Properties

Label 725.2.k.a.146.1
Level $725$
Weight $2$
Character 725.146
Analytic conductor $5.789$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(146,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([6, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 146.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 725.146
Dual form 725.2.k.a.581.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.11803 - 1.53884i) q^{3} +(1.61803 + 1.17557i) q^{4} +(-1.80902 + 1.31433i) q^{5} -3.00000 q^{7} +(1.19098 + 3.66547i) q^{9} +(-0.118034 + 0.363271i) q^{11} +(-1.61803 - 4.97980i) q^{12} +(-0.309017 - 0.951057i) q^{13} +5.85410 q^{15} +(1.23607 + 3.80423i) q^{16} +(1.00000 - 0.726543i) q^{17} +(5.92705 - 4.30625i) q^{19} -4.47214 q^{20} +(6.35410 + 4.61653i) q^{21} +(2.26393 - 6.96767i) q^{23} +(1.54508 - 4.75528i) q^{25} +(0.690983 - 2.12663i) q^{27} +(-4.85410 - 3.52671i) q^{28} +(-0.809017 - 0.587785i) q^{29} +(1.69098 - 1.22857i) q^{31} +(0.809017 - 0.587785i) q^{33} +(5.42705 - 3.94298i) q^{35} +(-2.38197 + 7.33094i) q^{36} +(2.14590 + 6.60440i) q^{37} +(-0.809017 + 2.48990i) q^{39} +(-0.500000 - 1.53884i) q^{41} +6.70820 q^{43} +(-0.618034 + 0.449028i) q^{44} +(-6.97214 - 5.06555i) q^{45} +(1.50000 + 1.08981i) q^{47} +(3.23607 - 9.95959i) q^{48} +2.00000 q^{49} -3.23607 q^{51} +(0.618034 - 1.90211i) q^{52} +(-3.00000 - 2.17963i) q^{53} +(-0.263932 - 0.812299i) q^{55} -19.1803 q^{57} +(-3.78115 - 11.6372i) q^{59} +(9.47214 + 6.88191i) q^{60} +(4.57295 - 14.0741i) q^{61} +(-3.57295 - 10.9964i) q^{63} +(-2.47214 + 7.60845i) q^{64} +(1.80902 + 1.31433i) q^{65} +(6.28115 - 4.56352i) q^{67} +2.47214 q^{68} +(-15.5172 + 11.2739i) q^{69} +(7.54508 + 5.48183i) q^{71} +(0.354102 - 1.08981i) q^{73} +(-10.5902 + 7.69421i) q^{75} +14.6525 q^{76} +(0.354102 - 1.08981i) q^{77} +(-3.19098 - 2.31838i) q^{79} +(-7.23607 - 5.25731i) q^{80} +(4.61803 - 3.35520i) q^{81} +(7.28115 - 5.29007i) q^{83} +(4.85410 + 14.9394i) q^{84} +(-0.854102 + 2.62866i) q^{85} +(0.809017 + 2.48990i) q^{87} +(-1.38197 + 4.25325i) q^{89} +(0.927051 + 2.85317i) q^{91} +(11.8541 - 8.61251i) q^{92} -5.47214 q^{93} +(-5.06231 + 15.5802i) q^{95} +(-2.42705 - 1.76336i) q^{97} -1.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 2 q^{4} - 5 q^{5} - 12 q^{7} + 7 q^{9} + 4 q^{11} - 2 q^{12} + q^{13} + 10 q^{15} - 4 q^{16} + 4 q^{17} + 17 q^{19} + 12 q^{21} + 18 q^{23} - 5 q^{25} + 5 q^{27} - 6 q^{28} - q^{29} + 9 q^{31}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(3\) −2.11803 1.53884i −1.22285 0.888451i −0.226514 0.974008i \(-0.572733\pi\)
−0.996333 + 0.0855571i \(0.972733\pi\)
\(4\) 1.61803 + 1.17557i 0.809017 + 0.587785i
\(5\) −1.80902 + 1.31433i −0.809017 + 0.587785i
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 1.19098 + 3.66547i 0.396994 + 1.22182i
\(10\) 0 0
\(11\) −0.118034 + 0.363271i −0.0355886 + 0.109530i −0.967273 0.253739i \(-0.918340\pi\)
0.931684 + 0.363269i \(0.118340\pi\)
\(12\) −1.61803 4.97980i −0.467086 1.43754i
\(13\) −0.309017 0.951057i −0.0857059 0.263776i 0.899014 0.437919i \(-0.144284\pi\)
−0.984720 + 0.174143i \(0.944284\pi\)
\(14\) 0 0
\(15\) 5.85410 1.51152
\(16\) 1.23607 + 3.80423i 0.309017 + 0.951057i
\(17\) 1.00000 0.726543i 0.242536 0.176212i −0.459877 0.887983i \(-0.652106\pi\)
0.702412 + 0.711770i \(0.252106\pi\)
\(18\) 0 0
\(19\) 5.92705 4.30625i 1.35976 0.987923i 0.361299 0.932450i \(-0.382334\pi\)
0.998460 0.0554724i \(-0.0176665\pi\)
\(20\) −4.47214 −1.00000
\(21\) 6.35410 + 4.61653i 1.38658 + 1.00741i
\(22\) 0 0
\(23\) 2.26393 6.96767i 0.472062 1.45286i −0.377816 0.925881i \(-0.623325\pi\)
0.849879 0.526978i \(-0.176675\pi\)
\(24\) 0 0
\(25\) 1.54508 4.75528i 0.309017 0.951057i
\(26\) 0 0
\(27\) 0.690983 2.12663i 0.132980 0.409270i
\(28\) −4.85410 3.52671i −0.917339 0.666486i
\(29\) −0.809017 0.587785i −0.150231 0.109149i
\(30\) 0 0
\(31\) 1.69098 1.22857i 0.303710 0.220658i −0.425483 0.904966i \(-0.639896\pi\)
0.729193 + 0.684308i \(0.239896\pi\)
\(32\) 0 0
\(33\) 0.809017 0.587785i 0.140832 0.102320i
\(34\) 0 0
\(35\) 5.42705 3.94298i 0.917339 0.666486i
\(36\) −2.38197 + 7.33094i −0.396994 + 1.22182i
\(37\) 2.14590 + 6.60440i 0.352783 + 1.08576i 0.957284 + 0.289151i \(0.0933729\pi\)
−0.604500 + 0.796605i \(0.706627\pi\)
\(38\) 0 0
\(39\) −0.809017 + 2.48990i −0.129546 + 0.398703i
\(40\) 0 0
\(41\) −0.500000 1.53884i −0.0780869 0.240327i 0.904391 0.426704i \(-0.140325\pi\)
−0.982478 + 0.186377i \(0.940325\pi\)
\(42\) 0 0
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) −0.618034 + 0.449028i −0.0931721 + 0.0676935i
\(45\) −6.97214 5.06555i −1.03934 0.755128i
\(46\) 0 0
\(47\) 1.50000 + 1.08981i 0.218797 + 0.158966i 0.691785 0.722103i \(-0.256825\pi\)
−0.472988 + 0.881069i \(0.656825\pi\)
\(48\) 3.23607 9.95959i 0.467086 1.43754i
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −3.23607 −0.453140
\(52\) 0.618034 1.90211i 0.0857059 0.263776i
\(53\) −3.00000 2.17963i −0.412082 0.299395i 0.362362 0.932037i \(-0.381970\pi\)
−0.774444 + 0.632642i \(0.781970\pi\)
\(54\) 0 0
\(55\) −0.263932 0.812299i −0.0355886 0.109530i
\(56\) 0 0
\(57\) −19.1803 −2.54050
\(58\) 0 0
\(59\) −3.78115 11.6372i −0.492264 1.51503i −0.821177 0.570673i \(-0.806682\pi\)
0.328913 0.944360i \(-0.393318\pi\)
\(60\) 9.47214 + 6.88191i 1.22285 + 0.888451i
\(61\) 4.57295 14.0741i 0.585506 1.80200i −0.0117222 0.999931i \(-0.503731\pi\)
0.597228 0.802071i \(-0.296269\pi\)
\(62\) 0 0
\(63\) −3.57295 10.9964i −0.450149 1.38542i
\(64\) −2.47214 + 7.60845i −0.309017 + 0.951057i
\(65\) 1.80902 + 1.31433i 0.224381 + 0.163022i
\(66\) 0 0
\(67\) 6.28115 4.56352i 0.767365 0.557523i −0.133795 0.991009i \(-0.542717\pi\)
0.901160 + 0.433486i \(0.142717\pi\)
\(68\) 2.47214 0.299791
\(69\) −15.5172 + 11.2739i −1.86805 + 1.35722i
\(70\) 0 0
\(71\) 7.54508 + 5.48183i 0.895437 + 0.650573i 0.937290 0.348551i \(-0.113326\pi\)
−0.0418530 + 0.999124i \(0.513326\pi\)
\(72\) 0 0
