Properties

Label 725.2.b.e.349.6
Level $725$
Weight $2$
Character 725.349
Analytic conductor $5.789$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(349,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-2,0,-8,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.6
Root \(-0.854638 + 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 725.349
Dual form 725.2.b.e.349.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17009i q^{2} +1.70928i q^{3} -2.70928 q^{4} -3.70928 q^{6} +3.70928i q^{7} -1.53919i q^{8} +0.0783777 q^{9} -0.630898 q^{11} -4.63090i q^{12} +4.34017i q^{13} -8.04945 q^{14} -2.07838 q^{16} -1.55252i q^{17} +0.170086i q^{18} +5.70928 q^{19} -6.34017 q^{21} -1.36910i q^{22} -6.63090i q^{23} +2.63090 q^{24} -9.41855 q^{26} +5.26180i q^{27} -10.0494i q^{28} +1.00000 q^{29} -2.29072 q^{31} -7.58864i q^{32} -1.07838i q^{33} +3.36910 q^{34} -0.212347 q^{36} -2.44748i q^{37} +12.3896i q^{38} -7.41855 q^{39} +5.60197 q^{41} -13.7587i q^{42} -12.5464i q^{43} +1.70928 q^{44} +14.3896 q^{46} +2.29072i q^{47} -3.55252i q^{48} -6.75872 q^{49} +2.65368 q^{51} -11.7587i q^{52} -0.921622i q^{53} -11.4186 q^{54} +5.70928 q^{56} +9.75872i q^{57} +2.17009i q^{58} +3.60197 q^{59} -13.0205 q^{61} -4.97107i q^{62} +0.290725i q^{63} +12.3112 q^{64} +2.34017 q^{66} +10.6309i q^{67} +4.20620i q^{68} +11.3340 q^{69} +15.6020 q^{71} -0.120638i q^{72} +10.9444i q^{73} +5.31124 q^{74} -15.4680 q^{76} -2.34017i q^{77} -16.0989i q^{78} +10.2062 q^{79} -8.75872 q^{81} +12.1568i q^{82} +3.12783i q^{83} +17.1773 q^{84} +27.2267 q^{86} +1.70928i q^{87} +0.971071i q^{88} -1.41855 q^{89} -16.0989 q^{91} +17.9649i q^{92} -3.91548i q^{93} -4.97107 q^{94} +12.9711 q^{96} +13.4680i q^{97} -14.6670i q^{98} -0.0494483 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} - 8 q^{6} - 6 q^{9} + 4 q^{11} - 12 q^{14} - 6 q^{16} + 20 q^{19} - 16 q^{21} + 8 q^{24} - 28 q^{26} + 6 q^{29} - 28 q^{31} + 28 q^{34} - 22 q^{36} - 16 q^{39} - 4 q^{41} - 4 q^{44} + 28 q^{46}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009i 1.53448i 0.641358 + 0.767241i \(0.278371\pi\)
−0.641358 + 0.767241i \(0.721629\pi\)
\(3\) 1.70928i 0.986851i 0.869788 + 0.493425i \(0.164255\pi\)
−0.869788 + 0.493425i \(0.835745\pi\)
\(4\) −2.70928 −1.35464
\(5\) 0 0
\(6\) −3.70928 −1.51431
\(7\) 3.70928i 1.40197i 0.713174 + 0.700987i \(0.247257\pi\)
−0.713174 + 0.700987i \(0.752743\pi\)
\(8\) − 1.53919i − 0.544185i
\(9\) 0.0783777 0.0261259
\(10\) 0 0
\(11\) −0.630898 −0.190223 −0.0951114 0.995467i \(-0.530321\pi\)
−0.0951114 + 0.995467i \(0.530321\pi\)
\(12\) − 4.63090i − 1.33682i
