Properties

Label 725.2.b.g
Level $725$
Weight $2$
Character orbit 725.b
Analytic conductor $5.789$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(349,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 14x^{8} + 63x^{6} + 99x^{4} + 55x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{7} + \beta_{2}) q^{3} + (\beta_{6} + \beta_{5} - 1) q^{4} + ( - \beta_{8} + \beta_{6} - 2 \beta_{3}) q^{6} + ( - \beta_{9} - 2 \beta_{2} - \beta_1) q^{7} + (\beta_{9} - \beta_{7} + \beta_{4} - \beta_1) q^{8} + (2 \beta_{6} - \beta_{3} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{7} + \beta_{2}) q^{3} + (\beta_{6} + \beta_{5} - 1) q^{4} + ( - \beta_{8} + \beta_{6} - 2 \beta_{3}) q^{6} + ( - \beta_{9} - 2 \beta_{2} - \beta_1) q^{7} + (\beta_{9} - \beta_{7} + \beta_{4} - \beta_1) q^{8} + (2 \beta_{6} - \beta_{3} - 1) q^{9} + (\beta_{5} - \beta_{3}) q^{11} + (\beta_{9} - 2 \beta_{7} - 2 \beta_{4} - 4 \beta_{2} - \beta_1) q^{12} + ( - 2 \beta_{9} + \beta_{4} + 2 \beta_{2}) q^{13} + ( - \beta_{5} + 2 \beta_{3} + 3) q^{14} + (\beta_{8} - \beta_{6} + 1) q^{16} + (\beta_{7} + 2 \beta_{4} - \beta_1) q^{17} + (2 \beta_{9} - 3 \beta_{7} - \beta_{4} - 3 \beta_{2} - 3 \beta_1) q^{18} + ( - \beta_{6} - \beta_{5} + 1) q^{19} + (\beta_{8} - 3 \beta_{6} + \beta_{5} + \beta_{3} + 2) q^{21} + ( - \beta_{7} - 3 \beta_{2} - \beta_1) q^{22} + ( - \beta_{9} + \beta_{7} - \beta_{4}) q^{23} + ( - 2 \beta_{6} + \beta_{5} + 4 \beta_{3} + 3) q^{24} + (2 \beta_{6} - \beta_{5} - 3 \beta_{3}) q^{26} + (\beta_{9} - \beta_{7} - 4 \beta_{2} - 4 \beta_1) q^{27} + ( - 2 \beta_{9} + 2 \beta_{7} + \beta_{4} + 2 \beta_{2} + 2 \beta_1) q^{28} + q^{29} + (\beta_{8} + \beta_{6} - 2 \beta_{5} - \beta_{3} + 2) q^{31} + (\beta_{9} + 2 \beta_{4}) q^{32} + (2 \beta_{9} - \beta_{7} - 2 \beta_{4} - 2 \beta_1) q^{33} + ( - \beta_{8} - 3 \beta_{5} - 3 \beta_{3} + 3) q^{34} + (3 \beta_{8} - 4 \beta_{6} - 2 \beta_{5} + 5 \beta_{3} + 7) q^{36} + (2 \beta_{7} - 2 \beta_{4} - 2 \beta_{2} + \beta_1) q^{37} + ( - \beta_{9} + \beta_{7} - \beta_{4} + 3 \beta_1) q^{38} + ( - \beta_{8} + 2 \beta_{6} + 4 \beta_{5} - 2 \beta_{3} - 2) q^{39} + ( - 4 \beta_{8} + \beta_{6} - \beta_{5} - 2 \beta_{3}) q^{41} + ( - 3 \beta_{9} + 5 \beta_{7} + 2 \beta_{4} + 3 \beta_{2} + 4 \beta_1) q^{42} + (\beta_{9} - \beta_{4} + 2 \beta_{2} - 2 \beta_1) q^{43} + (\beta_{8} - 2 \beta_{6} + \beta_{5} + 2 \beta_{3} + 3) q^{44} + ( - \beta_{8} + 2 \beta_{6} + \beta_{5}) q^{46} + (2 \beta_{9} + \beta_{7} + 2 \beta_1) q^{47} + (2 \beta_{7} + \beta_{4} + 4 \beta_{2} + 2 \beta_1) q^{48} + (3 \beta_{8} - 2 \beta_{6} - 4 \beta_{3} - 3) q^{49} + ( - \beta_{8} + 4 \beta_{5} + \beta_{3} - 3) q^{51} + ( - 2 \beta_{9} - 5 \beta_{7} - 2 \beta_{4} - 5 \beta_{2} - \beta_1) q^{52} + (\beta_{9} - 3 \beta_{7} + 3 \beta_{2} + 2 \beta_1) q^{53} + (\beta_{8} - 