0.916063 + 0.401034i \(0.131349\pi\)
\(60\) 0.527864 + 1.62460i 0.0681470 + 0.209735i
\(61\) 7.92705 + 5.75934i 1.01495 + 0.737408i 0.965243 0.261356i \(-0.0841696\pi\)
0.0497123 + 0.998764i \(0.484170\pi\)
\(62\) 0 0
\(63\) −6.92705 + 5.03280i −0.872726 + 0.634073i
\(64\) 6.47214 + 4.70228i 0.809017 + 0.587785i
\(65\) 0.690983 + 2.12663i 0.0857059 + 0.263776i
\(66\) 0 0
\(67\) −3.78115 + 11.6372i −0.461941 + 1.42171i 0.400847 + 0.916145i \(0.368716\pi\)
−0.862789 + 0.505564i \(0.831284\pi\)
\(68\) −6.47214 −0.784862
\(69\) −0.982779 + 3.02468i −0.118313 + 0.364129i
\(70\) 0 0
\(71\) 1.95492 + 6.01661i 0.232006 + 0.714040i 0.997505 + 0.0706029i \(0.0224923\pi\)
−0.765499 + 0.643437i \(0.777508\pi\)
\(72\) 0 0
\(73\) −6.35410 4.61653i −0.743691 0.540323i 0.150174 0.988660i \(-0.452017\pi\)
−0.893865 + 0.448336i \(0.852017\pi\)
\(74\) 0 0
\(75\) 0.590170 1.81636i 0.0681470 0.209735i
\(76\) −16.6525 −1.91017
\(77\) −6.35410 4.61653i −0.724117 0.526102i
\(78\) 0 0
\(79\) −4.30902 13.2618i −0.484802 1.49207i −0.832267 0.554375i \(-0.812957\pi\)
0.347465 0.937693i \(-0.387043\pi\)
\(80\) −2.76393 8.50651i −0.309017 0.951057i
\(81\) 2.38197 7.33094i 0.264663 0.814549i
\(82\) 0 0
\(83\) −2.78115 + 8.55951i −0.305271 + 0.939528i 0.674305 + 0.738453i \(0.264443\pi\)
−0.979576 + 0.201075i \(0.935557\pi\)
\(84\) −1.85410 + 1.34708i −0.202299 + 0.146979i
\(85\) 5.85410 + 4.25325i 0.634967 + 0.461330i
\(86\) 0 0
\(87\) −0.309017 + 0.224514i −0.0331301 + 0.0240704i
\(88\) 0 0
\(89\) −3.61803 2.62866i −0.383511 0.278637i 0.379280 0.925282i \(-0.376172\pi\)
−0.762791 + 0.646645i \(0.776172\pi\)
\(90\) 0 0
\(91\) −2.42705 + 1.76336i −0.254424 + 0.184850i
\(92\) 5.14590 15.8374i 0.536497 1.65117i
\(93\) 3.47214 0.360044
\(94\) 0 0
\(95\) 15.0623 + 10.9434i 1.54536 + 1.12277i
\(96\) 0 0
\(97\) 0.927051 + 2.85317i 0.0941278 + 0.289695i 0.987025 0.160564i \(-0.0513314\pi\)
−0.892898 + 0.450260i \(0.851331\pi\)
\(98\) 0 0
\(99\) 7.47214 0.750978
\(100\) −3.09017 + 9.51057i −0.309017 + 0.951057i
\(101\) 3.70820 0.368980 0.184490 0.982834i \(-0.440937\pi\)
0.184490 + 0.982834i \(0.440937\pi\)
\(102\) 0 0
\(103\) 2.80902 + 8.64527i 0.276781 + 0.851843i 0.988743 + 0.149625i \(0.0478068\pi\)
−0.711962 + 0.702218i \(0.752193\pi\)
\(104\) 0 0
\(105\) 2.56231 0.250055
\(106\) 0 0
\(107\) 2.47214 0.238990 0.119495 0.992835i \(-0.461872\pi\)
0.119495 + 0.992835i \(0.461872\pi\)
\(108\) 1.38197 4.25325i 0.132980 0.409270i
\(109\) 1.69098 1.22857i 0.161967 0.117676i −0.503850 0.863791i \(-0.668083\pi\)
0.665816 + 0.746116i \(0.268083\pi\)
\(110\) 0 0
\(111\) 3.38197 + 2.45714i 0.321002 + 0.233222i
\(112\) 9.70820 7.05342i 0.917339 0.666486i
\(113\) 4.92705 3.57971i 0.463498 0.336751i −0.331404 0.943489i \(-0.607522\pi\)
0.794902 + 0.606738i \(0.207522\pi\)
\(114\) 0 0
\(115\) −15.0623 + 10.9434i −1.40457 + 1.02048i
\(116\) 1.61803 1.17557i 0.150231 0.109149i
\(117\) 0.881966 2.71441i 0.0815378 0.250948i
\(118\) 0 0
\(119\) −3.00000 + 9.23305i −0.275010 + 0.846392i
\(120\) 0 0
\(121\) −1.28115 3.94298i −0.116468 0.358453i
\(122\) 0 0
\(123\) −0.190983 0.138757i −0.0172204 0.0125113i
\(124\) −18.1803 −1.63264
\(125\) 9.04508 6.57164i 0.809017 0.587785i
\(126\) 0 0
\(127\) 4.97214 + 3.61247i 0.441206 + 0.320555i 0.786114 0.618082i \(-0.212090\pi\)
−0.344908 + 0.938636i \(0.612090\pi\)
\(128\) 0 0
\(129\) −0.791796 2.43690i −0.0697138 0.214557i
\(130\) 0 0
\(131\) −4.38197 + 13.4863i −0.382854 + 1.17830i 0.555171 + 0.831736i \(0.312653\pi\)
−0.938025 + 0.346568i \(0.887347\pi\)
\(132\) 2.00000 0.174078
\(133\) −7.71885 + 23.7562i −0.669309 + 2.05992i
\(134\) 0 0
\(135\) −4.04508 + 2.93893i −0.348145 + 0.252942i
\(136\) 0 0
\(137\) −1.00000 + 0.726543i −0.0854358 + 0.0620727i −0.629683 0.776852i \(-0.716815\pi\)
0.544247 + 0.838925i \(0.316815\pi\)
\(138\) 0 0
\(139\) 1.69098 + 1.22857i 0.143427 + 0.104206i 0.657185 0.753729i \(-0.271747\pi\)
−0.513758 + 0.857935i \(0.671747\pi\)
\(140\) −13.4164 −1.13389
\(141\) −1.50000 + 1.08981i −0.126323 + 0.0917789i
\(142\) 0 0
\(143\) 2.61803 0.218931
\(144\) −3.52786 + 10.8576i −0.293989 + 0.904804i
\(145\) −2.23607 −0.185695
\(146\) 0 0
\(147\) 0.236068 + 0.726543i 0.0194706 + 0.0599242i
\(148\) −17.7082 12.8658i −1.45561 1.05756i
\(149\) −14.7639 −1.20951 −0.604754 0.796412i \(-0.706729\pi\)
−0.604754 + 0.796412i \(0.706729\pi\)
\(150\) 0 0
\(151\) −4.41641 −0.359402 −0.179701 0.983721i \(-0.557513\pi\)
−0.179701 + 0.983721i \(0.557513\pi\)
\(152\) 0 0
\(153\) −2.85410 8.78402i −0.230740 0.710146i
\(154\) 0 0
\(155\) 16.4443 + 11.9475i 1.32084 + 0.959643i
\(156\) 0.236068 0.726543i 0.0189006 0.0581700i
\(157\) 14.3820 1.14781 0.573903 0.818923i \(-0.305429\pi\)
0.573903 + 0.818923i \(0.305429\pi\)
\(158\) 0 0
\(159\) 3.00000 2.17963i 0.237915 0.172856i
\(160\) 0 0
\(161\) −20.2082 14.6821i −1.59263 1.15711i
\(162\) 0 0
\(163\) −7.66312 + 5.56758i −0.600222 + 0.436087i −0.845958 0.533250i \(-0.820970\pi\)
0.245736 + 0.969337i \(0.420970\pi\)
\(164\) 1.00000 + 0.726543i 0.0780869 + 0.0567334i
\(165\) −1.80902 1.31433i −0.140832 0.102320i
\(166\) 0 0
\(167\) −3.16312 + 9.73508i −0.244769 + 0.753323i 0.750905 + 0.660410i \(0.229618\pi\)
−0.995674 + 0.0929126i \(0.970382\pi\)
\(168\) 0 0
\(169\) −3.70820 + 11.4127i −0.285246 + 0.877898i
\(170\) 0 0