\(13\) 4.34017i 1.20375i 0.798591 + 0.601874i \(0.205579\pi\)
−0.798591 + 0.601874i \(0.794421\pi\)
\(14\) −8.04945 −2.15131
\(15\) 0 0
\(16\) −2.07838 −0.519594
\(17\) − 1.55252i − 0.376541i −0.982117 0.188271i \(-0.939712\pi\)
0.982117 0.188271i \(-0.0602882\pi\)
\(18\) 0.170086i 0.0400898i
\(19\) 5.70928 1.30980 0.654899 0.755717i \(-0.272711\pi\)
0.654899 + 0.755717i \(0.272711\pi\)
\(20\) 0 0
\(21\) −6.34017 −1.38354
\(22\) − 1.36910i − 0.291894i
\(23\) − 6.63090i − 1.38264i −0.722550 0.691319i \(-0.757030\pi\)
0.722550 0.691319i \(-0.242970\pi\)
\(24\) 2.63090 0.537030
\(25\) 0 0
\(26\) −9.41855 −1.84713
\(27\) 5.26180i 1.01263i
\(28\) − 10.0494i − 1.89917i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −2.29072 −0.411426 −0.205713 0.978612i \(-0.565951\pi\)
−0.205713 + 0.978612i \(0.565951\pi\)
\(32\) − 7.58864i − 1.34149i
\(33\) − 1.07838i − 0.187721i
\(34\) 3.36910 0.577796
\(35\) 0 0
\(36\) −0.212347 −0.0353911
\(37\) − 2.44748i − 0.402363i −0.979554 0.201182i \(-0.935522\pi\)
0.979554 0.201182i \(-0.0644781\pi\)
\(38\) 12.3896i 2.00986i
\(39\) −7.41855 −1.18792
\(40\) 0 0
\(41\) 5.60197 0.874880 0.437440 0.899247i \(-0.355885\pi\)
0.437440 + 0.899247i \(0.355885\pi\)
\(42\) − 13.7587i − 2.12302i
\(43\) − 12.5464i − 1.91330i −0.291233 0.956652i \(-0.594065\pi\)
0.291233 0.956652i \(-0.405935\pi\)
\(44\) 1.70928 0.257683
\(45\) 0 0
\(46\) 14.3896 2.12163
\(47\) 2.29072i 0.334137i 0.985945 + 0.167068i \(0.0534300\pi\)
−0.985945 + 0.167068i \(0.946570\pi\)
\(48\) − 3.55252i − 0.512762i
\(49\) −6.75872 −0.965532
\(50\) 0 0
\(51\) 2.65368 0.371590
\(52\) − 11.7587i − 1.63064i
\(53\) − 0.921622i − 0.126595i −0.997995 0.0632973i \(-0.979838\pi\)
0.997995 0.0632973i \(-0.0201616\pi\)
\(54\) −11.4186 −1.55387
\(55\) 0 0
\(56\) 5.70928 0.762934
\(57\) 9.75872i 1.29257i
\(58\) 2.17009i 0.284946i
\(59\) 3.60197 0.468936 0.234468 0.972124i \(-0.424665\pi\)
0.234468 + 0.972124i \(0.424665\pi\)
\(60\) 0 0
\(61\) −13.0205 −1.66711 −0.833553 0.552439i \(-0.813697\pi\)
−0.833553 + 0.552439i \(0.813697\pi\)
\(62\) − 4.97107i − 0.631327i
\(63\) 0.290725i 0.0366279i
\(64\) 12.3112 1.53891
\(65\) 0 0
\(66\) 2.34017 0.288055
\(67\) 10.6309i 1.29877i 0.760459 + 0.649385i \(0.224974\pi\)
−0.760459 + 0.649385i \(0.775026\pi\)
\(68\) 4.20620i 0.510077i
\(69\) 11.3340 1.36446
\(70\) 0 0
\(71\) 15.6020 1.85161 0.925806 0.377998i \(-0.123387\pi\)
0.925806 + 0.377998i \(0.123387\pi\)
\(72\) − 0.120638i − 0.0142173i
\(73\) 10.9444i 1.28095i 0.767981 + 0.640473i \(0.221262\pi\)
−0.767981 + 0.640473i \(0.778738\pi\)
\(74\) 5.31124 0.617420
\(75\) 0 0
\(76\) −15.4680 −1.77430
\(77\) − 2.34017i − 0.266687i