6 \beta_{6} - 4 \beta_{5} + 5 \beta_{3} + 12) q^{54} + ( - 2 \beta_{8} + 6 \beta_{6} - \beta_{5} - \beta_{3}) q^{56} + ( - \beta_{9} + 2 \beta_{7} + 2 \beta_{4} + 4 \beta_{2} + \beta_1) q^{57} + \beta_1 q^{58} + ( - \beta_{8} - 2 \beta_{3} + 3) q^{59} + ( - 4 \beta_{8} - \beta_{5} + \beta_{3} - 1) q^{61} + (\beta_{9} - \beta_{7} - 3 \beta_{4} - 3 \beta_{2} + 3 \beta_1) q^{62} + ( - 3 \beta_{9} + 6 \beta_{7} - \beta_{4} + 5 \beta_{2} + 3 \beta_1) q^{63} + (2 \beta_{8} - 3 \beta_{6} - 2 \beta_{5} - 2 \beta_{3} + 2) q^{64} + (\beta_{8} - 5 \beta_{6} + 3 \beta_{3} + 6) q^{66} + (4 \beta_{7} - 2 \beta_{4} - 5 \beta_{2} - \beta_1) q^{67} + ( - 2 \beta_{7} - 2 \beta_{4} - 9 \beta_{2} + 4 \beta_1) q^{68} + (\beta_{8} + \beta_{6} - \beta_{5} - 2 \beta_{3} - 3) q^{69} + (4 \beta_{8} + 4 \beta_{6} + \beta_{5} + 2 \beta_{3} - 3) q^{71} + (6 \beta_{7} + \beta_{4} + 9 \beta_{2} + 7 \beta_1) q^{72} + (2 \beta_{9} - 2 \beta_{7} - \beta_{4} + 2 \beta_{2} - 4 \beta_1) q^{73} + ( - 2 \beta_{8} + 3 \beta_{6} + 3 \beta_{5} + 2 \beta_{3} - 3) q^{74} + ( - \beta_{8} + 3 \beta_{6} + 2 \beta_{5} - 7) q^{76} + ( - \beta_{9} - \beta_{7} + 3 \beta_{4} + 3 \beta_{2} + 3 \beta_1) q^{77} + (2 \beta_{9} - 5 \beta_{7} + 2 \beta_{4} - 6 \beta_{2} - 8 \beta_1) q^{78} + ( - 5 \beta_{8} + \beta_{6} - \beta_{5} - 2 \beta_{3} + 1) q^{79} + (4 \beta_{8} - 3 \beta_{6} - \beta_{5} + 7 \beta_{3} + 4) q^{81} + (\beta_{9} - 7 \beta_{7} - 3 \beta_{4} - 6 \beta_{2}) q^{82} + (4 \beta_{9} + \beta_{7} + 6 \beta_{4} + 6 \beta_{2} + \beta_1) q^{83} + ( - 3 \beta_{8} + 6 \beta_{6} + 4 \beta_{5} - 8 \beta_{3} - 8) q^{84} + ( - 3 \beta_{6} - \beta_{5} - \beta_{3} + 6) q^{86} + (\beta_{7} + \beta_{2}) q^{87} + ( - 2 \beta_{9} + 3 \beta_{7} + 3 \beta_{4} + 2 \beta_1) q^{88} + ( - 5 \beta_{8} + 5 \beta_{6} + 3 \beta_{5} + 2 \beta_{3} - 3) q^{89} + (\beta_{8} - 3 \beta_{6} - 4 \beta_{5} + 3 \beta_{3} - 2) q^{91} + ( - \beta_{7} - \beta_{4} - 3 \beta_1) q^{92} + ( - \beta_{9} + 5 \beta_{4} - \beta_{2} - 2 \beta_1) q^{93} + ( - \beta_{8} + \beta_{6} + 2 \beta_{5} - \beta_{3} - 6) q^{94} + ( - 2 \beta_{8} + 3 \beta_{5} + \beta_{3}) q^{96} + (4 \beta_{9} - 3 \beta_{7} + 4 \beta_{4} + 4 \beta_{2}) q^{97} + ( - 2 \beta_{9} + \beta_{7} - 4 \beta_{4} - 12 \beta_{2} - \beta_1) q^{98} + (4 \beta_{8} - 3 \beta_{6} - 3 \beta_{5} + 4 \beta_{3} + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8 q^{4} - 2 q^{6} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 8 q^{4} - 2 q^{6} - 14 q^{9} + 4 q^{11} + 26 q^{14} + 12 q^{16} + 8 q^{19} + 30 q^{21} + 38 q^{24} - 8 q^{26} + 10 q^{29} + 10 q^{31} + 18 q^{34} + 70 q^{36} - 8 q^{39} - 6 q^{41} + 38 q^{44} - 26 q^{49} - 14 q^{51} + 116 q^{54} - 16 q^{56} + 30 q^{59} - 14 q^{61} + 18 q^{64} + 70 q^{66} - 36 q^{69} - 34 q^{71} - 24 q^{74} - 68 q^{76} + 4 q^{79} + 