\(171\) −7.34346 22.6008i −0.561568 1.72833i
\(172\) 4.14590 + 12.7598i 0.316122 + 0.972923i
\(173\) 2.92705 + 2.12663i 0.222540 + 0.161684i 0.693469 0.720486i \(-0.256081\pi\)
−0.470930 + 0.882171i \(0.656081\pi\)
\(174\) 0 0
\(175\) 12.1353 + 8.81678i 0.917339 + 0.666486i
\(176\) −10.4721 −0.789367
\(177\) 2.39919 + 1.74311i 0.180334 + 0.131020i
\(178\) 0 0
\(179\) −8.00000 24.6215i −0.597948 1.84029i −0.539468 0.842006i \(-0.681374\pi\)
−0.0584805 0.998289i \(-0.518626\pi\)
\(180\) 10.3262 7.50245i 0.769672 0.559200i
\(181\) 3.09017 9.51057i 0.229691 0.706915i −0.768091 0.640341i \(-0.778793\pi\)
0.997781 0.0665740i \(-0.0212068\pi\)
\(182\) 0 0
\(183\) −1.15654 + 3.55947i −0.0854940 + 0.263123i
\(184\) 0 0
\(185\) 7.56231 + 23.2744i 0.555992 + 1.71117i
\(186\) 0 0
\(187\) 6.85410 4.97980i 0.501222 0.364159i
\(188\) 7.85410 5.70634i 0.572819 0.416178i
\(189\) −5.42705 3.94298i −0.394760 0.286810i
\(190\) 0 0
\(191\) −21.7984 + 15.8374i −1.57727 + 1.14596i −0.657539 + 0.753421i \(0.728402\pi\)
−0.919736 + 0.392536i \(0.871598\pi\)
\(192\) −0.944272 + 2.90617i −0.0681470 + 0.209735i
\(193\) −20.2705 −1.45910 −0.729552 0.683926i \(-0.760271\pi\)
−0.729552 + 0.683926i \(0.760271\pi\)
\(194\) 0 0
\(195\) −0.690983 + 0.502029i −0.0494823 + 0.0359510i
\(196\) −1.23607 3.80423i −0.0882906 0.271730i
\(197\) −3.79180 11.6699i −0.270154 0.831449i −0.990461 0.137794i \(-0.955999\pi\)
0.720307 0.693656i \(-0.244001\pi\)
\(198\) 0 0
\(199\) 10.8541 0.769427 0.384713 0.923036i \(-0.374300\pi\)
0.384713 + 0.923036i \(0.374300\pi\)
\(200\) 0 0
\(201\) −4.67376 −0.329662
\(202\) 0 0
\(203\) −0.927051 2.85317i −0.0650662 0.200253i
\(204\) −0.763932 2.35114i −0.0534859 0.164613i
\(205\) −0.427051 1.31433i −0.0298265 0.0917966i
\(206\) 0 0
\(207\) 23.7639 1.65171
\(208\) −1.23607 + 3.80423i −0.0857059 + 0.263776i
\(209\) 17.6353 12.8128i 1.21986 0.886277i
\(210\) 0 0
\(211\) −2.85410 2.07363i −0.196484 0.142754i 0.485193 0.874407i \(-0.338749\pi\)
−0.681678 + 0.731653i \(0.738749\pi\)
\(212\) −15.7082 + 11.4127i −1.07884 + 0.783826i
\(213\) −1.95492 + 1.42033i −0.133949 + 0.0973193i
\(214\) 0 0
\(215\) 4.63525 14.2658i 0.316122 0.972923i
\(216\) 0 0
\(217\) −8.42705 + 25.9358i −0.572065 + 1.76064i
\(218\) 0 0
\(219\) 0.927051 2.85317i 0.0626443 0.192799i
\(220\) 9.47214 + 6.88191i 0.638611 + 0.463978i
\(221\) −1.00000 3.07768i −0.0672673 0.207027i
\(222\) 0 0
\(223\) 7.50000 + 5.44907i 0.502237 + 0.364897i 0.809871 0.586608i \(-0.199537\pi\)
−0.307634 + 0.951505i \(0.599537\pi\)
\(224\) 0 0
\(225\) −14.2705 −0.951367
\(226\) 0 0
\(227\) −19.4164 14.1068i −1.28871 0.936304i −0.288934 0.957349i \(-0.593301\pi\)
−0.999779 + 0.0210448i \(0.993301\pi\)
\(228\) −1.96556 6.04937i −0.130172 0.400629i
\(229\) 1.01722 + 3.13068i 0.0672199 + 0.206881i 0.979024 0.203743i \(-0.0653107\pi\)
−0.911805 + 0.410624i \(0.865311\pi\)
\(230\) 0 0
\(231\) 0.927051 2.85317i 0.0609955 0.187725i
\(232\) 0 0
\(233\) −4.36475 + 13.4333i −0.285944 + 0.880045i 0.700170 + 0.713976i \(0.253107\pi\)
−0.986114 + 0.166069i \(0.946893\pi\)
\(234\) 0 0
\(235\) −10.8541 −0.708044
\(236\) −12.5623 9.12705i −0.817736 0.594120i
\(237\) 4.30902 3.13068i 0.279901 0.203360i
\(238\) 0 0
\(239\) 11.9271 + 8.66551i 0.771497 + 0.560525i 0.902415 0.430868i \(-0.141793\pi\)
−0.130918 + 0.991393i \(0.541793\pi\)
\(240\) 2.76393 2.00811i 0.178411 0.129623i
\(241\) −8.00000 + 5.81234i −0.515325 + 0.374406i −0.814840 0.579686i \(-0.803175\pi\)
0.299515 + 0.954092i \(0.403175\pi\)
\(242\) 0 0
\(243\) 9.65248 0.619207
\(244\) 6.05573 18.6376i 0.387678 1.19315i
\(245\) −1.38197 + 4.25325i −0.0882906 + 0.271730i
\(246\) 0 0
\(247\) −2.57295 7.91872i −0.163713 0.503856i
\(248\) 0 0
\(249\) −3.43769 −0.217855
\(250\) 0 0
\(251\) 7.38197 0.465946 0.232973 0.972483i \(-0.425155\pi\)
0.232973 + 0.972483i \(0.425155\pi\)
\(252\) 13.8541 + 10.0656i 0.872726 + 0.634073i
\(253\) 6.73607 + 20.7315i 0.423493 + 1.30338i
\(254\) 0 0
\(255\) −0.854102 + 2.62866i −0.0534859 + 0.164613i
\(256\) 4.94427 15.2169i 0.309017 0.951057i
\(257\) 2.05573 0.128233 0.0641164 0.997942i \(-0.479577\pi\)
0.0641164 + 0.997942i \(0.479577\pi\)
\(258\) 0 0
\(259\) −26.5623 + 19.2986i −1.65050 + 1.19916i
\(260\) 3.61803 2.62866i 0.224381 0.163022i
\(261\) 2.30902 + 1.67760i 0.142925 + 0.103841i
\(262\) 0 0
\(263\) 12.3992 9.00854i 0.764567 0.555490i −0.135741 0.990744i \(-0.543341\pi\)
0.900308 + 0.435254i \(0.143341\pi\)
\(264\) 0 0
\(265\) 21.7082 1.33352
\(266\) 0 0
\(267\) 0.527864 1.62460i 0.0323048 0.0994238i
\(268\) 24.4721 1.49487
\(269\) 4.34346 13.3678i 0.264825 0.815049i −0.726908 0.686735i \(-0.759043\pi\)
0.991734 0.128314i \(-0.0409565\pi\)
\(270\) 0 0
\(271\) 7.54508 + 23.2214i 0.458331 + 1.41060i 0.867179 + 0.497996i \(0.165931\pi\)
−0.408848 + 0.912602i \(0.634069\pi\)
\(272\) 4.00000 + 12.3107i 0.242536 + 0.746448i
\(273\) −0.927051 0.673542i −0.0561077 0.0407646i
\(274\) 0 0
\(275\) −4.04508 12.4495i −0.243928 0.750733i
\(276\) 6.36068 0.382868
\(277\) −4.42705 3.21644i −0.265996 0.193257i 0.446790 0.894639i \(-0.352567\pi\)
−0.712786 + 0.701381i \(0.752567\pi\)
\(278\) 0 0
\(279\) −8.01722 24.6745i −0.479978 1.47722i
\(280\) 0 0
\(281\) 1.60081 4.92680i 0.0954965 0.293908i −0.891886 0.452260i \(-0.850618\pi\)
0.987383 + 0.158352i \(0.0506180\pi\)
\(282\) 0 0
