Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [725,2,Mod(307,725)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(725, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("725.307");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 725 = 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 725.j (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.78915414654\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Relative dimension: | \(13\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 145) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
307.1 | −2.26693 | − | 2.65401i | 3.13899 | 0 | 6.01647i | 2.59753 | + | 2.59753i | −2.58201 | −4.04378 | 0 | |||||||||||||||
307.2 | −2.23019 | 1.25170i | 2.97373 | 0 | − | 2.79153i | −0.483409 | − | 0.483409i | −2.17160 | 1.43324 | 0 | |||||||||||||||
307.3 | −1.41066 | 2.58872i | −0.0100302 | 0 | − | 3.65181i | 0.510628 | + | 0.510628i | 2.83547 | −3.70148 | 0 | |||||||||||||||
307.4 | −1.26373 | − | 0.913274i | −0.402981 | 0 | 1.15413i | −2.03055 | − | 2.03055i | 3.03672 | 2.16593 | 0 | |||||||||||||||
307.5 | −0.895351 | − | 2.11245i | −1.19835 | 0 | 1.89138i | −1.38465 | − | 1.38465i | 2.86364 | −1.46244 | 0 | |||||||||||||||
307.6 | −0.222351 | 1.02589i | −1.95056 | 0 | − | 0.228107i | 2.35964 | + | 2.35964i | 0.878412 | 1.94756 | 0 | |||||||||||||||
307.7 | 0.342532 | − | 2.64611i | −1.88267 | 0 | − | 0.906377i | 1.55474 | + | 1.55474i | −1.32994 | −4.00189 | 0 | ||||||||||||||
307.8 | 0.839004 | 0.711801i | −1.29607 | 0 | 0.597203i | −1.13987 | − | 1.13987i | −2.76542 | 2.49334 | 0 | ||||||||||||||||
307.9 | 1.36192 | − | 0.228160i | −0.145179 | 0 | − | 0.310736i | −3.45046 | − | 3.45046i | −2.92156 | 2.94794 | 0 | ||||||||||||||
307.10 | 1.77873 | − | 1.38965i | 1.16389 | 0 | − | 2.47181i | 3.41296 | + | 3.41296i | −1.48721 | 1.06888 | 0 | ||||||||||||||
307.11 | 1.82099 | 2.59340i | 1.31599 | 0 | 4.72256i | 0.820621 | + | 0.820621i | −1.24557 | −3.72575 | 0 | ||||||||||||||||
307.12 | 2.41122 | − | 1.85973i | 3.81399 | 0 | − | 4.48422i | 0.291676 | + | 0.291676i | 4.37394 | −0.458586 | 0 | ||||||||||||||
307.13 | 2.73482 | 1.63186i | 5.47925 | 0 | 4.46285i | −1.05887 | − | 1.05887i | 9.51511 | 0.337028 | 0 | ||||||||||||||||
418.1 | −2.26693 | 2.65401i | 3.13899 | 0 | − | 6.01647i | 2.59753 | − | 2.59753i | −2.58201 | −4.04378 | 0 | |||||||||||||||
418.2 | −2.23019 | − | 1.25170i | 2.97373 | 0 | 2.79153i | −0.483409 | + | 0.483409i | −2.17160 | 1.43324 | 0 | |||||||||||||||
418.3 | −1.41066 | − | 2.58872i | −0.0100302 | 0 | 3.65181i | 0.510628 | − | 0.510628i | 2.83547 | −3.70148 | 0 | |||||||||||||||
418.4 | −1.26373 | 0.913274i | −0.402981 | 0 | − | 1.15413i | −2.03055 | + | 2.03055i | 3.03672 | 2.16593 | 0 | |||||||||||||||
418.5 | −0.895351 | 2.11245i | −1.19835 | 0 | − | 1.89138i | −1.38465 | + | 1.38465i | 2.86364 | −1.46244 | 0 | |||||||||||||||
418.6 | −0.222351 | − | 1.02589i | −1.95056 | 0 | 0.228107i | 2.35964 | − | 2.35964i | 0.878412 | 1.94756 | 0 | |||||||||||||||
418.7 | 0.342532 | 2.64611i | −1.88267 | 0 | 0.906377i | 1.55474 | − | 1.55474i | −1.32994 | −4.00189 | 0 | ||||||||||||||||
See all 26 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
145.j | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 725.2.j.c | 26 | |
5.b | even | 2 | 1 | 145.2.j.a | yes | 26 | |
5.c | odd | 4 | 1 | 145.2.e.a | ✓ | 26 | |
5.c | odd | 4 | 1 | 725.2.e.c | 26 | ||
29.c | odd | 4 | 1 | 725.2.e.c | 26 | ||
145.e | even | 4 | 1 | 145.2.j.a | yes | 26 | |
145.f | odd | 4 | 1 | 145.2.e.a | ✓ | 26 | |
145.j | even | 4 | 1 | inner | 725.2.j.c | 26 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
145.2.e.a | ✓ | 26 | 5.c | odd | 4 | 1 | |
145.2.e.a | ✓ | 26 | 145.f | odd | 4 | 1 | |
145.2.j.a | yes | 26 | 5.b | even | 2 | 1 | |
145.2.j.a | yes | 26 | 145.e | even | 4 | 1 | |
725.2.e.c | 26 | 5.c | odd | 4 | 1 | ||
725.2.e.c | 26 | 29.c | odd | 4 | 1 | ||
725.2.j.c | 26 | 1.a | even | 1 | 1 | trivial | |
725.2.j.c | 26 | 145.j | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{13} - 3 T_{2}^{12} - 14 T_{2}^{11} + 44 T_{2}^{10} + 69 T_{2}^{9} - 235 T_{2}^{8} - 142 T_{2}^{7} + \cdots - 15 \) acting on \(S_{2}^{\mathrm{new}}(725, [\chi])\).