\(73\) 0.354102 1.08981i 0.0414445 0.127553i −0.928193 0.372098i \(-0.878639\pi\)
0.969638 + 0.244545i \(0.0786386\pi\)
\(74\) 0 0
\(75\) −10.5902 + 7.69421i −1.22285 + 0.888451i
\(76\) 14.6525 1.68075
\(77\) 0.354102 1.08981i 0.0403537 0.124196i
\(78\) 0 0
\(79\) −3.19098 2.31838i −0.359014 0.260839i 0.393627 0.919270i \(-0.371220\pi\)
−0.752641 + 0.658432i \(0.771220\pi\)
\(80\) −7.23607 5.25731i −0.809017 0.587785i
\(81\) 4.61803 3.35520i 0.513115 0.372800i
\(82\) 0 0
\(83\) 7.28115 5.29007i 0.799210 0.580660i −0.111472 0.993768i \(-0.535557\pi\)
0.910682 + 0.413107i \(0.135557\pi\)
\(84\) 4.85410 + 14.9394i 0.529626 + 1.63002i
\(85\) −0.854102 + 2.62866i −0.0926404 + 0.285118i
\(86\) 0 0
\(87\) 0.809017 + 2.48990i 0.0867357 + 0.266945i
\(88\) 0 0
\(89\) −1.38197 + 4.25325i −0.146488 + 0.450844i −0.997199 0.0747893i \(-0.976172\pi\)
0.850711 + 0.525633i \(0.176172\pi\)
\(90\) 0 0
\(91\) 0.927051 + 2.85317i 0.0971813 + 0.299093i
\(92\) 11.8541 8.61251i 1.23588 0.897916i
\(93\) −5.47214 −0.567434
\(94\) 0 0
\(95\) −5.06231 + 15.5802i −0.519382 + 1.59849i
\(96\) 0 0
\(97\) −2.42705 1.76336i −0.246430 0.179042i 0.457713 0.889100i \(-0.348669\pi\)
−0.704143 + 0.710058i \(0.748669\pi\)
\(98\) 0 0
\(99\) −1.47214 −0.147955
\(100\) 8.09017 5.87785i 0.809017 0.587785i
\(101\) −9.70820 −0.966002 −0.483001 0.875620i \(-0.660453\pi\)
−0.483001 + 0.875620i \(0.660453\pi\)
\(102\) 0 0
\(103\) 1.69098 + 1.22857i 0.166618 + 0.121055i 0.667969 0.744189i \(-0.267164\pi\)
−0.501352 + 0.865244i \(0.667164\pi\)
\(104\) 0 0
\(105\) −17.5623 −1.71391
\(106\) 0 0
\(107\) −6.47214 −0.625685 −0.312842 0.949805i \(-0.601281\pi\)
−0.312842 + 0.949805i \(0.601281\pi\)
\(108\) 3.61803 2.62866i 0.348145 0.252942i
\(109\) 2.80902 + 8.64527i 0.269055 + 0.828066i 0.990731 + 0.135836i \(0.0433719\pi\)
−0.721676 + 0.692231i \(0.756628\pi\)
\(110\) 0 0
\(111\) 5.61803 17.2905i 0.533240 1.64114i
\(112\) −3.70820 11.4127i −0.350392 1.07840i
\(113\) 1.57295 + 4.84104i 0.147971 + 0.455407i 0.997381 0.0723261i \(-0.0230422\pi\)
−0.849410 + 0.527733i \(0.823042\pi\)
\(114\) 0 0
\(115\) 5.06231 + 15.5802i 0.472062 + 1.45286i
\(116\) −0.618034 1.90211i −0.0573830 0.176607i
\(117\) 3.11803 2.26538i 0.288262 0.209435i
\(118\) 0 0
\(119\) −3.00000 + 2.17963i −0.275010 + 0.199806i
\(120\) 0 0
\(121\) 8.78115 + 6.37988i 0.798287 + 0.579989i
\(122\) 0 0
\(123\) −1.30902 + 4.02874i −0.118030 + 0.363259i
\(124\) 4.18034 0.375406
\(125\) 3.45492 + 10.6331i 0.309017 + 0.951057i
\(126\) 0 0
\(127\) −3.97214 + 12.2250i −0.352470 + 1.08479i 0.604992 + 0.796232i \(0.293176\pi\)
−0.957462 + 0.288560i \(0.906824\pi\)
\(128\) 0 0
\(129\) −14.2082 10.3229i −1.25096 0.908878i
\(130\) 0 0
\(131\) −6.61803 + 4.80828i −0.578220 + 0.420102i −0.838082 0.545544i \(-0.816323\pi\)
0.259862 + 0.965646i \(0.416323\pi\)
\(132\) 2.00000 0.174078
\(133\) −17.7812 + 12.9188i −1.54182 + 1.12020i
\(134\) 0 0
\(135\) 1.54508 + 4.75528i 0.132980 + 0.409270i
\(136\) 0 0
\(137\) −1.00000 3.07768i −0.0854358 0.262944i 0.899208 0.437522i \(-0.144144\pi\)
−0.984643 + 0.174578i \(0.944144\pi\)
\(138\) 0 0
\(139\) 2.80902 8.64527i 0.238258 0.733282i −0.758415 0.651772i \(-0.774026\pi\)
0.996673 0.0815097i \(-0.0259742\pi\)
\(140\) 13.4164 1.13389
\(141\) −1.50000 4.61653i −0.126323 0.388782i
\(142\) 0 0
\(143\) 0.381966 0.0319416
\(144\) −12.4721 + 9.06154i −1.03934 + 0.755128i
\(145\) 2.23607 0.185695
\(146\) 0 0
\(147\) −4.23607 3.07768i −0.349385 0.253843i
\(148\) −4.29180 + 13.2088i −0.352783 + 1.08576i
\(149\) −19.2361 −1.57588 −0.787940 0.615752i \(-0.788852\pi\)
−0.787940 + 0.615752i \(0.788852\pi\)
\(150\) 0 0
\(151\) 22.4164 1.82422 0.912111 0.409944i \(-0.134452\pi\)
0.912111 + 0.409944i \(0.134452\pi\)
\(152\) 0 0
\(153\) 3.85410 + 2.80017i 0.311586 + 0.226380i
\(154\) 0 0
\(155\) −1.44427 + 4.44501i −0.116007 + 0.357032i
\(156\) −4.23607 + 3.07768i −0.339157 + 0.246412i
\(157\) 16.6180 1.32626 0.663132 0.748503i \(-0.269227\pi\)
0.663132 + 0.748503i \(0.269227\pi\)
\(158\) 0 0
\(159\) 3.00000 + 9.23305i 0.237915 + 0.732229i
\(160\) 0 0
\(161\) −6.79180 + 20.9030i −0.535269 + 1.64739i
\(162\) 0 0
\(163\) 0.163119 + 0.502029i 0.0127765 + 0.0393219i 0.957242 0.289290i \(-0.0934192\pi\)
−0.944465 + 0.328612i \(0.893419\pi\)
\(164\) 1.00000 3.07768i 0.0780869 0.240327i
\(165\) −0.690983 + 2.12663i −0.0537930 + 0.165558i
\(166\) 0 0
\(167\) 4.66312 3.38795i 0.360843 0.262168i −0.392561 0.919726i \(-0.628411\pi\)
0.753404 + 0.657558i \(0.228411\pi\)
\(168\) 0 0
\(169\) 9.70820 7.05342i 0.746785 0.542571i
\(170\) 0 0
\(171\) 22.8435 + 16.5967i 1.74688 + 1.26918i
\(172\) 10.8541 + 7.88597i 0.827618 + 0.601299i
\(173\) −0.427051 + 1.31433i −0.0324681 + 0.0999265i −0.965977 0.258627i \(-0.916730\pi\)
0.933509 + 0.358554i \(0.116730\pi\)
\(174\) 0 0
\(175\) −4.63525 + 14.2658i −0.350392 + 1.07840i
\(176\) −1.52786 −0.115167
\(177\) −9.89919 + 30.4666i −0.744068 + 2.29001i
\(178\) 0 0
\(179\) −8.00000 5.81234i −0.597948 0.434435i 0.247202 0.968964i \(-0.420489\pi\)
−0.845150 + 0.534529i \(0.820489\pi\)
\(180\) −5.32624 16.3925i −0.396994 1.22182i
\(181\) −8.09017 + 5.87785i −0.601338 + 0.436897i −0.846353 0.532622i \(-0.821207\pi\)
0.245016 + 0.969519i \(0.421207\pi\)
\(182\) 0 0
\(183\) −31.3435 + 22.7724i −2.31698 + 1.68338i
\(184\) 0 0
\(185\) −12.5623 9.12705i −0.923599 0.671034i
\(186\) 0 0
\(187\) 0.145898 + 0.449028i 0.0106691 + 0.0328362i
\(188\) 1.14590 + 3.52671i 0.0835732 + 0.257212i
\(189\) −2.07295 + 6.37988i −0.150785 + 0.464068i
\(190\) 0 0
\(191\) 2.79837 + 8.61251i 0.202483 + 0.623179i 0.999807 + 0.0196279i \(0.00624817\pi\)
−0.797324 + 0.603551i \(0.793752\pi\)
\(192\) 16.9443 12.3107i 1.22285 0.888451i
\(193\) 13.2705 0.955232 0.477616 0.878569i \(-0.341501\pi\)
0.477616 + 0.878569i \(0.341501\pi\)
\(194\) 0 0
\(195\) −1.80902 5.56758i −0.129546 0.398703i
\(196\) 3.23607 + 2.35114i 0.231148 + 0.167939i
\(197\) −17.2082 12.5025i −1.22603 0.890766i −0.229447 0.973321i \(-0.573692\pi\)