\(283\) −4.10081 + 12.6210i −0.243768 + 0.750241i 0.752069 + 0.659085i \(0.229056\pi\)
−0.995837 + 0.0911560i \(0.970944\pi\)
\(284\) 10.2361 7.43694i 0.607399 0.441301i
\(285\) −2.19756 + 6.76340i −0.130172 + 0.400629i
\(286\) 0 0
\(287\) 1.50000 1.08981i 0.0885422 0.0643297i
\(288\) 0 0
\(289\) 5.28115 + 3.83698i 0.310656 + 0.225705i
\(290\) 0 0
\(291\) −0.927051 + 0.673542i −0.0543447 + 0.0394837i
\(292\) −4.85410 + 14.9394i −0.284065 + 0.874262i
\(293\) −10.4164 −0.608533 −0.304267 0.952587i \(-0.598411\pi\)
−0.304267 + 0.952587i \(0.598411\pi\)
\(294\) 0 0
\(295\) 5.36475 + 16.5110i 0.312348 + 0.961307i
\(296\) 0 0
\(297\) 1.80902 + 5.56758i 0.104970 + 0.323064i
\(298\) 0 0
\(299\) 8.32624 0.481519
\(300\) −3.81966 −0.220528
\(301\) 20.1246 1.15996
\(302\) 0 0
\(303\) 0.437694 + 1.34708i 0.0251449 + 0.0773879i
\(304\) 10.2918 + 31.6749i 0.590275 + 1.81668i
\(305\) −17.7254 + 12.8783i −1.01495 + 0.737408i
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) −4.85410 + 14.9394i −0.276588 + 0.851251i
\(309\) −2.80902 + 2.04087i −0.159799 + 0.116101i
\(310\) 0 0
\(311\) 4.07295 + 2.95917i 0.230956 + 0.167799i 0.697244 0.716833i \(-0.254409\pi\)
−0.466289 + 0.884633i \(0.654409\pi\)
\(312\) 0 0
\(313\) 25.4164 18.4661i 1.43662 1.04377i 0.447885 0.894091i \(-0.352177\pi\)
0.988735 0.149675i \(-0.0478226\pi\)
\(314\) 0 0
\(315\) −5.91641 18.2088i −0.333352 1.02595i
\(316\) −22.5623 + 16.3925i −1.26923 + 0.922149i
\(317\) 7.83688 24.1194i 0.440163 1.35468i −0.447539 0.894264i \(-0.647699\pi\)
0.887702 0.460418i \(-0.152301\pi\)
\(318\) 0 0
\(319\) −0.809017 + 2.48990i −0.0452963 + 0.139408i
\(320\) −14.4721 + 10.5146i −0.809017 + 0.587785i
\(321\) 0.291796 + 0.898056i 0.0162865 + 0.0501246i
\(322\) 0 0
\(323\) −21.7984 15.8374i −1.21289 0.881219i
\(324\) −15.4164 −0.856467
\(325\) −5.00000 −0.277350
\(326\) 0 0
\(327\) 0.645898 + 0.469272i 0.0357182 + 0.0259508i
\(328\) 0 0
\(329\) −4.50000 13.8496i −0.248093 0.763552i
\(330\) 0 0
\(331\) 5.91641 18.2088i 0.325195 1.00085i −0.646157 0.763204i \(-0.723625\pi\)
0.971352 0.237644i \(-0.0763750\pi\)
\(332\) 18.0000 0.987878
\(333\) 9.65248 29.7073i 0.528952 1.62795i
\(334\) 0 0
\(335\) −22.1353 16.0822i −1.20938 0.878665i
\(336\) 3.70820 + 2.69417i 0.202299 + 0.146979i
\(337\) −0.809017 + 0.587785i −0.0440700 + 0.0320187i −0.609602 0.792708i \(-0.708671\pi\)
0.565532 + 0.824726i \(0.308671\pi\)
\(338\) 0 0
\(339\) 1.88197 + 1.36733i 0.102214 + 0.0742631i
\(340\) 4.47214 13.7638i 0.242536 0.746448i
\(341\) 19.2533 13.9883i 1.04262 0.757511i
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) −5.75329 4.18001i −0.309747 0.225044i
\(346\) 0 0
\(347\) −5.10081 15.6987i −0.273826 0.842750i −0.989528 0.144344i \(-0.953893\pi\)
0.715702 0.698406i \(-0.246107\pi\)
\(348\) 0.618034 + 0.449028i 0.0331301 + 0.0240704i
\(349\) 23.3607 1.25047 0.625234 0.780437i \(-0.285003\pi\)
0.625234 + 0.780437i \(0.285003\pi\)
\(350\) 0 0
\(351\) 2.23607 0.119352
\(352\) 0 0
\(353\) 8.04508 + 24.7602i 0.428197 + 1.31785i 0.899900 + 0.436096i \(0.143639\pi\)
−0.471703 + 0.881757i \(0.656361\pi\)
\(354\) 0 0
\(355\) −14.1459 −0.750786
\(356\) −2.76393 + 8.50651i −0.146488 + 0.450844i
\(357\) −3.70820 −0.196259
\(358\) 0 0
\(359\) 9.73607 7.07367i 0.513850 0.373334i −0.300432 0.953803i \(-0.597131\pi\)
0.814282 + 0.580469i \(0.197131\pi\)
\(360\) 0 0
\(361\) −40.7148 29.5810i −2.14288 1.55690i
\(362\) 0 0
\(363\) 1.28115 0.930812i 0.0672431 0.0488550i
\(364\) 4.85410 + 3.52671i 0.254424 + 0.184850i
\(365\) 14.2082 10.3229i 0.743691 0.540323i
\(366\) 0 0
\(367\) 1.68034 5.17155i 0.0877130 0.269953i −0.897573 0.440866i \(-0.854672\pi\)
0.985286 + 0.170913i \(0.0546716\pi\)
\(368\) −33.3050 −1.73614
\(369\) −0.545085 + 1.67760i −0.0283760 + 0.0873323i
\(370\) 0 0
\(371\) 9.00000 + 27.6992i 0.467257 + 1.43807i
\(372\) −2.14590 6.60440i −0.111260 0.342422i
\(373\) 4.51722 + 3.28195i 0.233893 + 0.169933i 0.698558 0.715553i \(-0.253825\pi\)
−0.464665 + 0.885486i \(0.653825\pi\)
\(374\) 0 0
\(375\) 3.45492 + 2.51014i 0.178411 + 0.129623i
\(376\) 0 0
\(377\) 0.809017 + 0.587785i 0.0416665 + 0.0302725i
\(378\) 0 0
\(379\) 5.63525 + 17.3435i 0.289464 + 0.890877i 0.985025 + 0.172411i \(0.0551557\pi\)
−0.695562 + 0.718467i \(0.744844\pi\)
\(380\) 11.5066 35.4136i 0.590275 1.81668i
\(381\) −0.725425 + 2.23263i −0.0371646 + 0.114381i
\(382\) 0 0
\(383\) 3.59017 11.0494i 0.183449 0.564598i −0.816469 0.577389i \(-0.804072\pi\)
0.999918 + 0.0127908i \(0.00407156\pi\)
\(384\) 0 0
\(385\) 14.2082 10.3229i 0.724117 0.526102i
\(386\) 0 0
\(387\) −15.4894 + 11.2537i −0.787368 + 0.572057i
\(388\) 4.85410 3.52671i 0.246430 0.179042i
\(389\) −1.59017 1.15533i −0.0806248 0.0585774i 0.546743 0.837301i \(-0.315868\pi\)
−0.627367 + 0.778723i \(0.715868\pi\)
\(390\) 0 0
\(391\) 21.7984 15.8374i 1.10239 0.800934i
\(392\) 0 0
\(393\) −5.41641 −0.273222
\(394\) 0 0
\(395\) 31.1803 1.56885
\(396\) −4.61803 14.2128i −0.232065 0.714222i
\(397\) −0.291796 0.898056i −0.0146448 0.0450721i 0.943467 0.331466i \(-0.107543\pi\)
−0.958112 + 0.286394i \(0.907543\pi\)
\(398\) 0 0
\(399\) −9.54102 −0.477648
\(400\) 20.0000 1.00000
\(401\) 12.2361 0.611040 0.305520 0.952186i \(-0.401170\pi\)
0.305520 + 0.952186i \(0.401170\pi\)
\(402\) 0 0
\(403\) −2.80902 8.64527i −0.139927 0.430651i