42 q^{81} - 76 q^{84} + 62 q^{86} - 28 q^{89} - 30 q^{91} - 54 q^{94} + 12 q^{96} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} + 14x^{8} + 63x^{6} + 99x^{4} + 55x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{9} + 11\nu^{7} + 30\nu^{5} - 6\nu^{3} - 32\nu ) / 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{8} + 11\nu^{6} + 35\nu^{4} + 29\nu^{2} + 3 ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{9} - 27\nu^{7} - 110\nu^{5} - 123\nu^{3} - 16\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -2\nu^{8} - 27\nu^{6} - 110\nu^{4} - 123\nu^{2} - 21 ) / 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2\nu^{8} + 27\nu^{6} + 110\nu^{4} + 128\nu^{2} + 36 ) / 5 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2\nu^{9} + 27\nu^{7} + 115\nu^{5} + 158\nu^{3} + 51\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 2\nu^{8} + 27\nu^{6} + 115\nu^{4} + 158\nu^{2} + 51 ) / 5 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 4\nu^{9} + 54\nu^{7} + 225\nu^{5} + 286\nu^{3} + 92\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{9} - \beta_{7} + \beta_{4} - 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{8} - 7\beta_{6} - 6\beta_{5} + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{9} + 8\beta_{7} - 6\beta_{4} + 28\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -8\beta_{8} + 43\beta_{6} + 34\beta_{5} - 2\beta_{3} - 84 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 43\beta_{9} - 53\beta_{7} + 32\beta_{4} - 6\beta_{2} - 161\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 53\beta_{8} - 257\beta_{6} - 193\beta_{5} + 27\beta_{3} + 483 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -257\beta_{9} + 337\beta_{7} - 166\beta_{4} + 81\beta_{2} + 933\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
349.1
2.45914i
2.35417i
1.22277i
0.794018i
0.533733i
0.533733i
0.794018i
1.22277i
2.35417i
2.45914i
2.45914i 3.33648i −4.04739 0 −8.20489 3.50903i 5.03483i −8.13211 0
349.2 2.35417i 1.80364i −3.54210 0 4.24606 0.0127981i 3.63036i −0.253109 0
349.3 1.22277i 1.05494i 0.504827 0 1.28995 4.90333i 3.06283i 1.88710 0
349.4 0.794018i 2.48525i 1.36954 0 1.97334 3.07654i 2.67547i −3.17649 0
349.5 0.533733i 0.570435i 1.71513 0 −0.304460 1.47609i 1.98289i 2.67460 0
349.6 0.533733i 0.570435i 1.71513 0 −0.304460 1.47609i 1.98289i 2.67460 0
349.7 0.794018i 2.48525i 1.36954 0 1.97334 3.07654i 2.67547i −3.17649 0
349.8 1.22277i 1.05494i 0.504827 0 1.28995 4.90333i 3.06283i 1.88710 0
349.9 2.35417i 1.80364i −3.54210 0 4.24606 0.0127981i 3.63036i −0.253109 0
349.10 2.45914i 3.33648i −4.04739 0 −8.20489 3.50903i 5.03483i −8.13211 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 349.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 725.2.b.g 10
5.b even 2 1 inner 725.2.b.g 10
5.c odd 4 1 725.2.a.i 5