−0.996586 + 0.0825554i \(0.973692\pi\)
\(198\) 0 0
\(199\) 4.14590 0.293895 0.146947 0.989144i \(-0.453055\pi\)
0.146947 + 0.989144i \(0.453055\pi\)
\(200\) 0 0
\(201\) −20.3262 −1.43370
\(202\) 0 0
\(203\) 2.42705 + 1.76336i 0.170346 + 0.123763i
\(204\) −5.23607 3.80423i −0.366598 0.266349i
\(205\) 2.92705 + 2.12663i 0.204434 + 0.148530i
\(206\) 0 0
\(207\) 28.2361 1.96254
\(208\) 3.23607 2.35114i 0.224381 0.163022i
\(209\) 0.864745 + 2.66141i 0.0598157 + 0.184094i
\(210\) 0 0
\(211\) 3.85410 11.8617i 0.265327 0.816594i −0.726290 0.687388i \(-0.758757\pi\)
0.991618 0.129206i \(-0.0412427\pi\)
\(212\) −2.29180 7.05342i −0.157401 0.484431i
\(213\) −7.54508 23.2214i −0.516981 1.59110i
\(214\) 0 0
\(215\) −12.1353 + 8.81678i −0.827618 + 0.601299i
\(216\) 0 0
\(217\) −5.07295 + 3.68571i −0.344374 + 0.250203i
\(218\) 0 0
\(219\) −2.42705 + 1.76336i −0.164005 + 0.119157i
\(220\) 0.527864 1.62460i 0.0355886 0.109530i
\(221\) −1.00000 0.726543i −0.0672673 0.0488725i
\(222\) 0 0
\(223\) 7.50000 23.0826i 0.502237 1.54573i −0.303129 0.952949i \(-0.598031\pi\)
0.805366 0.592778i \(-0.201969\pi\)
\(224\) 0 0
\(225\) 19.2705 1.28470
\(226\) 0 0
\(227\) 7.41641 22.8254i 0.492244 1.51497i −0.328963 0.944343i \(-0.606699\pi\)
0.821208 0.570629i \(-0.193301\pi\)
\(228\) −31.0344 22.5478i −2.05531 1.49327i
\(229\) −13.5172 9.82084i −0.893243 0.648979i 0.0434785 0.999054i \(-0.486156\pi\)
−0.936722 + 0.350075i \(0.886156\pi\)
\(230\) 0 0
\(231\) −2.42705 + 1.76336i −0.159688 + 0.116020i
\(232\) 0 0
\(233\) −21.1353 + 15.3557i −1.38462 + 1.00598i −0.388185 + 0.921582i \(0.626898\pi\)
−0.996432 + 0.0844013i \(0.973102\pi\)
\(234\) 0 0
\(235\) −4.14590 −0.270449
\(236\) 7.56231 23.2744i 0.492264 1.51503i
\(237\) 3.19098 + 9.82084i 0.207277 + 0.637932i
\(238\) 0 0
\(239\) 8.57295 26.3848i 0.554538 1.70669i −0.142622 0.989777i \(-0.545553\pi\)
0.697160 0.716915i \(-0.254447\pi\)
\(240\) 7.23607 + 22.2703i 0.467086 + 1.43754i
\(241\) −8.00000 24.6215i −0.515325 1.58601i −0.782689 0.622413i \(-0.786153\pi\)
0.267364 0.963596i \(-0.413847\pi\)
\(242\) 0 0
\(243\) −21.6525 −1.38901
\(244\) 23.9443 17.3965i 1.53287 1.11370i
\(245\) −3.61803 + 2.62866i −0.231148 + 0.167939i
\(246\) 0 0
\(247\) −5.92705 4.30625i −0.377129 0.274000i
\(248\) 0 0
\(249\) −23.5623 −1.49320
\(250\) 0 0
\(251\) 9.61803 0.607085 0.303542 0.952818i \(-0.401831\pi\)
0.303542 + 0.952818i \(0.401831\pi\)
\(252\) 7.14590 21.9928i 0.450149 1.38542i
\(253\) 2.26393 + 1.64484i 0.142332 + 0.103410i
\(254\) 0 0
\(255\) 5.85410 4.25325i 0.366598 0.266349i
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) 19.9443 1.24409 0.622045 0.782982i \(-0.286302\pi\)
0.622045 + 0.782982i \(0.286302\pi\)
\(258\) 0 0
\(259\) −6.43769 19.8132i −0.400019 1.23113i
\(260\) 1.38197 + 4.25325i 0.0857059 + 0.263776i
\(261\) 1.19098 3.66547i 0.0737200 0.226887i
\(262\) 0 0
\(263\) 0.100813 + 0.310271i 0.00621640 + 0.0191321i 0.954117 0.299435i \(-0.0967983\pi\)
−0.947900 + 0.318567i \(0.896798\pi\)
\(264\) 0 0
\(265\) 8.29180 0.509361
\(266\) 0 0
\(267\) 9.47214 6.88191i 0.579685 0.421166i
\(268\) 15.5279 0.948515
\(269\) −25.8435 + 18.7764i −1.57570 + 1.14482i −0.654282 + 0.756250i \(0.727029\pi\)
−0.921421 + 0.388565i \(0.872971\pi\)
\(270\) 0 0
\(271\) 1.95492 + 1.42033i 0.118753 + 0.0862788i 0.645576 0.763696i \(-0.276617\pi\)
−0.526824 + 0.849975i \(0.676617\pi\)
\(272\) 4.00000 + 2.90617i 0.242536 + 0.176212i
\(273\) 2.42705 7.46969i 0.146892 0.452086i
\(274\) 0 0
\(275\) 1.54508 + 1.12257i 0.0931721 + 0.0676935i
\(276\) −38.3607 −2.30904
\(277\) −1.07295 + 3.30220i −0.0644673 + 0.198410i −0.978102 0.208126i \(-0.933263\pi\)
0.913635 + 0.406536i \(0.133263\pi\)
\(278\) 0 0
\(279\) 6.51722 + 4.73504i 0.390176 + 0.283479i
\(280\) 0 0
\(281\) 13.8992 10.0984i 0.829156 0.602417i −0.0901644 0.995927i \(-0.528739\pi\)
0.919320 + 0.393510i \(0.128739\pi\)
\(282\) 0 0
\(283\) −16.3992 + 11.9147i −0.974830 + 0.708256i −0.956547 0.291577i \(-0.905820\pi\)
−0.0182831 + 0.999833i \(0.505820\pi\)
\(284\) 5.76393 + 17.7396i 0.342026 + 1.05265i
\(285\) 34.6976 25.2093i 2.05531 1.49327i
\(286\) 0 0
\(287\) 1.50000 + 4.61653i 0.0885422 + 0.272505i
\(288\) 0 0
\(289\) −4.78115 + 14.7149i −0.281244 + 0.865581i
\(290\) 0 0
\(291\) 2.42705 + 7.46969i 0.142276 + 0.437881i
\(292\) 1.85410 1.34708i 0.108503 0.0788321i
\(293\) 16.4164 0.959057 0.479528 0.877526i \(-0.340808\pi\)
0.479528 + 0.877526i \(0.340808\pi\)
\(294\) 0 0
\(295\) 22.1353 + 16.0822i 1.28876 + 0.936342i
\(296\) 0 0
\(297\) 0.690983 + 0.502029i 0.0400949 + 0.0291307i
\(298\) 0 0
\(299\) −7.32624 −0.423687
\(300\) −26.1803 −1.51152
\(301\) −20.1246 −1.15996
\(302\) 0 0
\(303\) 20.5623 + 14.9394i 1.18127 + 0.858246i
\(304\) 23.7082 + 17.2250i 1.35976 + 0.987923i
\(305\) 10.2254 + 31.4706i 0.585506 + 1.80200i
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) 1.85410 1.34708i 0.105647 0.0767572i
\(309\) −1.69098 5.20431i −0.0961967 0.296063i
\(310\) 0 0
\(311\) 7.42705 22.8581i 0.421149 1.29616i −0.485484 0.874246i \(-0.661357\pi\)
0.906633 0.421919i \(-0.138643\pi\)
\(312\) 0 0
\(313\) −1.41641 4.35926i −0.0800601 0.246400i 0.903013 0.429613i \(-0.141350\pi\)
−0.983073 + 0.183213i \(0.941350\pi\)
\(314\) 0 0
\(315\) 20.9164 + 15.1967i 1.17851 + 0.856235i
\(316\) −2.43769 7.50245i −0.137131 0.422046i
\(317\) 15.6631 11.3799i 0.879728 0.639160i −0.0534512 0.998570i \(-0.517022\pi\)
0.933180 + 0.359410i \(0.117022\pi\)
\(318\) 0 0
\(319\) 0.309017 0.224514i 0.0173016 0.0125704i
\(320\) −5.52786 17.0130i −0.309017 0.951057i
\(321\) 13.7082 + 9.95959i 0.765117 + 0.555890i
\(322\) 0 0
\(323\) 2.79837 8.61251i 0.155706 0.479213i
\(324\) 11.4164 0.634245
\(325\) −5.00000 −0.277350
\(326\) 0 0
\(327\) 7.35410 22.6336i 0.406683 1.25164i
\(328\) 0 0
\(329\) −4.50000 3.26944i −0.248093 0.180250i
\(330\) 0 0
\(331\) −20.9164 + 15.1967i −1.14967 + 0.835284i −0.988437 0.151632i \(-0.951547\pi\)
−0.161233 + 0.986916i \(0.551547\pi\)