\(404\) −2.29180 7.05342i −0.114021 0.350921i
\(405\) 13.9443 + 10.1311i 0.692896 + 0.503419i
\(406\) 0 0
\(407\) 28.6525 1.42025
\(408\) 0 0
\(409\) 9.70820 7.05342i 0.480040 0.348769i −0.321301 0.946977i \(-0.604120\pi\)
0.801341 + 0.598208i \(0.204120\pi\)
\(410\) 0 0
\(411\) −0.381966 0.277515i −0.0188410 0.0136888i
\(412\) 14.7082 10.6861i 0.724621 0.526468i
\(413\) −18.8435 + 13.6906i −0.927226 + 0.673669i
\(414\) 0 0
\(415\) −16.2812 11.8290i −0.799210 0.580660i
\(416\) 0 0
\(417\) −0.246711 + 0.759299i −0.0120815 + 0.0371830i
\(418\) 0 0
\(419\) −2.36475 + 7.27794i −0.115525 + 0.355550i −0.992056 0.125795i \(-0.959852\pi\)
0.876531 + 0.481346i \(0.159852\pi\)
\(420\) −1.58359 4.87380i −0.0772714 0.237817i
\(421\) 1.84752 + 5.68609i 0.0900428 + 0.277123i 0.985930 0.167158i \(-0.0534590\pi\)
−0.895887 + 0.444281i \(0.853459\pi\)
\(422\) 0 0
\(423\) 11.2082 + 8.14324i 0.544962 + 0.395938i
\(424\) 0 0
\(425\) −13.0902 + 9.51057i −0.634967 + 0.461330i
\(426\) 0 0
\(427\) −23.7812 17.2780i −1.15085 0.836142i
\(428\) −1.52786 4.70228i −0.0738521 0.227293i
\(429\) 0.309017 + 0.951057i 0.0149195 + 0.0459174i
\(430\) 0 0
\(431\) −11.2082 + 34.4953i −0.539880 + 1.66158i 0.192981 + 0.981202i \(0.438184\pi\)
−0.732861 + 0.680378i \(0.761816\pi\)
\(432\) −8.94427 −0.430331
\(433\) 6.48278 19.9519i 0.311542 0.958829i −0.665612 0.746298i \(-0.731829\pi\)
0.977154 0.212531i \(-0.0681707\pi\)
\(434\) 0 0
\(435\) −0.263932 0.812299i −0.0126546 0.0389468i
\(436\) −3.38197 2.45714i −0.161967 0.117676i
\(437\) 56.0861 40.7489i 2.68296 1.94929i
\(438\) 0 0
\(439\) −4.47214 3.24920i −0.213443 0.155076i 0.475927 0.879485i \(-0.342113\pi\)
−0.689370 + 0.724409i \(0.742113\pi\)
\(440\) 0 0
\(441\) 4.61803 3.35520i 0.219906 0.159771i
\(442\) 0 0
\(443\) −4.52786 −0.215125 −0.107563 0.994198i \(-0.534305\pi\)
−0.107563 + 0.994198i \(0.534305\pi\)
\(444\) 2.58359 7.95148i 0.122612 0.377360i
\(445\) 8.09017 5.87785i 0.383511 0.278637i
\(446\) 0 0
\(447\) −1.74265 5.36331i −0.0824243 0.253676i
\(448\) −19.4164 14.1068i −0.917339 0.666486i
\(449\) −8.23607 −0.388684 −0.194342 0.980934i \(-0.562257\pi\)
−0.194342 + 0.980934i \(0.562257\pi\)
\(450\) 0 0
\(451\) −1.61803 −0.0761902
\(452\) −9.85410 7.15942i −0.463498 0.336751i
\(453\) −0.521286 1.60435i −0.0244922 0.0753791i
\(454\) 0 0
\(455\) −2.07295 6.37988i −0.0971813 0.299093i
\(456\) 0 0
\(457\) −39.3607 −1.84121 −0.920607 0.390489i \(-0.872306\pi\)
−0.920607 + 0.390489i \(0.872306\pi\)
\(458\) 0 0
\(459\) 5.85410 4.25325i 0.273246 0.198525i
\(460\) 30.1246 + 21.8868i 1.40457 + 1.02048i
\(461\) 0.545085 + 0.396027i 0.0253871 + 0.0184448i 0.600406 0.799695i \(-0.295005\pi\)
−0.575019 + 0.818140i \(0.695005\pi\)
\(462\) 0 0
\(463\) −13.1803 + 9.57608i −0.612542 + 0.445038i −0.850309 0.526284i \(-0.823585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(464\) −3.23607 2.35114i −0.150231 0.109149i
\(465\) −2.39919 + 7.38394i −0.111260 + 0.342422i
\(466\) 0 0
\(467\) −9.00000 + 27.6992i −0.416470 + 1.28176i 0.494459 + 0.869201i \(0.335366\pi\)
−0.910929 + 0.412563i \(0.864634\pi\)
\(468\) −5.70820 −0.263862
\(469\) 11.3435 34.9116i 0.523792 1.61207i
\(470\) 0 0
\(471\) 1.69756 + 5.22455i 0.0782195 + 0.240735i
\(472\) 0 0
\(473\) −14.2082 10.3229i −0.653294 0.474646i
\(474\) 0 0
\(475\) −33.6803 + 24.4702i −1.54536 + 1.12277i
\(476\) 19.4164 0.889950
\(477\) −22.4164 16.2865i −1.02638 0.745706i
\(478\) 0 0
\(479\) 9.51064 + 29.2707i 0.434552 + 1.33741i 0.893545 + 0.448974i \(0.148211\pi\)
−0.458992 + 0.888440i \(0.651789\pi\)
\(480\) 0 0
\(481\) 3.38197 10.4086i 0.154204 0.474592i
\(482\) 0 0
\(483\) 2.94834 9.07405i 0.134154 0.412884i
\(484\) −6.70820 + 4.87380i −0.304918 + 0.221536i
\(485\) −6.70820 −0.304604
\(486\) 0 0
\(487\) −4.33688 + 3.15093i −0.196523 + 0.142782i −0.681695 0.731636i \(-0.738757\pi\)
0.485172 + 0.874419i \(0.338757\pi\)
\(488\) 0 0
\(489\) −2.92705 2.12663i −0.132366 0.0961694i
\(490\) 0 0
\(491\) 8.51722 6.18812i 0.384377 0.279266i −0.378771 0.925491i \(-0.623653\pi\)
0.763147 + 0.646225i \(0.223653\pi\)
\(492\) −0.145898 + 0.449028i −0.00657759 + 0.0202437i
\(493\) 3.23607 0.145745
\(494\) 0 0
\(495\) −5.16312 + 15.8904i −0.232065 + 0.714222i
\(496\) 11.2361 + 34.5811i 0.504514 + 1.55274i
\(497\) −5.86475 18.0498i −0.263070 0.809646i
\(498\) 0 0
\(499\) −28.2148 −1.26307 −0.631534 0.775349i \(-0.717574\pi\)
−0.631534 + 0.775349i \(0.717574\pi\)
\(500\) −18.0902 13.1433i −0.809017 0.587785i
\(501\) −3.90983 −0.174678
\(502\) 0 0
\(503\) 11.2812 + 34.7198i 0.503002 + 1.54808i 0.804104 + 0.594488i \(0.202645\pi\)
−0.301102 + 0.953592i \(0.597355\pi\)
\(504\) 0 0
\(505\) −2.56231 + 7.88597i −0.114021 + 0.350921i
\(506\) 0 0
\(507\) −4.58359 −0.203564
\(508\) 3.79837 11.6902i 0.168526 0.518668i
\(509\) −16.3262 + 11.8617i −0.723648 + 0.525761i −0.887548 0.460716i \(-0.847593\pi\)
0.163900 + 0.986477i \(0.447593\pi\)
\(510\) 0 0
\(511\) 19.0623 + 13.8496i 0.843267 + 0.612669i
\(512\) 0 0
\(513\) 15.0623 10.9434i 0.665017 0.483163i
\(514\) 0 0
\(515\) −20.3262 −0.895681
\(516\) −4.14590 + 3.01217i −0.182513 + 0.132603i
\(517\) −3.92705 + 12.0862i −0.172712 + 0.531551i
\(518\) 0 0
\(519\) −0.427051 + 1.31433i −0.0187455 + 0.0576926i
\(520\) 0 0
\(521\) 7.36475 + 22.6664i 0.322655 + 0.993031i 0.972488 + 0.232954i \(0.0748390\pi\)