5.c odd 4 1 725.2.a.j yes 5
15.e even 4 1 6525.2.a.bo 5
15.e even 4 1 6525.2.a.bp 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
725.2.a.i 5 5.c odd 4 1
725.2.a.j yes 5 5.c odd 4 1
725.2.b.g 10 1.a even 1 1 trivial
725.2.b.g 10 5.b even 2 1 inner
6525.2.a.bo 5 15.e even 4 1
6525.2.a.bp 5 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(725, [\chi])\):

\( T_{2}^{10} + 14T_{2}^{8} + 63T_{2}^{6} + 99T_{2}^{4} + 55T_{2}^{2} + 9 \) Copy content Toggle raw display
\( T_{3}^{10} + 22T_{3}^{8} + 155T_{3}^{6} + 411T_{3}^{4} + 367T_{3}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + 14 T^{8} + 63 T^{6} + 99 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{10} + 22 T^{8} + 155 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( T^{10} + 48 T^{8} + 740 T^{6} + 4197 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{5} - 2 T^{4} - 17 T^{3} + 14 T^{2} + \cdots - 27)^{2} \) Copy content Toggle raw display
$13$ \( T^{10} + 108 T^{8} + 4040 T^{6} + \cdots + 185761 \) Copy content Toggle raw display
$17$ \( T^{10} + 91 T^{8} + 2663 T^{6} + \cdots + 114921 \) Copy content Toggle raw display
$19$ \( (T^{5} - 4 T^{4} - 9 T^{3} + 23 T^{2} + \cdots + 17)^{2} \) Copy content Toggle raw display
$23$ \( T^{10} + 45 T^{8} + 728 T^{6} + \cdots + 15129 \) Copy content Toggle raw display
$29$ \( (T - 1)^{10} \) Copy content Toggle raw display
$31$ \( (T^{5} - 5 T^{4} - 58 T^{3} + 381 T^{2} + \cdots - 251)^{2} \) Copy content Toggle raw display
$37$ \( T^{10} + 162 T^{8} + \cdots + 13623481 \) Copy content Toggle raw display
$41$ \( (T^{5} + 3 T^{4} - 157 T^{3} + 10 T^{2} + \cdots - 19125)^{2} \) Copy content Toggle raw display
$43$ \( T^{10} + 138 T^{8} + 5141 T^{6} + \cdots + 38809 \) Copy content Toggle raw display
$47$ \( T^{10} + 139 T^{8} + 6371 T^{6} + \cdots + 4028049 \) Copy content Toggle raw display
$53$ \( T^{10} + 206 T^{8} + 5419 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$59$ \( (T^{5} - 15 T^{4} + 52 T^{3} + 85 T^{2} + \cdots + 375)^{2} \) Copy content Toggle raw display
$61$ \( (T^{5} + 7 T^{4} - 111 T^{3} - 27 T^{2} + \cdots + 81)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} + 411 T^{8} + 48707 T^{6} + \cdots + 2819041 \) Copy content Toggle raw display
$71$ \( (T^{5} + 17 T^{4} - 178 T^{3} - 3925 T^{2} + \cdots + 5121)^{2} \) Copy content Toggle raw display
$73$ \( T^{10} + 424 T^{8} + \cdots + 175748049 \) Copy content Toggle raw display
$79$ \( (T^{5} - 2 T^{4} - 228 T^{3} + 849 T^{2} + \cdots - 66293)^{2} \) Copy content Toggle raw display
$83$ \( T^{10} + 919 T^{8} + \cdots + 134591395689 \) Copy content Toggle raw display
$89$ \( (T^{5} + 14 T^{4} - 360 T^{3} + \cdots + 278703)^{2} \) Copy content Toggle raw display
$97$ \( T^{10} + 607 T^{8} + \cdots + 2311590241 \) Copy content Toggle raw display
show more
show less