Properties

Label 725.2.j.c
Level $725$
Weight $2$
Character orbit 725.j
Analytic conductor $5.789$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(307,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 26 q + 6 q^{2} + 22 q^{4} + 4 q^{7} + 18 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 26 q + 6 q^{2} + 22 q^{4} + 4 q^{7} + 18 q^{8} - 10 q^{9} - 8 q^{11} - 14 q^{13} - 4 q^{14} + 6 q^{16} - 20 q^{17} + 18 q^{18} + 16 q^{21} + 8 q^{22} + 4 q^{23} + 6 q^{26} + 8 q^{28} + 8 q^{31} + 42 q^{32} - 32 q^{34} - 22 q^{36} + 8 q^{38} - 16 q^{39} - 6 q^{41} + 4 q^{42} - 32 q^{46} - 26 q^{52} - 14 q^{53} - 32 q^{56} + 12 q^{57} - 28 q^{58} + 18 q^{61} - 28 q^{62} - 60 q^{63} + 30 q^{64} + 20 q^{66} - 32 q^{67} - 72 q^{68} + 12 q^{69} - 10 q^{72} + 4 q^{73} + 20 q^{76} + 12 q^{77} - 56 q^{78} + 4 q^{79} - 86 q^{81} + 58 q^{82} + 60 q^{83} + 76 q^{84} - 60 q^{87} + 68 q^{88} - 46 q^{89} + 28 q^{92} + 8 q^{93} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1 −2.26693 2.65401i 3.13899 0 6.01647i 2.59753 + 2.59753i −2.58201 −4.04378 0
307.2 −2.23019 1.25170i 2.97373 0 2.79153i −0.483409 0.483409i −2.17160 1.43324 0
307.3 −1.41066 2.58872i −0.0100302 0 3.65181i 0.510628 + 0.510628i 2.83547 −3.70148 0
307.4 −1.26373 0.913274i −0.402981 0 1.15413i −2.03055 2.03055i 3.03672 2.16593 0
307.5 −0.895351 2.11245i −1.19835 0 1.89138i −1.38465 1.38465i 2.86364 −1.46244 0
307.6 −0.222351 1.02589i −1.95056 0 0.228107i 2.35964 + 2.35964i 0.878412 1.94756 0
307.7 0.342532 2.64611i −1.88267 0 0.906377i 1.55474 + 1.55474i −1.32994 −4.00189 0
307.8 0.839004 0.711801i −1.29607 0 0.597203i −1.13987 1.13987i −2.76542 2.49334 0
307.9 1.36192 0.228160i −0.145179 0 0.310736i −3.45046 3.45046i −2.92156 2.94794 0
307.10 1.77873 1.38965i 1.16389 0 2.47181i 3.41296 + 3.41296i −1.48721 1.06888 0
307.11 1.82099 2.59340i 1.31599 0 4.72256i 0.820621 + 0.820621i −1.24557 −3.72575 0
307.12 2.41122 1.85973i 3.81399 0 4.48422i 0.291676 + 0.291676i 4.37394 −0.458586 0
307.13 2.73482 1.63186i 5.47925 0 4.46285i −1.05887 1.05887i 9.51511 0.337028 0
418.1 −2.26693 2.65401i 3.13899 0 6.01647i 2.59753 2.59753i −2.58201 −4.04378 0
418.2 −2.23019 1.25170i 2.97373 0 2.79153i −0.483409 + 0.483409i −2.17160 1.43324 0
418.3 −1.41066 2.58872i −0.0100302 0 3.65181i 0.510628 0.510628i 2.83547 −3.70148 0
418.4 −1.26373 0.913274i −0.402981 0 1.15413i −2.03055 + 2.03055i 3.03672 2.16593 0
418.5 −0.895351 2.11245i −1.19835 0 1.89138i −1.38465 + 1.38465i 2.86364 −1.46244 0
418.6 −0.222351 1.02589i −1.95056 0 0.228107i 2.35964 2.35964i 0.878412 1.94756 0
418.7 0.342532 2.64611i −1.88267 0 0.906377i 1.55474 1.55474i −1.32994 −4.00189 0
See all 26 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 307.13
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
145.j even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 725.2.j.c 26
5.b even 2 1 145.2.j.a yes 26
5.c odd 4 1 145.2.e.a 26
5.c odd 4 1 725.2.e.c 26
29.c odd 4 1 725.2.e.c 26
145.e even 4 1 145.2.j.a yes 26
145.f odd 4 1 145.2.e.a 26
145.j even 4 1 inner 725.2.j.c 26
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.e.a 26 5.c odd 4 1
145.2.e.a 26 145.f odd 4 1
145.2.j.a yes 26 5.b even 2 1
145.2.j.a yes 26 145.e even 4 1
725.2.e.c 26 5.c odd 4 1
725.2.e.c 26 29.c odd 4 1
725.2.j.c 26 1.a even 1 1 trivial
725.2.j.c 26 145.j even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{13} - 3 T_{2}^{12} - 14 T_{2}^{11} + 44 T_{2}^{10} + 69 T_{2}^{9} - 235 T_{2}^{8} - 142 T_{2}^{7} + \cdots - 15 \) acting on \(S_{2}^{\mathrm{new}}(725, [\chi])\). Copy content Toggle raw display