−0.649833 + 0.760077i \(0.725161\pi\)
\(522\) 0 0
\(523\) 18.6353 + 13.5393i 0.814863 + 0.592032i 0.915236 0.402917i \(-0.132004\pi\)
−0.100374 + 0.994950i \(0.532004\pi\)
\(524\) 28.3607 1.23894
\(525\) −1.77051 + 5.44907i −0.0772714 + 0.237817i
\(526\) 0 0
\(527\) −23.7984 17.2905i −1.03667 0.753187i
\(528\) −1.23607 3.80423i −0.0537930 0.165558i
\(529\) 14.3156 + 44.0589i 0.622417 + 1.91560i
\(530\) 0 0
\(531\) 6.84752 21.0745i 0.297157 0.914556i
\(532\) 49.9574 2.16593
\(533\) −0.190983 + 0.587785i −0.00827239 + 0.0254598i
\(534\) 0 0
\(535\) −1.70820 + 5.25731i −0.0738521 + 0.227293i
\(536\) 0 0
\(537\) 8.00000 5.81234i 0.345225 0.250821i
\(538\) 0 0
\(539\) 4.23607 + 3.07768i 0.182460 + 0.132565i
\(540\) 8.09017 + 5.87785i 0.348145 + 0.252942i
\(541\) −4.66312 + 3.38795i −0.200483 + 0.145660i −0.683497 0.729953i \(-0.739542\pi\)
0.483014 + 0.875613i \(0.339542\pi\)
\(542\) 0 0
\(543\) 3.81966 0.163917
\(544\) 0 0
\(545\) 1.44427 + 4.44501i 0.0618658 + 0.190403i
\(546\) 0 0
\(547\) 10.4894 + 32.2829i 0.448493 + 1.38032i 0.878608 + 0.477544i \(0.158473\pi\)
−0.430115 + 0.902774i \(0.641527\pi\)
\(548\) 2.00000 + 1.45309i 0.0854358 + 0.0620727i
\(549\) 27.9656 1.19354
\(550\) 0 0
\(551\) 8.32624 0.354710
\(552\) 0 0
\(553\) 12.9271 + 39.7854i 0.549714 + 1.69185i
\(554\) 0 0
\(555\) −7.56231 + 5.49434i −0.321002 + 0.233222i
\(556\) 1.29180 3.97574i 0.0547844 0.168609i
\(557\) −9.43769 −0.399888 −0.199944 0.979807i \(-0.564076\pi\)
−0.199944 + 0.979807i \(0.564076\pi\)
\(558\) 0 0
\(559\) −5.42705 + 3.94298i −0.229540 + 0.166770i
\(560\) 8.29180 + 25.5195i 0.350392 + 1.07840i
\(561\) 2.61803 + 1.90211i 0.110533 + 0.0803073i
\(562\) 0 0
\(563\) −33.7984 + 24.5560i −1.42443 + 1.03491i −0.433412 + 0.901196i \(0.642690\pi\)
−0.991020 + 0.133714i \(0.957310\pi\)
\(564\) 3.00000 + 2.17963i 0.126323 + 0.0917789i
\(565\) 4.20820 + 12.9515i 0.177040 + 0.544875i
\(566\) 0 0
\(567\) −7.14590 + 21.9928i −0.300100 + 0.923611i
\(568\) 0 0
\(569\) 2.59017 7.97172i 0.108586 0.334192i −0.881970 0.471306i \(-0.843783\pi\)
0.990555 + 0.137114i \(0.0437827\pi\)
\(570\) 0 0
\(571\) −11.3435 34.9116i −0.474709 1.46100i −0.846350 0.532627i \(-0.821205\pi\)
0.371641 0.928377i \(-0.378795\pi\)
\(572\) −1.61803 4.97980i −0.0676534 0.208216i
\(573\) −8.32624 6.04937i −0.347834 0.252716i
\(574\) 0 0
\(575\) −12.8647 39.5936i −0.536497 1.65117i
\(576\) 22.8328 0.951367
\(577\) −35.0066 25.4338i −1.45734 1.05882i −0.984045 0.177919i \(-0.943063\pi\)
−0.473298 0.880902i \(-0.656937\pi\)
\(578\) 0 0
\(579\) −2.39261 7.36369i −0.0994334 0.306025i
\(580\) 1.38197 + 4.25325i 0.0573830 + 0.176607i
\(581\) 8.34346 25.6785i 0.346145 1.06532i
\(582\) 0 0
\(583\) 7.85410 24.1724i 0.325284 1.00112i
\(584\) 0 0
\(585\) 5.16312 + 3.75123i 0.213469 + 0.155094i
\(586\) 0 0
\(587\) 6.76393 4.91428i 0.279177 0.202834i −0.439381 0.898301i \(-0.644802\pi\)
0.718559 + 0.695467i \(0.244802\pi\)
\(588\) 1.23607 0.898056i 0.0509746 0.0370352i
\(589\) −61.2320 44.4877i −2.52302 1.83308i
\(590\) 0 0
\(591\) 3.79180 2.75490i 0.155974 0.113321i
\(592\) −13.5279 + 41.6345i −0.555992 + 1.71117i
\(593\) 24.6738 1.01323 0.506615 0.862172i \(-0.330897\pi\)
0.506615 + 0.862172i \(0.330897\pi\)
\(594\) 0 0
\(595\) −17.5623 12.7598i −0.719984 0.523099i
\(596\) 9.12461 + 28.0827i 0.373759 + 1.15031i
\(597\) 1.28115 + 3.94298i 0.0524341 + 0.161376i
\(598\) 0 0
\(599\) 7.90983 0.323187 0.161593 0.986857i \(-0.448337\pi\)
0.161593 + 0.986857i \(0.448337\pi\)
\(600\) 0 0
\(601\) 38.4164 1.56704 0.783519 0.621368i \(-0.213423\pi\)
0.783519 + 0.621368i \(0.213423\pi\)
\(602\) 0 0
\(603\) 10.7918 + 33.2137i 0.439476 + 1.35257i
\(604\) 2.72949 + 8.40051i 0.111061 + 0.341812i
\(605\) 9.27051 0.376900
\(606\) 0 0
\(607\) −30.0344 −1.21906 −0.609530 0.792763i \(-0.708642\pi\)
−0.609530 + 0.792763i \(0.708642\pi\)
\(608\) 0 0
\(609\) 0.927051 0.673542i 0.0375660 0.0272933i
\(610\) 0 0
\(611\) 3.92705 + 2.85317i 0.158871 + 0.115427i
\(612\) −14.9443 + 10.8576i −0.604086 + 0.438894i
\(613\) −20.9721 + 15.2371i −0.847057 + 0.615423i −0.924333 0.381587i \(-0.875378\pi\)
0.0772763 + 0.997010i \(0.475378\pi\)
\(614\) 0 0
\(615\) 0.427051 0.310271i 0.0172204 0.0125113i
\(616\) 0 0
\(617\) −6.21885 + 19.1396i −0.250361 + 0.770533i 0.744347 + 0.667793i \(0.232761\pi\)
−0.994708 + 0.102740i \(0.967239\pi\)
\(618\) 0 0
\(619\) 3.21885 9.90659i 0.129376 0.398180i −0.865297 0.501260i \(-0.832870\pi\)
0.994673 + 0.103081i \(0.0328700\pi\)
\(620\) 12.5623 38.6628i 0.504514 1.55274i
\(621\) 5.75329 + 17.7068i 0.230872 + 0.710550i
\(622\) 0 0
\(623\) 10.8541 + 7.88597i 0.434860 + 0.315945i
\(624\) −1.52786 −0.0611635
\(625\) 7.72542 + 23.7764i 0.309017 + 0.951057i
\(626\) 0 0
\(627\) 6.73607 + 4.89404i 0.269013 + 0.195449i
\(628\) −8.88854 27.3561i −0.354692 1.09163i
\(629\) −10.9443 33.6830i −0.436377 1.34303i
\(630\) 0 0
\(631\) −8.89261 + 27.3686i −0.354009 + 1.08953i 0.602573 + 0.798064i \(0.294142\pi\)
−0.956582 + 0.291464i \(0.905858\pi\)
\(632\) 0 0
\(633\) 0.416408 1.28157i 0.0165507 0.0509379i
\(634\) 0 0
\(635\) −11.1180 + 8.07772i −0.441206 + 0.320555i
\(636\) −6.00000 4.35926i −0.237915 0.172856i
\(637\) 1.61803 1.17557i 0.0641088 0.0465778i
\(638\) 0 0
\(639\) 14.6074 + 10.6129i 0.577859 + 0.419839i
\(640\) 0 0
\(641\) 20.0344 14.5559i 0.791313 0.574922i −0.117040 0.993127i \(-0.537341\pi\)