\(332\) 18.0000 0.987878
\(333\) −21.6525 + 15.7314i −1.18655 + 0.862078i
\(334\) 0 0
\(335\) −5.36475 + 16.5110i −0.293107 + 0.902092i
\(336\) −9.70820 + 29.8788i −0.529626 + 1.63002i
\(337\) 0.309017 + 0.951057i 0.0168332 + 0.0518073i 0.959120 0.282999i \(-0.0913292\pi\)
−0.942287 + 0.334806i \(0.891329\pi\)
\(338\) 0 0
\(339\) 4.11803 12.6740i 0.223661 0.688357i
\(340\) −4.47214 + 3.24920i −0.242536 + 0.176212i
\(341\) 0.246711 + 0.759299i 0.0133602 + 0.0411183i
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 13.2533 40.7894i 0.713533 2.19603i
\(346\) 0 0
\(347\) −17.3992 12.6412i −0.934037 0.678618i 0.0129407 0.999916i \(-0.495881\pi\)
−0.946978 + 0.321298i \(0.895881\pi\)
\(348\) −1.61803 + 4.97980i −0.0867357 + 0.266945i
\(349\) −21.3607 −1.14341 −0.571705 0.820459i \(-0.693718\pi\)
−0.571705 + 0.820459i \(0.693718\pi\)
\(350\) 0 0
\(351\) −2.23607 −0.119352
\(352\) 0 0
\(353\) 2.45492 + 1.78360i 0.130662 + 0.0949315i 0.651197 0.758909i \(-0.274267\pi\)
−0.520535 + 0.853841i \(0.674267\pi\)
\(354\) 0 0
\(355\) −20.8541 −1.10682
\(356\) −7.23607 + 5.25731i −0.383511 + 0.278637i
\(357\) 9.70820 0.513813
\(358\) 0 0
\(359\) 5.26393 + 16.2007i 0.277820 + 0.855041i 0.988460 + 0.151485i \(0.0484056\pi\)
−0.710640 + 0.703556i \(0.751594\pi\)
\(360\) 0 0
\(361\) 10.7148 32.9767i 0.563936 1.73562i
\(362\) 0 0
\(363\) −8.78115 27.0256i −0.460891 1.41848i
\(364\) −1.85410 + 5.70634i −0.0971813 + 0.299093i
\(365\) 0.791796 + 2.43690i 0.0414445 + 0.127553i
\(366\) 0 0
\(367\) −20.6803 + 15.0251i −1.07950 + 0.784306i −0.977597 0.210488i \(-0.932495\pi\)
−0.101908 + 0.994794i \(0.532495\pi\)
\(368\) 29.3050 1.52763
\(369\) 5.04508 3.66547i 0.262637 0.190817i
\(370\) 0 0
\(371\) 9.00000 + 6.53888i 0.467257 + 0.339482i
\(372\) −8.85410 6.43288i −0.459064 0.333529i
\(373\) −10.0172 + 30.8298i −0.518672 + 1.59631i 0.257828 + 0.966191i \(0.416993\pi\)
−0.776500 + 0.630117i \(0.783007\pi\)
\(374\) 0 0
\(375\) 9.04508 27.8379i 0.467086 1.43754i
\(376\) 0 0
\(377\) −0.309017 + 0.951057i −0.0159152 + 0.0489819i
\(378\) 0 0
\(379\) −11.1353 8.09024i −0.571980 0.415568i 0.263844 0.964565i \(-0.415010\pi\)
−0.835824 + 0.548998i \(0.815010\pi\)
\(380\) −26.5066 + 19.2582i −1.35976 + 0.987923i
\(381\) 27.2254 19.7804i 1.39480 1.01338i
\(382\) 0 0
\(383\) −7.59017 + 5.51458i −0.387840 + 0.281782i −0.764570 0.644541i \(-0.777048\pi\)
0.376730 + 0.926323i \(0.377048\pi\)
\(384\) 0 0
\(385\) 0.791796 + 2.43690i 0.0403537 + 0.124196i
\(386\) 0 0
\(387\) 7.98936 + 24.5887i 0.406122 + 1.24991i
\(388\) −1.85410 5.70634i −0.0941278 0.289695i
\(389\) 9.59017 29.5155i 0.486241 1.49650i −0.343935 0.938994i \(-0.611760\pi\)
0.830176 0.557502i \(-0.188240\pi\)
\(390\) 0 0
\(391\) −2.79837 8.61251i −0.141520 0.435553i
\(392\) 0 0
\(393\) 21.4164 1.08031
\(394\) 0 0
\(395\) 8.81966 0.443765
\(396\) −2.38197 1.73060i −0.119698 0.0869659i
\(397\) −13.7082 9.95959i −0.687995 0.499858i 0.188005 0.982168i \(-0.439798\pi\)
−0.876000 + 0.482310i \(0.839798\pi\)
\(398\) 0 0
\(399\) 57.5410 2.88065
\(400\) 20.0000 1.00000
\(401\) 7.76393 0.387712 0.193856 0.981030i \(-0.437901\pi\)
0.193856 + 0.981030i \(0.437901\pi\)
\(402\) 0 0
\(403\) −1.69098 1.22857i −0.0842339 0.0611995i
\(404\) −15.7082 11.4127i −0.781512 0.567802i
\(405\) −3.94427 + 12.1392i −0.195992 + 0.603203i
\(406\) 0 0
\(407\) −2.65248 −0.131478
\(408\) 0 0
\(409\) −3.70820 11.4127i −0.183359 0.564321i 0.816557 0.577264i \(-0.195880\pi\)
−0.999916 + 0.0129437i \(0.995880\pi\)
\(410\) 0 0
\(411\) −2.61803 + 8.05748i −0.129138 + 0.397446i
\(412\) 1.29180 + 3.97574i 0.0636422 + 0.195871i
\(413\) 11.3435 + 34.9116i 0.558175 + 1.71789i
\(414\) 0 0
\(415\) −6.21885 + 19.1396i −0.305271 + 0.939528i
\(416\) 0 0
\(417\) −19.2533 + 13.9883i −0.942838 + 0.685012i
\(418\) 0 0
\(419\) −19.1353 + 13.9026i −0.934818 + 0.679185i −0.947168 0.320738i \(-0.896069\pi\)
0.0123494 + 0.999924i \(0.496069\pi\)
\(420\) −28.4164 20.6457i −1.38658 1.00741i
\(421\) 33.1525 + 24.0867i 1.61575 + 1.17391i 0.839077 + 0.544012i \(0.183096\pi\)
0.776676 + 0.629901i \(0.216904\pi\)
\(422\) 0 0
\(423\) −2.20820 + 6.79615i −0.107367 + 0.330440i
\(424\) 0 0
\(425\) −1.90983 5.87785i −0.0926404 0.285118i
\(426\) 0 0
\(427\) −13.7188 + 42.2223i −0.663902 + 2.04328i
\(428\) −10.4721 7.60845i −0.506190 0.367768i
\(429\) −0.809017 0.587785i −0.0390597 0.0283785i
\(430\) 0 0
\(431\) 2.20820 1.60435i 0.106365 0.0772790i −0.533331 0.845907i \(-0.679060\pi\)
0.639697 + 0.768628i \(0.279060\pi\)
\(432\) 8.94427 0.430331
\(433\) 21.0172 15.2699i 1.01002 0.733825i 0.0458092 0.998950i \(-0.485413\pi\)
0.964214 + 0.265125i \(0.0854134\pi\)
\(434\) 0 0
\(435\) −4.73607 3.44095i −0.227077 0.164981i
\(436\) −5.61803 + 17.2905i −0.269055 + 0.828066i
\(437\) −16.5861 51.0468i −0.793421 2.44190i
\(438\) 0 0
\(439\) 4.47214 13.7638i 0.213443 0.656911i −0.785817 0.618459i \(-0.787757\pi\)
0.999260 0.0384522i \(-0.0122427\pi\)
\(440\) 0 0
\(441\) 2.38197 + 7.33094i 0.113427 + 0.349092i
\(442\) 0 0
\(443\) −13.4721 −0.640080 −0.320040 0.947404i \(-0.603696\pi\)
−0.320040 + 0.947404i \(0.603696\pi\)
\(444\) 29.4164 21.3723i 1.39604 1.01428i
\(445\) −3.09017 9.51057i −0.146488 0.450844i
\(446\) 0 0
\(447\) 40.7426 + 29.6013i 1.92706 + 1.40009i
\(448\) 7.41641 22.8254i 0.350392 1.07840i
\(449\) −3.76393 −0.177631 −0.0888155 0.996048i \(-0.528308\pi\)
−0.0888155 + 0.996048i \(0.528308\pi\)
\(450\) 0 0
\(451\) 0.618034 0.0291021
\(452\) −3.14590 + 9.68208i −0.147971 + 0.455407i
\(453\) −47.4787 34.4953i −2.23074 1.62073i
\(454\) 0 0
\(455\) −5.42705 3.94298i −0.254424 0.184850i
\(456\) 0 0
\(457\) 5.36068 0.250762 0.125381 0.992109i \(-0.459985\pi\)
0.125381 + 0.992109i \(0.459985\pi\)
\(458\) 0 0
\(459\) −0.854102 2.62866i −0.0398661 0.122695i
\(460\) −10.1246 + 31.1604i −0.472062 + 1.45286i
\(461\) −5.04508 + 15.5272i −0.234973 + 0.723173i 0.762152 + 0.647398i \(0.224143\pi\)
−0.997125 + 0.0757745i \(0.975857\pi\)
