Defining parameters
Level: | \( N \) | \(=\) | \( 725 = 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 725.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 145 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(150\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(725, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 162 | 94 | 68 |
Cusp forms | 138 | 86 | 52 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(725, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
725.2.j.a | $4$ | $5.789$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}+3q^{4}+(\beta _{2}-\beta _{3})q^{7}+\beta _{3}q^{8}+\cdots\) |
725.2.j.b | $16$ | $5.789$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{8}q^{3}+\beta _{2}q^{4}+(\beta _{4}+\beta _{6}+\cdots)q^{6}+\cdots\) |
725.2.j.c | $26$ | $5.789$ | None | \(6\) | \(0\) | \(0\) | \(4\) | ||
725.2.j.d | $40$ | $5.789$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(725, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(725, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)