0.908353 + 0.418205i \(0.137341\pi\)
\(642\) 0 0
\(643\) 17.2148 0.678885 0.339442 0.940627i \(-0.389762\pi\)
0.339442 + 0.940627i \(0.389762\pi\)
\(644\) −15.4377 + 47.5123i −0.608330 + 1.87225i
\(645\) 5.72949 0.225598
\(646\) 0 0
\(647\) −9.72542 29.9318i −0.382346 1.17674i −0.938387 0.345585i \(-0.887680\pi\)
0.556041 0.831155i \(-0.312320\pi\)
\(648\) 0 0
\(649\) 20.3262 0.797875
\(650\) 0 0
\(651\) −10.4164 −0.408251
\(652\) 15.3262 + 11.1352i 0.600222 + 0.436087i
\(653\) 7.01064 + 21.5765i 0.274348 + 0.844355i 0.989391 + 0.145275i \(0.0464068\pi\)
−0.715044 + 0.699080i \(0.753593\pi\)
\(654\) 0 0
\(655\) −25.6525 18.6376i −1.00233 0.728232i
\(656\) 0.763932 2.35114i 0.0298265 0.0917966i
\(657\) −22.4164 −0.874547
\(658\) 0 0
\(659\) −16.8992 + 12.2780i −0.658299 + 0.478282i −0.866088 0.499892i \(-0.833373\pi\)
0.207789 + 0.978174i \(0.433373\pi\)
\(660\) −1.38197 + 4.25325i −0.0537930 + 0.165558i
\(661\) 8.20820 + 5.96361i 0.319262 + 0.231958i 0.735861 0.677133i \(-0.236778\pi\)
−0.416598 + 0.909091i \(0.636778\pi\)
\(662\) 0 0
\(663\) 1.00000 0.726543i 0.0388368 0.0282166i
\(664\) 0 0
\(665\) −45.1869 32.8302i −1.75227 1.27310i
\(666\) 0 0
\(667\) −2.57295 + 7.91872i −0.0996250 + 0.306614i
\(668\) 20.4721 0.792091
\(669\) −1.09424 + 3.36771i −0.0423056 + 0.130203i
\(670\) 0 0
\(671\) 7.92705 + 24.3970i 0.306020 + 0.941834i
\(672\) 0 0
\(673\) 2.19098 + 1.59184i 0.0844562 + 0.0613610i 0.629212 0.777234i \(-0.283378\pi\)
−0.544756 + 0.838595i \(0.683378\pi\)
\(674\) 0 0
\(675\) −3.45492 10.6331i −0.132980 0.409270i
\(676\) 24.0000 0.923077
\(677\) −29.9894 21.7885i −1.15258 0.837402i −0.163762 0.986500i \(-0.552363\pi\)
−0.988822 + 0.149098i \(0.952363\pi\)
\(678\) 0 0
\(679\) −2.78115 8.55951i −0.106731 0.328484i
\(680\) 0 0
\(681\) 2.83282 8.71851i 0.108554 0.334094i
\(682\) 0 0
\(683\) 12.5729 38.6956i 0.481091 1.48064i −0.356474 0.934305i \(-0.616021\pi\)
0.837564 0.546339i \(-0.183979\pi\)
\(684\) −38.4508 + 27.9362i −1.47020 + 1.06817i
\(685\) −0.854102 2.62866i −0.0326336 0.100436i
\(686\) 0 0
\(687\) −1.01722 + 0.739054i −0.0388094 + 0.0281967i
\(688\) 21.7082 15.7719i 0.827618 0.601299i
\(689\) −7.85410 5.70634i −0.299217 0.217394i
\(690\) 0 0
\(691\) −41.0238 + 29.8055i −1.56062 + 1.13386i −0.625119 + 0.780530i \(0.714949\pi\)
−0.935500 + 0.353326i \(0.885051\pi\)
\(692\) 2.23607 6.88191i 0.0850026 0.261611i
\(693\) −22.4164 −0.851529
\(694\) 0 0
\(695\) −3.78115 + 2.74717i −0.143427 + 0.104206i
\(696\) 0 0
\(697\) 0.618034 + 1.90211i 0.0234097 + 0.0720477i
\(698\) 0 0
\(699\) −5.39512 −0.204062
\(700\) 9.27051 28.5317i 0.350392 1.07840i
\(701\) −12.5066 −0.472367 −0.236183 0.971708i \(-0.575897\pi\)
−0.236183 + 0.971708i \(0.575897\pi\)
\(702\) 0 0
\(703\) −28.1591 86.6647i −1.06204 3.26862i
\(704\) 6.47214 + 19.9192i 0.243928 + 0.750733i
\(705\) −1.28115 3.94298i −0.0482510 0.148501i
\(706\) 0 0
\(707\) −11.1246 −0.418384
\(708\) 1.83282 5.64083i 0.0688814 0.211995i
\(709\) −22.3992 + 16.2740i −0.841219 + 0.611181i −0.922711 0.385493i \(-0.874032\pi\)
0.0814918 + 0.996674i \(0.474032\pi\)
\(710\) 0 0
\(711\) −32.1976 23.3929i −1.20750 0.877302i
\(712\) 0 0
\(713\) 61.2320 44.4877i 2.29316 1.66608i
\(714\) 0 0
\(715\) −1.80902 + 5.56758i −0.0676534 + 0.208216i
\(716\) −41.8885 + 30.4338i −1.56545 + 1.13736i
\(717\) −1.74013 + 5.35558i −0.0649865 + 0.200008i
\(718\) 0 0
\(719\) −12.4549 + 38.3323i −0.464490 + 1.42955i 0.395133 + 0.918624i \(0.370699\pi\)
−0.859623 + 0.510929i \(0.829301\pi\)
\(720\) −20.6525 15.0049i −0.769672 0.559200i
\(721\) −8.42705 25.9358i −0.313840 0.965900i
\(722\) 0 0
\(723\) −3.05573 2.22012i −0.113644 0.0825670i
\(724\) −20.0000 −0.743294
\(725\) 1.54508 4.75528i 0.0573830 0.176607i
\(726\) 0 0
\(727\) 7.18034 + 5.21682i 0.266304 + 0.193481i 0.712922 0.701244i \(-0.247372\pi\)
−0.446618 + 0.894725i \(0.647372\pi\)
\(728\) 0 0
\(729\) −6.00658 18.4863i −0.222466 0.684679i
\(730\) 0 0
\(731\) −6.70820 + 20.6457i −0.248112 + 0.763610i
\(732\) 7.48529 0.276664
\(733\) −8.36475 + 25.7440i −0.308959 + 0.950878i 0.669211 + 0.743072i \(0.266632\pi\)
−0.978170 + 0.207806i \(0.933368\pi\)
\(734\) 0 0
\(735\) −1.70820 −0.0630081
\(736\) 0 0
\(737\) −25.9164 + 18.8294i −0.954643 + 0.693589i
\(738\) 0 0
\(739\) 13.5172 + 9.82084i 0.497239 + 0.361265i 0.807961 0.589235i \(-0.200571\pi\)
−0.310722 + 0.950501i \(0.600571\pi\)
\(740\) 39.5967 28.7687i 1.45561 1.05756i
\(741\) 2.57295 1.86936i 0.0945196 0.0686725i
\(742\) 0 0
\(743\) −29.9443 −1.09855 −0.549274 0.835642i \(-0.685096\pi\)
−0.549274 + 0.835642i \(0.685096\pi\)
\(744\) 0 0
\(745\) 10.2016 31.3974i 0.373759 1.15031i
\(746\) 0 0
\(747\) 7.93769 + 24.4297i 0.290425 + 0.893836i
\(748\) −13.7082 9.95959i −0.501222 0.364159i
\(749\) −7.41641 −0.270990
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) −15.7082 11.4127i −0.572819 0.416178i
\(753\) 0.871323 + 2.68166i 0.0317528 + 0.0977250i
\(754\) 0 0
\(755\) 3.05166 9.39205i 0.111061 0.341812i
\(756\) −4.14590 + 12.7598i −0.150785 + 0.464068i
\(757\) −32.4721 −1.18022 −0.590110 0.807323i \(-0.700916\pi\)
−0.590110 + 0.807323i \(0.700916\pi\)
\(758\) 0 0
\(759\) −6.73607 + 4.89404i −0.244504 + 0.177642i
\(760\) 0 0
\(761\) 25.9164 + 18.8294i 0.939469 + 0.682564i 0.948293 0.317397i \(-0.102809\pi\)