\(462\) 0 0
\(463\) 9.18034 + 28.2542i 0.426647 + 1.31308i 0.901409 + 0.432969i \(0.142534\pi\)
−0.474762 + 0.880114i \(0.657466\pi\)
\(464\) 1.23607 3.80423i 0.0573830 0.176607i
\(465\) 9.89919 7.19218i 0.459064 0.333529i
\(466\) 0 0
\(467\) −9.00000 + 6.53888i −0.416470 + 0.302583i −0.776216 0.630467i \(-0.782863\pi\)
0.359746 + 0.933050i \(0.382863\pi\)
\(468\) 7.70820 0.356312
\(469\) −18.8435 + 13.6906i −0.870110 + 0.632172i
\(470\) 0 0
\(471\) −35.1976 25.5725i −1.62182 1.17832i
\(472\) 0 0
\(473\) −0.791796 + 2.43690i −0.0364068 + 0.112049i
\(474\) 0 0
\(475\) −11.3197 34.8383i −0.519382 1.59849i
\(476\) −7.41641 −0.339930
\(477\) 4.41641 13.5923i 0.202213 0.622349i
\(478\) 0 0
\(479\) 32.9894 + 23.9682i 1.50732 + 1.09513i 0.967348 + 0.253452i \(0.0815660\pi\)
0.539974 + 0.841682i \(0.318434\pi\)
\(480\) 0 0
\(481\) 5.61803 4.08174i 0.256160 0.186111i
\(482\) 0 0
\(483\) 46.5517 33.8218i 2.11817 1.53894i
\(484\) 6.70820 + 20.6457i 0.304918 + 0.938442i
\(485\) 6.70820 0.304604
\(486\) 0 0
\(487\) −12.1631 37.4342i −0.551164 1.69631i −0.705866 0.708346i \(-0.749442\pi\)
0.154702 0.987961i \(-0.450558\pi\)
\(488\) 0 0
\(489\) 0.427051 1.31433i 0.0193119 0.0594360i
\(490\) 0 0
\(491\) −6.01722 18.5191i −0.271553 0.835755i −0.990111 0.140288i \(-0.955197\pi\)
0.718557 0.695468i \(-0.244803\pi\)
\(492\) −6.85410 + 4.97980i −0.309007 + 0.224507i
\(493\) −1.23607 −0.0556697
\(494\) 0 0
\(495\) 2.66312 1.93487i 0.119698 0.0869659i
\(496\) 6.76393 + 4.91428i 0.303710 + 0.220658i
\(497\) −22.6353 16.4455i −1.01533 0.737680i
\(498\) 0 0
\(499\) 23.2148 1.03924 0.519618 0.854399i \(-0.326074\pi\)
0.519618 + 0.854399i \(0.326074\pi\)
\(500\) −6.90983 + 21.2663i −0.309017 + 0.951057i
\(501\) −15.0902 −0.674179
\(502\) 0 0
\(503\) 1.21885 + 0.885544i 0.0543457 + 0.0394845i 0.614626 0.788818i \(-0.289307\pi\)
−0.560281 + 0.828303i \(0.689307\pi\)
\(504\) 0 0
\(505\) 17.5623 12.7598i 0.781512 0.567802i
\(506\) 0 0
\(507\) −31.4164 −1.39525
\(508\) −20.7984 + 15.1109i −0.922779 + 0.670438i
\(509\) −0.673762 2.07363i −0.0298640 0.0919119i 0.935014 0.354612i \(-0.115387\pi\)
−0.964878 + 0.262700i \(0.915387\pi\)
\(510\) 0 0
\(511\) −1.06231 + 3.26944i −0.0469936 + 0.144632i
\(512\) 0 0
\(513\) −5.06231 15.5802i −0.223506 0.687882i
\(514\) 0 0
\(515\) −4.67376 −0.205951
\(516\) −10.8541 33.4055i −0.477825 1.47059i
\(517\) −0.572949 + 0.416272i −0.0251983 + 0.0183076i
\(518\) 0 0
\(519\) 2.92705 2.12663i 0.128483 0.0933486i
\(520\) 0 0
\(521\) 24.1353 + 17.5353i 1.05738 + 0.768235i 0.973603 0.228249i \(-0.0733001\pi\)
0.0837820 + 0.996484i \(0.473300\pi\)
\(522\) 0 0
\(523\) 1.86475 5.73910i 0.0815396 0.250953i −0.901973 0.431792i \(-0.857881\pi\)
0.983513 + 0.180839i \(0.0578814\pi\)
\(524\) −16.3607 −0.714720
\(525\) 31.7705 23.0826i 1.38658 1.00741i
\(526\) 0 0
\(527\) 0.798374 2.45714i 0.0347777 0.107035i
\(528\) 3.23607 + 2.35114i 0.140832 + 0.102320i
\(529\) −24.8156 18.0296i −1.07894 0.783895i
\(530\) 0 0
\(531\) 38.1525 27.7194i 1.65568 1.20292i
\(532\) −43.9574 −1.90580
\(533\) −1.30902 + 0.951057i −0.0566998 + 0.0411948i
\(534\) 0 0
\(535\) 11.7082 8.50651i 0.506190 0.367768i
\(536\) 0 0
\(537\) 8.00000 + 24.6215i 0.345225 + 1.06249i
\(538\) 0 0
\(539\) −0.236068 + 0.726543i −0.0101682 + 0.0312944i
\(540\) −3.09017 + 9.51057i −0.132980 + 0.409270i
\(541\) 3.16312 + 9.73508i 0.135993 + 0.418544i 0.995743 0.0921713i \(-0.0293807\pi\)
−0.859750 + 0.510715i \(0.829381\pi\)
\(542\) 0 0
\(543\) 26.1803 1.12351
\(544\) 0 0
\(545\) −16.4443 11.9475i −0.704395 0.511773i
\(546\) 0 0
\(547\) −12.9894 9.43732i −0.555385 0.403511i 0.274382 0.961621i \(-0.411527\pi\)
−0.829767 + 0.558110i \(0.811527\pi\)
\(548\) 2.00000 6.15537i 0.0854358 0.262944i
\(549\) 57.0344 2.43417
\(550\) 0 0
\(551\) −7.32624 −0.312108
\(552\) 0 0
\(553\) 9.57295 + 6.95515i 0.407083 + 0.295763i
\(554\) 0 0
\(555\) 12.5623 + 38.6628i 0.533240 + 1.64114i
\(556\) 14.7082 10.6861i 0.623767 0.453193i
\(557\) −29.5623 −1.25260 −0.626298 0.779584i \(-0.715430\pi\)
−0.626298 + 0.779584i \(0.715430\pi\)
\(558\) 0 0
\(559\) −2.07295 6.37988i −0.0876764 0.269840i
\(560\) 21.7082 + 15.7719i 0.917339 + 0.666486i
\(561\) 0.381966 1.17557i 0.0161266 0.0496326i
\(562\) 0 0
\(563\) −9.20163 28.3197i −0.387802 1.19353i −0.934427 0.356155i \(-0.884088\pi\)
0.546625 0.837378i \(-0.315912\pi\)
\(564\) 3.00000 9.23305i 0.126323 0.388782i
\(565\) −9.20820 6.69015i −0.387392 0.281457i
\(566\) 0 0
\(567\) −13.8541 + 10.0656i −0.581818 + 0.422715i
\(568\) 0 0
\(569\) −8.59017 + 6.24112i −0.360119 + 0.261642i −0.753102 0.657904i \(-0.771443\pi\)
0.392983 + 0.919546i \(0.371443\pi\)
\(570\) 0 0
\(571\) 18.8435 + 13.6906i 0.788574 + 0.572933i 0.907540 0.419966i \(-0.137958\pi\)
−0.118966 + 0.992898i \(0.537958\pi\)
\(572\) 0.618034 + 0.449028i 0.0258413 + 0.0187748i
\(573\) 7.32624 22.5478i 0.306058 0.941950i
\(574\) 0 0
\(575\) −29.6353 21.5313i −1.23588 0.897916i
\(576\) −30.8328 −1.28470
\(577\) 3.00658 9.25330i 0.125165 0.385220i −0.868766 0.495223i \(-0.835086\pi\)
0.993931 + 0.110004i \(0.0350862\pi\)
\(578\) 0 0
\(579\) −28.1074 20.4212i −1.16810 0.848677i
\(580\) 3.61803 + 2.62866i 0.150231 + 0.109149i
\(581\) −21.8435 + 15.8702i −0.906219 + 0.658407i
\(582\) 0 0
\(583\) 1.14590 0.832544i 0.0474582 0.0344804i
\(584\) 0 0
\(585\) −2.66312 + 8.19624i −0.110106 + 0.338873i
\(586\) 0 0
\(587\) 11.2361 + 34.5811i 0.463762 + 1.42731i 0.860533 + 0.509395i \(0.170131\pi\)
−0.396770 + 0.917918i \(0.629869\pi\)
\(588\) −3.23607 9.95959i −0.133453 0.410727i
\(589\) 4.73200 14.5636i 0.194979 0.600083i
\(590\) 0 0
\(591\) 17.2082 + 52.9614i 0.707851 + 2.17854i
\(592\) −22.4721 + 16.3270i −0.923599 + 0.671034i
\(593\) 40.3262 1.65600 0.828000 0.560728i \(-0.189479\pi\)
0.828000 + 0.560728i \(0.189479\pi\)
\(594\) 0 0
\(595\) 2.56231 7.88597i 0.105044 0.323293i
\(596\) −31.1246 22.6134i −1.27491 0.926279i
\(597\) −8.78115 6.37988i −0.359389 0.261111i
\(598\) 0 0