\(78\) − 16.0989i − 1.82284i
\(79\) 10.2062 1.14829 0.574144 0.818754i \(-0.305335\pi\)
0.574144 + 0.818754i \(0.305335\pi\)
\(80\) 0 0
\(81\) −8.75872 −0.973192
\(82\) 12.1568i 1.34249i
\(83\) 3.12783i 0.343324i 0.985156 + 0.171662i \(0.0549136\pi\)
−0.985156 + 0.171662i \(0.945086\pi\)
\(84\) 17.1773 1.87419
\(85\) 0 0
\(86\) 27.2267 2.93593
\(87\) 1.70928i 0.183254i
\(88\) 0.971071i 0.103516i
\(89\) −1.41855 −0.150366 −0.0751830 0.997170i \(-0.523954\pi\)
−0.0751830 + 0.997170i \(0.523954\pi\)
\(90\) 0 0
\(91\) −16.0989 −1.68762
\(92\) 17.9649i 1.87297i
\(93\) − 3.91548i − 0.406016i
\(94\) −4.97107 −0.512727
\(95\) 0 0
\(96\) 12.9711 1.32385
\(97\) 13.4680i 1.36747i 0.729731 + 0.683734i \(0.239645\pi\)
−0.729731 + 0.683734i \(0.760355\pi\)
\(98\) − 14.6670i − 1.48159i
\(99\) −0.0494483 −0.00496974
\(100\) 0 0
\(101\) 1.10504 0.109956 0.0549778 0.998488i \(-0.482491\pi\)
0.0549778 + 0.998488i \(0.482491\pi\)
\(102\) 5.75872i 0.570199i
\(103\) − 15.6248i − 1.53955i −0.638314 0.769776i \(-0.720368\pi\)
0.638314 0.769776i \(-0.279632\pi\)
\(104\) 6.68035 0.655062
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 2.81432i 0.272070i 0.990704 + 0.136035i \(0.0434360\pi\)
−0.990704 + 0.136035i \(0.956564\pi\)
\(108\) − 14.2557i − 1.37175i
\(109\) −5.91548 −0.566600 −0.283300 0.959031i \(-0.591429\pi\)
−0.283300 + 0.959031i \(0.591429\pi\)
\(110\) 0 0
\(111\) 4.18342 0.397072
\(112\) − 7.70928i − 0.728458i
\(113\) 1.95055i 0.183492i 0.995782 + 0.0917462i \(0.0292449\pi\)
−0.995782 + 0.0917462i \(0.970755\pi\)
\(114\) −21.1773 −1.98343
\(115\) 0 0
\(116\) −2.70928 −0.251550
\(117\) 0.340173i 0.0314490i
\(118\) 7.81658i 0.719575i
\(119\) 5.75872 0.527901
\(120\) 0 0
\(121\) −10.6020 −0.963815
\(122\) − 28.2557i − 2.55815i
\(123\) 9.57531i 0.863376i
\(124\) 6.20620 0.557334
\(125\) 0 0
\(126\) −0.630898 −0.0562048
\(127\) − 22.4885i − 1.99553i −0.0667962 0.997767i \(-0.521278\pi\)
0.0667962 0.997767i \(-0.478722\pi\)
\(128\) 11.5392i 1.01993i
\(129\) 21.4452 1.88815
\(130\) 0 0
\(131\) 3.86603 0.337777 0.168888 0.985635i \(-0.445982\pi\)
0.168888 + 0.985635i \(0.445982\pi\)
\(132\) 2.92162i 0.254295i
\(133\) 21.1773i 1.83630i
\(134\) −23.0700 −1.99294
\(135\) 0 0
\(136\) −2.38962 −0.204908
\(137\) 21.2846i 1.81846i 0.416289 + 0.909232i \(0.363330\pi\)
−0.416289 + 0.909232i \(0.636670\pi\)
\(138\) 24.5958i 2.09374i
\(139\) −8.09890 −0.686939 −0.343470 0.939164i \(-0.611602\pi\)
−0.343470 + 0.939164i \(0.611602\pi\)
\(140\) 0 0
\(141\) −3.91548 −0.329743
\(142\) 33.8576i 2.84127i
\(143\) − 2.73820i − 0.228980i
\(144\) −0.162899 −0.0135749
\(145\) 0 0
\(146\) −23.7503 −1.96559