−0.00882375 + 0.999961i \(0.502809\pi\)
\(762\) 0 0
\(763\) −5.07295 + 3.68571i −0.183653 + 0.133432i
\(764\) 43.5967 + 31.6749i 1.57727 + 1.14596i
\(765\) 20.6525 0.746692
\(766\) 0 0
\(767\) 2.39919 7.38394i 0.0866296 0.266619i
\(768\) 6.11146 0.220528
\(769\) −5.73607 + 17.6538i −0.206848 + 0.636612i 0.792785 + 0.609502i \(0.208631\pi\)
−0.999632 + 0.0271104i \(0.991369\pi\)
\(770\) 0 0
\(771\) 0.242646 + 0.746787i 0.00873867 + 0.0268949i
\(772\) 12.5279 + 38.5568i 0.450888 + 1.38769i
\(773\) 10.0623 + 7.31069i 0.361916 + 0.262947i 0.753851 0.657046i \(-0.228194\pi\)
−0.391935 + 0.919993i \(0.628194\pi\)
\(774\) 0 0
\(775\) −36.7705 + 26.7153i −1.32084 + 0.959643i
\(776\) 0 0
\(777\) −10.1459 7.37143i −0.363982 0.264448i
\(778\) 0 0
\(779\) 1.59017 + 4.89404i 0.0569738 + 0.175347i
\(780\) 1.38197 + 1.00406i 0.0494823 + 0.0359510i
\(781\) −5.11803 + 15.7517i −0.183138 + 0.563640i
\(782\) 0 0
\(783\) −0.690983 + 2.12663i −0.0246937 + 0.0759994i
\(784\) −6.47214 + 4.70228i −0.231148 + 0.167939i
\(785\) −9.93769 + 30.5851i −0.354692 + 1.09163i
\(786\) 0 0
\(787\) −28.5344 + 20.7315i −1.01714 + 0.738998i −0.965695 0.259678i \(-0.916384\pi\)
−0.0514478 + 0.998676i \(0.516384\pi\)
\(788\) −19.8541 + 14.4248i −0.707273 + 0.513864i
\(789\) 4.73607 + 3.44095i 0.168608 + 0.122501i
\(790\) 0 0
\(791\) −14.7812 + 10.7391i −0.525557 + 0.381840i
\(792\) 0 0
\(793\) 9.79837 0.347950
\(794\) 0 0
\(795\) 2.56231 + 7.88597i 0.0908756 + 0.279686i
\(796\) −6.70820 20.6457i −0.237766 0.731768i
\(797\) 6.29180 + 19.3642i 0.222867 + 0.685914i 0.998501 + 0.0547310i \(0.0174301\pi\)
−0.775634 + 0.631183i \(0.782570\pi\)
\(798\) 0 0
\(799\) 15.7082 0.555716
\(800\) 0 0
\(801\) −12.7639 −0.450991
\(802\) 0 0
\(803\) −6.35410 19.5559i −0.224231 0.690113i
\(804\) 2.88854 + 8.89002i 0.101871 + 0.313527i
\(805\) 45.1869 32.8302i 1.59263 1.15711i
\(806\) 0 0
\(807\) 5.36881 0.188991
\(808\) 0 0
\(809\) 35.3713 25.6988i 1.24359 0.903521i 0.245757 0.969331i \(-0.420963\pi\)
0.997832 + 0.0658107i \(0.0209634\pi\)
\(810\) 0 0
\(811\) −32.0517 23.2869i −1.12549 0.817714i −0.140454 0.990087i \(-0.544856\pi\)
−0.985032 + 0.172374i \(0.944856\pi\)
\(812\) −4.85410 + 3.52671i −0.170346 + 0.123763i
\(813\) −7.54508 + 5.48183i −0.264618 + 0.192256i
\(814\) 0 0
\(815\) −6.54508 20.1437i −0.229264 0.705603i
\(816\) −4.00000 + 2.90617i −0.140028 + 0.101736i
\(817\) −17.2599 + 53.1204i −0.603846 + 1.85845i
\(818\) 0 0
\(819\) −2.64590 + 8.14324i −0.0924552 + 0.284548i
\(820\) −2.23607 + 1.62460i −0.0780869 + 0.0567334i
\(821\) 3.00000 + 9.23305i 0.104701 + 0.322236i 0.989660 0.143433i \(-0.0458140\pi\)
−0.884959 + 0.465668i \(0.845814\pi\)
\(822\) 0 0
\(823\) 21.4615 + 15.5927i 0.748101 + 0.543527i 0.895238 0.445589i \(-0.147006\pi\)
−0.147137 + 0.989116i \(0.547006\pi\)
\(824\) 0 0
\(825\) 4.04508 2.93893i 0.140832 0.102320i
\(826\) 0 0
\(827\) 10.1910 + 7.40418i 0.354375 + 0.257469i 0.750702 0.660641i \(-0.229715\pi\)
−0.396327 + 0.918109i \(0.629715\pi\)
\(828\) −14.6869 45.2017i −0.510406 1.57087i
\(829\) 2.55573 + 7.86572i 0.0887641 + 0.273188i 0.985578 0.169219i \(-0.0541246\pi\)
−0.896814 + 0.442407i \(0.854125\pi\)
\(830\) 0 0
\(831\) 0.645898 1.98787i 0.0224060 0.0689584i
\(832\) 8.00000 0.277350
\(833\) 2.00000 6.15537i 0.0692959 0.213271i
\(834\) 0 0
\(835\) −18.5172 13.4535i −0.640815 0.465579i
\(836\) −35.2705 25.6255i −1.21986 0.886277i
\(837\) 16.4443 11.9475i 0.568397 0.412965i
\(838\) 0 0
\(839\) 25.7254 + 18.6906i 0.888140 + 0.645272i 0.935392 0.353611i \(-0.115046\pi\)
−0.0472522 + 0.998883i \(0.515046\pi\)
\(840\) 0 0
\(841\) −0.809017 + 0.587785i −0.0278971 + 0.0202685i
\(842\) 0 0
\(843\) 1.97871 0.0681505
\(844\) −2.18034 + 6.71040i −0.0750504 + 0.230981i
\(845\) −21.7082 15.7719i −0.746785 0.542571i
\(846\) 0 0
\(847\) 3.84346 + 11.8290i 0.132063 + 0.406448i
\(848\) 31.4164 + 22.8254i 1.07884 + 0.783826i
\(849\) −5.06888 −0.173964
\(850\) 0 0
\(851\) 91.1246 3.12371
\(852\) 3.90983 + 2.84066i 0.133949 + 0.0973193i
\(853\) −11.3435 34.9116i −0.388393 1.19535i −0.933989 0.357302i \(-0.883697\pi\)
0.545596 0.838048i \(-0.316303\pi\)
\(854\) 0 0
\(855\) 53.1378 1.81727
\(856\) 0 0
\(857\) 32.3262 1.10424 0.552122 0.833764i \(-0.313818\pi\)
0.552122 + 0.833764i \(0.313818\pi\)
\(858\) 0 0
\(859\) 10.0451 7.29818i 0.342734 0.249011i −0.403081 0.915165i \(-0.632061\pi\)
0.745814 + 0.666154i \(0.232061\pi\)
\(860\) −30.0000 −1.02299
\(861\) 0.572949 + 0.416272i 0.0195261 + 0.0141865i
\(862\) 0 0
\(863\) −10.6353 + 7.72696i −0.362028 + 0.263029i −0.753898 0.656992i \(-0.771829\pi\)
0.391869 + 0.920021i \(0.371829\pi\)
\(864\) 0 0
\(865\) −6.54508 + 4.75528i −0.222540 + 0.161684i
\(866\) 0 0
\(867\) −0.770510 + 2.37139i −0.0261679 + 0.0805365i
\(868\) 54.5410 1.85124
\(869\) 11.2812 34.7198i 0.382687 1.17779i
\(870\) 0 0
\(871\) 3.78115 + 11.6372i 0.128119 + 0.394311i
\(872\) 0 0
\(873\) 6.92705 + 5.03280i 0.234445 + 0.170334i
\(874\) 0 0
\(875\) −27.1353 + 19.7149i −0.917339 + 0.666486i
\(876\) −6.00000 −0.202721
\(877\) −32.3156 23.4787i −1.09122 0.792818i −0.111615 0.993751i \(-0.535602\pi\)
−0.979605 + 0.200934i \(0.935602\pi\)
\(878\) 0 0
\(879\) −1.22949 3.78398i −0.0414697 0.127631i
\(880\) 7.23607 22.2703i 0.243928 0.750733i
\(881\) −0.993422 + 3.05744i −0.0334692 + 0.103008i −0.966396 0.257060i \(-0.917246\pi\)