\(599\) 19.0902 0.780003 0.390002 0.920814i \(-0.372474\pi\)
0.390002 + 0.920814i \(0.372474\pi\)
\(600\) 0 0
\(601\) 11.5836 0.472505 0.236252 0.971692i \(-0.424081\pi\)
0.236252 + 0.971692i \(0.424081\pi\)
\(602\) 0 0
\(603\) 24.2082 + 17.5883i 0.985834 + 0.716251i
\(604\) 36.2705 + 26.3521i 1.47583 + 1.07225i
\(605\) −24.2705 −0.986737
\(606\) 0 0
\(607\) −0.965558 −0.0391908 −0.0195954 0.999808i \(-0.506238\pi\)
−0.0195954 + 0.999808i \(0.506238\pi\)
\(608\) 0 0
\(609\) −2.42705 7.46969i −0.0983491 0.302687i
\(610\) 0 0
\(611\) 0.572949 1.76336i 0.0231790 0.0713377i
\(612\) 2.94427 + 9.06154i 0.119015 + 0.366291i
\(613\) −12.0279 37.0180i −0.485801 1.49514i −0.830818 0.556545i \(-0.812127\pi\)
0.345017 0.938597i \(-0.387873\pi\)
\(614\) 0 0
\(615\) −2.92705 9.00854i −0.118030 0.363259i
\(616\) 0 0
\(617\) −16.2812 + 11.8290i −0.655455 + 0.476216i −0.865125 0.501557i \(-0.832761\pi\)
0.209670 + 0.977772i \(0.432761\pi\)
\(618\) 0 0
\(619\) 13.2812 9.64932i 0.533815 0.387839i −0.287968 0.957640i \(-0.592980\pi\)
0.821783 + 0.569801i \(0.192980\pi\)
\(620\) −7.56231 + 5.49434i −0.303710 + 0.220658i
\(621\) −13.2533 9.62908i −0.531836 0.386402i
\(622\) 0 0
\(623\) 4.14590 12.7598i 0.166102 0.511209i
\(624\) −10.4721 −0.419221
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) 0 0
\(627\) 2.26393 6.96767i 0.0904127 0.278262i
\(628\) 26.8885 + 19.5357i 1.07297 + 0.779558i
\(629\) 6.94427 + 5.04531i 0.276886 + 0.201170i
\(630\) 0 0
\(631\) −34.6074 + 25.1437i −1.37770 + 1.00096i −0.380607 + 0.924737i \(0.624285\pi\)
−0.997091 + 0.0762198i \(0.975715\pi\)
\(632\) 0 0
\(633\) −26.4164 + 19.1926i −1.04996 + 0.762839i
\(634\) 0 0
\(635\) −8.88197 27.3359i −0.352470 1.08479i
\(636\) −6.00000 + 18.4661i −0.237915 + 0.732229i
\(637\) −0.618034 1.90211i −0.0244874 0.0753645i
\(638\) 0 0
\(639\) −11.1074 + 34.1850i −0.439402 + 1.35234i
\(640\) 0 0
\(641\) −9.03444 27.8052i −0.356839 1.09824i −0.954935 0.296813i \(-0.904076\pi\)
0.598096 0.801424i \(-0.295924\pi\)
\(642\) 0 0
\(643\) −34.2148 −1.34930 −0.674650 0.738138i \(-0.735705\pi\)
−0.674650 + 0.738138i \(0.735705\pi\)
\(644\) −35.5623 + 25.8375i −1.40135 + 1.01814i
\(645\) 39.2705 1.54627
\(646\) 0 0
\(647\) 18.2254 + 13.2415i 0.716515 + 0.520579i 0.885269 0.465079i \(-0.153974\pi\)
−0.168754 + 0.985658i \(0.553974\pi\)
\(648\) 0 0
\(649\) 4.67376 0.183461
\(650\) 0 0
\(651\) 16.4164 0.643410
\(652\) −0.326238 + 1.00406i −0.0127765 + 0.0393219i
\(653\) 30.4894 + 22.1518i 1.19314 + 0.866867i 0.993593 0.113021i \(-0.0360526\pi\)
0.199548 + 0.979888i \(0.436053\pi\)
\(654\) 0 0
\(655\) 5.65248 17.3965i 0.220861 0.679739i
\(656\) 5.23607 3.80423i 0.204434 0.148530i
\(657\) 4.41641 0.172300
\(658\) 0 0
\(659\) −4.60081 14.1598i −0.179222 0.551589i 0.820579 0.571533i \(-0.193651\pi\)
−0.999801 + 0.0199440i \(0.993651\pi\)
\(660\) −3.61803 + 2.62866i −0.140832 + 0.102320i
\(661\) −5.20820 + 16.0292i −0.202576 + 0.623464i 0.797229 + 0.603678i \(0.206299\pi\)
−0.999804 + 0.0197862i \(0.993701\pi\)
\(662\) 0 0
\(663\) 1.00000 + 3.07768i 0.0388368 + 0.119527i
\(664\) 0 0
\(665\) 15.1869 46.7405i 0.588923 1.81252i
\(666\) 0 0
\(667\) −5.92705 + 4.30625i −0.229496 + 0.166739i
\(668\) 11.5279 0.446026
\(669\) −51.4058 + 37.3485i −1.98746 + 1.44398i
\(670\) 0 0
\(671\) 4.57295 + 3.32244i 0.176537 + 0.128261i
\(672\) 0 0
\(673\) 3.30902 10.1841i 0.127553 0.392568i −0.866804 0.498648i \(-0.833830\pi\)
0.994358 + 0.106080i \(0.0338299\pi\)
\(674\) 0 0
\(675\) −9.04508 6.57164i −0.348145 0.252942i
\(676\) 24.0000 0.923077
\(677\) −6.51064 + 20.0377i −0.250224 + 0.770111i 0.744509 + 0.667613i \(0.232684\pi\)
−0.994733 + 0.102499i \(0.967316\pi\)
\(678\) 0 0
\(679\) 7.28115 + 5.29007i 0.279425 + 0.203014i
\(680\) 0 0
\(681\) −50.8328 + 36.9322i −1.94792 + 1.41525i
\(682\) 0 0
\(683\) 15.9271 11.5717i 0.609432 0.442778i −0.239782 0.970827i \(-0.577076\pi\)
0.849214 + 0.528049i \(0.177076\pi\)
\(684\) 17.4508 + 53.7082i 0.667250 + 2.05358i
\(685\) 5.85410 + 4.25325i 0.223674 + 0.162508i
\(686\) 0 0
\(687\) 13.5172 + 41.6017i 0.515714 + 1.58720i
\(688\) 8.29180 + 25.5195i 0.316122 + 0.972923i
\(689\) −1.14590 + 3.52671i −0.0436552 + 0.134357i
\(690\) 0 0
\(691\) 11.5238 + 35.4666i 0.438386 + 1.34921i 0.889577 + 0.456786i \(0.150999\pi\)
−0.451191 + 0.892428i \(0.649001\pi\)
\(692\) −2.23607 + 1.62460i −0.0850026 + 0.0617580i
\(693\) 4.41641 0.167765
\(694\) 0 0
\(695\) 6.28115 + 19.3314i 0.238258 + 0.733282i
\(696\) 0 0
\(697\) −1.61803 1.17557i −0.0612874 0.0445279i
\(698\) 0 0
\(699\) 68.3951 2.58694
\(700\) −24.2705 + 17.6336i −0.917339 + 0.666486i
\(701\) 25.5066 0.963370 0.481685 0.876344i \(-0.340025\pi\)
0.481685 + 0.876344i \(0.340025\pi\)
\(702\) 0 0
\(703\) 41.1591 + 29.9038i 1.55234 + 1.12784i
\(704\) −2.47214 1.79611i −0.0931721 0.0676935i
\(705\) 8.78115 + 6.37988i 0.330717 + 0.240280i
\(706\) 0 0
\(707\) 29.1246 1.09534
\(708\) −51.8328 + 37.6587i −1.94800 + 1.41530i
\(709\) −10.1008 31.0871i −0.379344 1.16750i −0.940501 0.339791i \(-0.889644\pi\)
0.561157 0.827709i \(-0.310356\pi\)
\(710\) 0 0
\(711\) 4.69756 14.4576i 0.176172 0.542203i
\(712\) 0 0
\(713\) −4.73200 14.5636i −0.177215 0.545411i
\(714\) 0 0
\(715\) −0.690983 + 0.502029i −0.0258413 + 0.0187748i
\(716\) −6.11146 18.8091i −0.228396 0.702930i
\(717\) −58.7599 + 42.6915i −2.19443 + 1.59434i
\(718\) 0 0
\(719\) −18.0451 + 13.1105i −0.672968 + 0.488940i −0.871017 0.491252i \(-0.836539\pi\)
0.198049 + 0.980192i \(0.436539\pi\)
\(720\) 10.6525 32.7849i 0.396994 1.22182i
\(721\) −5.07295 3.68571i −0.188926 0.137263i
\(722\) 0 0
\(723\) −20.9443 + 64.4598i −0.778926 + 2.39729i
\(724\) −20.0000 −0.743294
\(725\) −4.04508 + 2.93893i −0.150231 + 0.109149i
\(726\) 0 0
\(727\) −15.1803 + 46.7203i −0.563008 + 1.73276i 0.110790 + 0.993844i \(0.464662\pi\)
−0.673798 + 0.738916i \(0.735338\pi\)
\(728\) 0 0
\(729\) 32.0066 + 23.2541i 1.18543 + 0.861264i
\(730\) 0 0
\(731\) 6.70820 4.87380i 0.248112 0.180264i
\(732\) −77.4853 −2.86394
\(733\) −25.1353 + 18.2618i −0.928392 + 0.674516i −0.945599 0.325336i \(-0.894523\pi\)
0.0172067 + 0.999852i \(0.494523\pi\)
\(734\) 0 0
\(735\) 11.7082 0.431864
\(736\) 0 0
\(737\) 0.916408 + 2.82041i 0.0337563 + 0.103891i
\(738\) 0 0
\(739\) −1.01722 + 3.13068i −0.0374191 + 0.115164i −0.968021 0.250868i \(-0.919284\pi\)
0.930602 + 0.366032i \(0.119284\pi\)
\(740\) −9.59675 29.5358i −0.352783 1.08576i
\(741\) 5.92705 + 18.2416i 0.217736 + 0.670121i
\(742\) 0 0
\(743\) −12.0557 −0.442282 −0.221141 0.975242i \(-0.570978\pi\)
−0.221141 + 0.975242i \(0.570978\pi\)
\(744\) 0 0
\(745\) 34.7984 25.2825i 1.27491 0.926279i
\(746\) 0 0
\(747\) 28.0623 + 20.3885i 1.02675 + 0.745975i
\(748\) −0.291796 + 0.898056i −0.0106691 + 0.0328362i
\(749\) 19.4164 0.709460
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) −2.29180 + 7.05342i −0.0835732 + 0.257212i
\(753\) −20.3713 14.8006i −0.742372 0.539365i
\(754\) 0 0
\(755\) −40.5517 + 29.4625i −1.47583 + 1.07225i
\(756\) −10.8541 + 7.88597i −0.394760 + 0.286810i
\(757\) −23.5279 −0.855135 −0.427567 0.903983i \(-0.640629\pi\)
−0.427567 + 0.903983i \(0.640629\pi\)
\(758\) 0 0
\(759\) −2.26393 6.96767i −0.0821755 0.252910i
\(760\) 0 0
\(761\) −0.916408 + 2.82041i −0.0332198 + 0.102240i −0.966292 0.257450i \(-0.917118\pi\)
0.933072 + 0.359690i \(0.117118\pi\)
\(762\) 0 0
\(763\) −8.42705 25.9358i −0.305080 0.938939i
\(764\) −5.59675 + 17.2250i −0.202483 + 0.623179i
\(765\) −10.6525 −0.385141
\(766\) 0 0
\(767\) −9.89919 + 7.19218i −0.357439 + 0.259695i
\(768\) 41.8885 1.51152
\(769\) −1.26393 + 0.918300i −0.0455786 + 0.0331148i −0.610341 0.792139i \(-0.708968\pi\)
0.564763 + 0.825253i \(0.308968\pi\)
\(770\) 0 0
\(771\) −42.2426 30.6911i −1.52133 1.10531i
\(772\) 21.4721 + 15.6004i 0.772799 + 0.561471i
\(773\) −10.0623 + 30.9686i −0.361916 + 1.11386i 0.589974 + 0.807422i \(0.299138\pi\)
−0.951890 + 0.306441i \(0.900862\pi\)
\(774\) 0 0
\(775\) −3.22949 9.93935i −0.116007 0.357032i
\(776\) 0 0
\(777\) −16.8541 + 51.8716i −0.604638 + 1.86088i
\(778\) 0 0
\(779\) −9.59017 6.96767i −0.343603 0.249643i
\(780\) 3.61803 11.1352i 0.129546 0.398703i
\(781\) −2.88197 + 2.09387i −0.103125 + 0.0749246i
\(782\) 0 0
\(783\) −1.80902 + 1.31433i −0.0646490 + 0.0469702i
\(784\) 2.47214 + 7.60845i 0.0882906 + 0.271730i
\(785\) −30.0623 + 21.8415i −1.07297 + 0.779558i
\(786\) 0 0
\(787\) 0.534442 + 1.64484i 0.0190508 + 0.0586323i 0.960130 0.279554i \(-0.0901866\pi\)
−0.941079 + 0.338186i \(0.890187\pi\)
\(788\) −13.1459 40.4589i −0.468303 1.44129i
\(789\) 0.263932 0.812299i 0.00939623 0.0289186i
\(790\) 0 0
\(791\) −4.71885 14.5231i −0.167783 0.516383i
\(792\) 0 0
\(793\) −14.7984 −0.525506
\(794\) 0 0
\(795\) −17.5623 12.7598i −0.622871 0.452542i
\(796\) 6.70820 + 4.87380i 0.237766 + 0.172747i
\(797\) 19.7082 + 14.3188i 0.698100 + 0.507200i 0.879313 0.476244i \(-0.158002\pi\)
−0.181213 + 0.983444i \(0.558002\pi\)
\(798\) 0 0
\(799\) 2.29180 0.0810779
\(800\) 0 0
\(801\) −17.2361 −0.609007
\(802\) 0 0
\(803\) 0.354102 + 0.257270i 0.0124960 + 0.00907887i
\(804\) −32.8885 23.8949i −1.15989 0.842709i
\(805\) −15.1869 46.7405i −0.535269 1.64739i
\(806\) 0 0
\(807\) 83.6312 2.94396
\(808\) 0 0
\(809\) 14.1287 + 43.4836i 0.496738 + 1.52880i 0.814231 + 0.580541i \(0.197159\pi\)
−0.317493 + 0.948261i \(0.602841\pi\)
\(810\) 0 0
\(811\) 11.5517 35.5524i 0.405634 1.24841i −0.514731 0.857352i \(-0.672108\pi\)
0.920365 0.391061i \(-0.127892\pi\)
\(812\) 1.85410 + 5.70634i 0.0650662 + 0.200253i
\(813\) −1.95492 6.01661i −0.0685619 0.211012i
\(814\) 0 0
\(815\) −0.954915 0.693786i −0.0334492 0.0243023i
\(816\) −4.00000 12.3107i −0.140028 0.430962i
\(817\) 39.7599 28.8872i 1.39102 1.01064i
\(818\) 0 0
\(819\) −9.35410 + 6.79615i −0.326859 + 0.237477i
\(820\) 2.23607 + 6.88191i 0.0780869 + 0.240327i
\(821\) 3.00000 + 2.17963i 0.104701 + 0.0760695i 0.638904 0.769287i \(-0.279388\pi\)
−0.534203 + 0.845356i \(0.679388\pi\)
\(822\) 0 0
\(823\) −10.9615 + 33.7360i −0.382094 + 1.17596i 0.556473 + 0.830866i \(0.312154\pi\)
−0.938567 + 0.345098i \(0.887846\pi\)
\(824\) 0 0
\(825\) −1.54508 4.75528i −0.0537930 0.165558i
\(826\) 0 0
\(827\) 11.3090 34.8056i 0.393253 1.21031i −0.537061 0.843544i \(-0.680465\pi\)
0.930314 0.366765i \(-0.119535\pi\)
\(828\) 45.6869 + 33.1935i 1.58773 + 1.15355i
\(829\) 20.4443 + 14.8536i 0.710059 + 0.515888i 0.883193 0.469010i \(-0.155389\pi\)
−0.173134 + 0.984898i \(0.555389\pi\)
\(830\) 0 0
\(831\) 7.35410 5.34307i 0.255111 0.185349i
\(832\) 8.00000 0.277350
\(833\) 2.00000 1.45309i 0.0692959 0.0503464i
\(834\) 0 0
\(835\) −3.98278 + 12.2577i −0.137830 + 0.424196i
\(836\) −1.72949 + 5.32282i −0.0598157 + 0.184094i
\(837\) −1.44427 4.44501i −0.0499213 0.153642i
\(838\) 0 0
\(839\) −2.22542 + 6.84915i −0.0768302 + 0.236459i −0.982094 0.188390i \(-0.939673\pi\)
0.905264 + 0.424849i \(0.139673\pi\)
\(840\) 0 0
\(841\) 0.309017 + 0.951057i 0.0106558 + 0.0327951i
\(842\) 0 0
\(843\) −44.9787 −1.54915
\(844\) 20.1803 14.6619i 0.694636 0.504683i
\(845\) −8.29180 + 25.5195i −0.285246 + 0.877898i
\(846\) 0 0
\(847\) −26.3435 19.1396i −0.905172 0.657646i
\(848\) 4.58359 14.1068i 0.157401 0.484431i
\(849\) 53.0689 1.82132
\(850\) 0 0
\(851\) 50.8754 1.74399
\(852\) 15.0902 46.4428i 0.516981 1.59110i
\(853\) 18.8435 + 13.6906i 0.645188 + 0.468756i 0.861629 0.507539i \(-0.169445\pi\)
−0.216441 + 0.976296i \(0.569445\pi\)
\(854\) 0 0
\(855\) −63.1378 −2.15927
\(856\) 0 0
\(857\) 16.6738 0.569565 0.284782 0.958592i \(-0.408079\pi\)
0.284782 + 0.958592i \(0.408079\pi\)
\(858\) 0 0
\(859\) 4.45492 + 13.7108i 0.152000 + 0.467807i 0.997845 0.0656219i \(-0.0209031\pi\)
−0.845845 + 0.533429i \(0.820903\pi\)
\(860\) −30.0000 −1.02299
\(861\) 3.92705 12.0862i 0.133834 0.411897i
\(862\) 0 0
\(863\) 6.13525 + 18.8824i 0.208847 + 0.642763i 0.999533 + 0.0305428i \(0.00972358\pi\)
−0.790687 + 0.612221i \(0.790276\pi\)
\(864\) 0 0
\(865\) −0.954915 2.93893i −0.0324681 0.0999265i