0.932926 + 0.360067i \(0.117246\pi\)
\(882\) 0 0
\(883\) 4.98278 15.3354i 0.167684 0.516078i −0.831540 0.555465i \(-0.812540\pi\)
0.999224 + 0.0393867i \(0.0125404\pi\)
\(884\) −5.23607 + 3.80423i −0.176108 + 0.127950i
\(885\) −5.36475 + 3.89772i −0.180334 + 0.131020i
\(886\) 0 0
\(887\) −10.4271 + 7.57570i −0.350106 + 0.254367i −0.748914 0.662668i \(-0.769424\pi\)
0.398807 + 0.917035i \(0.369424\pi\)
\(888\) 0 0
\(889\) −14.9164 10.8374i −0.500280 0.363475i
\(890\) 0 0
\(891\) 16.3262 11.8617i 0.546950 0.397382i
\(892\) 5.72949 17.6336i 0.191838 0.590415i
\(893\) 40.4164 1.35248
\(894\) 0 0
\(895\) 57.8885 1.93500
\(896\) 0 0
\(897\) 0.982779 + 3.02468i 0.0328140 + 0.100991i
\(898\) 0 0
\(899\) 9.09017 0.303174
\(900\) 8.81966 + 27.1441i 0.293989 + 0.904804i
\(901\) −31.4164 −1.04663
\(902\) 0 0
\(903\) 2.37539 + 7.31069i 0.0790480 + 0.243285i
\(904\) 0 0
\(905\) 18.0902 + 13.1433i 0.601338 + 0.436897i
\(906\) 0 0
\(907\) 19.4377 0.645418 0.322709 0.946498i \(-0.395406\pi\)
0.322709 + 0.946498i \(0.395406\pi\)
\(908\) −14.8328 + 45.6507i −0.492244 + 1.51497i
\(909\) 8.56231 6.22088i 0.283994 0.206334i
\(910\) 0 0
\(911\) 34.4164 + 25.0050i 1.14027 + 0.828452i 0.987156 0.159757i \(-0.0510711\pi\)
0.153110 + 0.988209i \(0.451071\pi\)
\(912\) −10.2918 + 7.47743i −0.340795 + 0.247602i
\(913\) −19.0623 + 13.8496i −0.630870 + 0.458354i
\(914\) 0 0
\(915\) −6.77051 4.91906i −0.223826 0.162619i
\(916\) 5.32624 3.86974i 0.175984 0.127860i
\(917\) 13.1459 40.4589i 0.434116 1.33607i
\(918\) 0 0
\(919\) −11.2361 + 34.5811i −0.370644 + 1.14072i 0.575727 + 0.817642i \(0.304719\pi\)
−0.946371 + 0.323082i \(0.895281\pi\)
\(920\) 0 0
\(921\) 1.29837 + 3.99598i 0.0427829 + 0.131672i
\(922\) 0 0
\(923\) 5.11803 + 3.71847i 0.168462 + 0.122395i
\(924\) −6.00000 −0.197386
\(925\) −54.7214 −1.79923
\(926\) 0 0
\(927\) 20.9894 + 15.2497i 0.689381 + 0.500865i
\(928\) 0 0
\(929\) 9.91641 + 30.5196i 0.325347 + 1.00131i 0.971284 + 0.237924i \(0.0764668\pi\)
−0.645937 + 0.763391i \(0.723533\pi\)
\(930\) 0 0
\(931\) 5.14590 15.8374i 0.168650 0.519051i
\(932\) 28.2492 0.925334
\(933\) −0.594235 + 1.82887i −0.0194544 + 0.0598745i
\(934\) 0 0
\(935\) 5.85410 + 18.0171i 0.191450 + 0.589221i
\(936\) 0 0
\(937\) 40.7705 29.6215i 1.33191 0.967693i 0.332214 0.943204i \(-0.392204\pi\)
0.999700 0.0244886i \(-0.00779575\pi\)
\(938\) 0 0
\(939\) 9.70820 + 7.05342i 0.316815 + 0.230180i
\(940\) 6.70820 + 20.6457i 0.218797 + 0.673389i
\(941\) 7.23607 5.25731i 0.235889 0.171383i −0.463561 0.886065i \(-0.653428\pi\)
0.699450 + 0.714682i \(0.253428\pi\)
\(942\) 0 0
\(943\) −5.14590 −0.167573
\(944\) −9.59675 + 29.5358i −0.312348 + 0.961307i
\(945\) 12.1353 8.81678i 0.394760 0.286810i
\(946\) 0 0
\(947\) 10.0279 + 30.8626i 0.325862 + 1.00290i 0.971050 + 0.238876i \(0.0767789\pi\)
−0.645188 + 0.764024i \(0.723221\pi\)
\(948\) −8.61803 6.26137i −0.279901 0.203360i
\(949\) −7.85410 −0.254955
\(950\) 0 0
\(951\) 9.68692 0.314120
\(952\) 0 0
\(953\) −6.25329 19.2456i −0.202564 0.623428i −0.999805 0.0197661i \(-0.993708\pi\)
0.797241 0.603662i \(-0.206292\pi\)
\(954\) 0 0
\(955\) −18.6180 57.3004i −0.602465 1.85420i
\(956\) 9.11146 28.0422i 0.294686 0.906949i
\(957\) −1.00000 −0.0323254
\(958\) 0 0
\(959\) 3.00000 2.17963i 0.0968751 0.0703838i
\(960\) −5.52786 4.01623i −0.178411 0.129623i
\(961\) −41.7705 30.3481i −1.34744 0.978969i
\(962\) 0 0
\(963\) 5.70820 4.14725i 0.183944 0.133643i
\(964\) 16.0000 + 11.6247i 0.515325 + 0.374406i
\(965\) 14.0066 43.1078i 0.450888 1.38769i
\(966\) 0 0
\(967\) −12.4656 + 38.3650i −0.400865 + 1.23374i 0.523433 + 0.852067i \(0.324651\pi\)
−0.924299 + 0.381670i \(0.875349\pi\)
\(968\) 0 0
\(969\) 3.18034 9.78808i 0.102167 0.314438i
\(970\) 0 0
\(971\) 12.8607 + 39.5811i 0.412719 + 1.27022i 0.914275 + 0.405093i \(0.132761\pi\)
−0.501557 + 0.865125i \(0.667239\pi\)
\(972\) −5.96556 18.3601i −0.191345 0.588900i
\(973\) −5.07295 3.68571i −0.162631 0.118159i
\(974\) 0 0
\(975\) −0.590170 1.81636i −0.0189006 0.0581700i
\(976\) −39.1935 −1.25455
\(977\) −14.9443 10.8576i −0.478110 0.347367i 0.322484 0.946575i \(-0.395482\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(978\) 0 0
\(979\) −3.61803 11.1352i −0.115633 0.355881i
\(980\) 8.94427 0.285714
\(981\) 1.84346 5.67358i 0.0588571 0.181144i
\(982\) 0 0
\(983\) −3.08359 + 9.49032i −0.0983513 + 0.302694i −0.988113 0.153732i \(-0.950871\pi\)
0.889761 + 0.456426i \(0.150871\pi\)
\(984\) 0 0
\(985\) 27.4377 0.874238
\(986\) 0 0
\(987\) 4.50000 3.26944i 0.143237 0.104067i
\(988\) −13.4721 + 9.78808i −0.428606 + 0.311400i
\(989\) −45.1869 32.8302i −1.43686 1.04394i
\(990\) 0 0
\(991\) 24.3713 17.7068i 0.774181 0.562475i −0.129046 0.991639i \(-0.541192\pi\)
0.903227 + 0.429163i \(0.141192\pi\)
\(992\) 0 0
\(993\) 7.31308 0.232074
\(994\) 0 0
\(995\) −7.50000 + 23.0826i −0.237766 + 0.731768i
\(996\) 2.12461 + 6.53888i 0.0673209 + 0.207192i
\(997\) 0.263932 + 0.812299i 0.00835881 + 0.0257258i 0.955149 0.296126i \(-0.0956948\pi\)
−0.946790 + 0.321852i \(0.895695\pi\)
\(998\) 0 0
\(999\) 24.4721 0.774264
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.k.a.291.1 4
25.11 even 5 inner 725.2.k.a.436.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.k.a.291.1 4 1.1 even 1 trivial
725.2.k.a.436.1 yes 4 25.11 even 5 inner