\(866\) 0 0
\(867\) 32.7705 23.8092i 1.11294 0.808602i
\(868\) −12.5410 −0.425670
\(869\) 1.21885 0.885544i 0.0413466 0.0300400i
\(870\) 0 0
\(871\) −6.28115 4.56352i −0.212829 0.154629i
\(872\) 0 0
\(873\) 3.57295 10.9964i 0.120926 0.372172i
\(874\) 0 0
\(875\) −10.3647 31.8994i −0.350392 1.07840i
\(876\) −6.00000 −0.202721
\(877\) 6.81559 20.9762i 0.230146 0.708317i −0.767582 0.640951i \(-0.778540\pi\)
0.997728 0.0673667i \(-0.0214597\pi\)
\(878\) 0 0
\(879\) −34.7705 25.2623i −1.17278 0.852075i
\(880\) 2.76393 2.00811i 0.0931721 0.0676935i
\(881\) −39.0066 + 28.3399i −1.31416 + 0.954797i −0.314180 + 0.949364i \(0.601729\pi\)
−0.999985 + 0.00543325i \(0.998271\pi\)
\(882\) 0 0
\(883\) 19.5172 14.1801i 0.656807 0.477198i −0.208776 0.977963i \(-0.566948\pi\)
0.865583 + 0.500765i \(0.166948\pi\)
\(884\) −0.763932 2.35114i −0.0256938 0.0790774i
\(885\) −22.1353 68.1253i −0.744068 2.29001i
\(886\) 0 0
\(887\) −7.07295 21.7683i −0.237486 0.730908i −0.996782 0.0801619i \(-0.974456\pi\)
0.759295 0.650746i \(-0.225544\pi\)
\(888\) 0 0
\(889\) 11.9164 36.6749i 0.399663 1.23004i
\(890\) 0 0
\(891\) 0.673762 + 2.07363i 0.0225719 + 0.0694691i
\(892\) 39.2705 28.5317i 1.31487 0.955312i
\(893\) 13.5836 0.454558
\(894\) 0 0
\(895\) 22.1115 0.739104
\(896\) 0 0
\(897\) 15.5172 + 11.2739i 0.518105 + 0.376425i
\(898\) 0 0
\(899\) −2.09017 −0.0697111
\(900\) 31.1803 + 22.6538i 1.03934 + 0.755128i
\(901\) −4.58359 −0.152702
\(902\) 0 0
\(903\) 42.6246 + 30.9686i 1.41846 + 1.03057i
\(904\) 0 0
\(905\) 6.90983 21.2663i 0.229691 0.706915i
\(906\) 0 0
\(907\) 39.5623 1.31364 0.656822 0.754045i \(-0.271900\pi\)
0.656822 + 0.754045i \(0.271900\pi\)
\(908\) 38.8328 28.2137i 1.28871 0.936304i
\(909\) −11.5623 35.5851i −0.383497 1.18028i
\(910\) 0 0
\(911\) 7.58359 23.3399i 0.251256 0.773285i −0.743289 0.668971i \(-0.766735\pi\)
0.994544 0.104315i \(-0.0332649\pi\)
\(912\) −23.7082 72.9663i −0.785057 2.41616i
\(913\) 1.06231 + 3.26944i 0.0351572 + 0.108203i
\(914\) 0 0
\(915\) 26.7705 82.3912i 0.885006 2.72377i
\(916\) −10.3262 31.7809i −0.341189 1.05007i
\(917\) 19.8541 14.4248i 0.655640 0.476350i
\(918\) 0 0
\(919\) −6.76393 + 4.91428i −0.223122 + 0.162107i −0.693731 0.720235i \(-0.744034\pi\)
0.470609 + 0.882342i \(0.344034\pi\)
\(920\) 0 0
\(921\) −23.2984 16.9273i −0.767708 0.557772i
\(922\) 0 0
\(923\) 2.88197 8.86978i 0.0948611 0.291952i
\(924\) −6.00000 −0.197386
\(925\) 34.7214 1.14163
\(926\) 0 0
\(927\) −2.48936 + 7.66145i −0.0817612 + 0.251635i
\(928\) 0 0
\(929\) −16.9164 12.2905i −0.555009 0.403238i 0.274620 0.961553i \(-0.411448\pi\)
−0.829629 + 0.558315i \(0.811448\pi\)
\(930\) 0 0
\(931\) 11.8541 8.61251i 0.388503 0.282264i
\(932\) −52.2492 −1.71148
\(933\) −50.9058 + 36.9852i −1.66658 + 1.21084i
\(934\) 0 0
\(935\) −0.854102 0.620541i −0.0279321 0.0202939i
\(936\) 0 0
\(937\) 7.22949 + 22.2501i 0.236177 + 0.726879i 0.996963 + 0.0778756i \(0.0248137\pi\)
−0.760786 + 0.649003i \(0.775186\pi\)
\(938\) 0 0
\(939\) −3.70820 + 11.4127i −0.121013 + 0.372439i
\(940\) −6.70820 4.87380i −0.218797 0.158966i
\(941\) 2.76393 + 8.50651i 0.0901016 + 0.277304i 0.985946 0.167063i \(-0.0534284\pi\)
−0.895845 + 0.444368i \(0.853428\pi\)
\(942\) 0 0
\(943\) −11.8541 −0.386023
\(944\) 39.5967 28.7687i 1.28876 0.936342i
\(945\) −4.63525 14.2658i −0.150785 0.464068i
\(946\) 0 0
\(947\) 18.9721 + 13.7841i 0.616512 + 0.447922i 0.851701 0.524028i \(-0.175571\pi\)
−0.235190 + 0.971949i \(0.575571\pi\)
\(948\) −6.38197 + 19.6417i −0.207277 + 0.637932i
\(949\) −1.14590 −0.0371974
\(950\) 0 0
\(951\) −50.6869 −1.64364
\(952\) 0 0
\(953\) 12.7533 + 9.26581i 0.413120 + 0.300149i 0.774864 0.632129i \(-0.217819\pi\)
−0.361744 + 0.932277i \(0.617819\pi\)
\(954\) 0 0
\(955\) −16.3820 11.9022i −0.530108 0.385146i
\(956\) 44.8885 32.6134i 1.45180 1.05479i
\(957\) −1.00000 −0.0323254
\(958\) 0 0
\(959\) 3.00000 + 9.23305i 0.0968751 + 0.298151i
\(960\) −14.4721 + 44.5407i −0.467086 + 1.43754i
\(961\) −8.22949 + 25.3278i −0.265467 + 0.817025i
\(962\) 0 0
\(963\) −7.70820 23.7234i −0.248393 0.764476i
\(964\) 16.0000 49.2429i 0.515325 1.58601i
\(965\) −24.0066 + 17.4418i −0.772799 + 0.561471i
\(966\) 0 0
\(967\) −41.5344 + 30.1765i −1.33566 + 0.970412i −0.336066 + 0.941838i \(0.609096\pi\)
−0.999592 + 0.0285736i \(0.990904\pi\)
\(968\) 0 0
\(969\) −19.1803 + 13.9353i −0.616161 + 0.447667i
\(970\) 0 0
\(971\) −31.8607 23.1481i −1.02246 0.742859i −0.0556726 0.998449i \(-0.517730\pi\)
−0.966785 + 0.255590i \(0.917730\pi\)
\(972\) −35.0344 25.4540i −1.12373 0.816438i
\(973\) −8.42705 + 25.9358i −0.270159 + 0.831463i
\(974\) 0 0
\(975\) 10.5902 + 7.69421i 0.339157 + 0.246412i
\(976\) 59.1935 1.89474
\(977\) 2.94427 9.06154i 0.0941956 0.289904i −0.892848 0.450359i \(-0.851296\pi\)
0.987043 + 0.160455i \(0.0512960\pi\)
\(978\) 0 0
\(979\) −1.38197 1.00406i −0.0441678 0.0320898i
\(980\) −8.94427 −0.285714
\(981\) −28.3435 + 20.5927i −0.904937 + 0.657475i
\(982\) 0 0
\(983\) −29.9164 + 21.7355i −0.954185 + 0.693256i −0.951793 0.306741i \(-0.900761\pi\)
−0.00239220 + 0.999997i \(0.500761\pi\)
\(984\) 0 0
\(985\) 47.5623 1.51546
\(986\) 0 0
\(987\) 4.50000 + 13.8496i 0.143237 + 0.440837i
\(988\) −4.52786 13.9353i −0.144051 0.443342i
\(989\) 15.1869 46.7405i 0.482916 1.48626i
\(990\) 0 0
\(991\) 3.12868 + 9.62908i 0.0993857 + 0.305878i 0.988372 0.152056i \(-0.0485895\pi\)
−0.888986 + 0.457934i \(0.848590\pi\)
\(992\) 0 0
\(993\) 67.6869 2.14798
\(994\) 0 0
\(995\) −7.50000 + 5.44907i −0.237766 + 0.172747i
\(996\) −38.1246 27.6992i −1.20802 0.877681i
\(997\) 4.73607 + 3.44095i 0.149993 + 0.108976i 0.660251 0.751045i \(-0.270450\pi\)
−0.510258 + 0.860021i \(0.670450\pi\)
\(998\) 0 0
\(999\) 15.5279 0.491280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.k.a.146.1 4
25.6 even 5 inner 725.2.k.a.581.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.k.a.146.1 4 1.1 even 1 trivial
725.2.k.a.581.1 yes 4 25.6 even 5 inner