\(147\) − 11.5525i − 0.952836i
\(148\) 6.63090i 0.545056i
\(149\) −12.8371 −1.05166 −0.525828 0.850591i \(-0.676245\pi\)
−0.525828 + 0.850591i \(0.676245\pi\)
\(150\) 0 0
\(151\) −20.5958 −1.67606 −0.838032 0.545621i \(-0.816294\pi\)
−0.838032 + 0.545621i \(0.816294\pi\)
\(152\) − 8.78765i − 0.712773i
\(153\) − 0.121683i − 0.00983749i
\(154\) 5.07838 0.409227
\(155\) 0 0
\(156\) 20.0989 1.60920
\(157\) − 6.04945i − 0.482799i −0.970426 0.241399i \(-0.922394\pi\)
0.970426 0.241399i \(-0.0776063\pi\)
\(158\) 22.1483i 1.76203i
\(159\) 1.57531 0.124930
\(160\) 0 0
\(161\) 24.5958 1.93842
\(162\) − 19.0072i − 1.49335i
\(163\) 15.9649i 1.25047i 0.780437 + 0.625235i \(0.214997\pi\)
−0.780437 + 0.625235i \(0.785003\pi\)
\(164\) −15.1773 −1.18515
\(165\) 0 0
\(166\) −6.78765 −0.526824
\(167\) − 11.3112i − 0.875290i −0.899148 0.437645i \(-0.855813\pi\)
0.899148 0.437645i \(-0.144187\pi\)
\(168\) 9.75872i 0.752902i
\(169\) −5.83710 −0.449008
\(170\) 0 0
\(171\) 0.447480 0.0342197
\(172\) 33.9916i 2.59183i
\(173\) 10.4969i 0.798067i 0.916936 + 0.399033i \(0.130654\pi\)
−0.916936 + 0.399033i \(0.869346\pi\)
\(174\) −3.70928 −0.281199
\(175\) 0 0
\(176\) 1.31124 0.0988387
\(177\) 6.15676i 0.462770i
\(178\) − 3.07838i − 0.230734i
\(179\) 12.3135 0.920355 0.460178 0.887827i \(-0.347786\pi\)
0.460178 + 0.887827i \(0.347786\pi\)
\(180\) 0 0
\(181\) −1.60197 −0.119073 −0.0595367 0.998226i \(-0.518962\pi\)
−0.0595367 + 0.998226i \(0.518962\pi\)
\(182\) − 34.9360i − 2.58963i
\(183\) − 22.2557i − 1.64519i
\(184\) −10.2062 −0.752411
\(185\) 0 0
\(186\) 8.49693 0.623025
\(187\) 0.979481i 0.0716268i
\(188\) − 6.20620i − 0.452634i
\(189\) −19.5174 −1.41969
\(190\) 0 0
\(191\) 13.6248 0.985853 0.492926 0.870071i \(-0.335927\pi\)
0.492926 + 0.870071i \(0.335927\pi\)
\(192\) 21.0433i 1.51867i
\(193\) 16.9711i 1.22160i 0.791783 + 0.610802i \(0.209153\pi\)
−0.791783 + 0.610802i \(0.790847\pi\)
\(194\) −29.2267 −2.09836
\(195\) 0 0
\(196\) 18.3112 1.30795
\(197\) − 0.0578588i − 0.00412227i −0.999998 0.00206114i \(-0.999344\pi\)
0.999998 0.00206114i \(-0.000656080\pi\)
\(198\) − 0.107307i − 0.00762599i
\(199\) −5.39189 −0.382221 −0.191110 0.981569i \(-0.561209\pi\)
−0.191110 + 0.981569i \(0.561209\pi\)
\(200\) 0 0
\(201\) −18.1711 −1.28169
\(202\) 2.39803i 0.168725i
\(203\) 3.70928i 0.260340i
\(204\) −7.18956 −0.503370
\(205\) 0 0
\(206\) 33.9071 2.36242
\(207\) − 0.519715i − 0.0361227i
\(208\) − 9.02052i − 0.625460i
\(209\) −3.60197 −0.249153
\(210\) 0 0
\(211\) 4.14834 0.285584 0.142792 0.989753i \(-0.454392\pi\)
0.142792 + 0.989753i \(0.454392\pi\)
\(212\) 2.49693i 0.171490i
\(213\) 26.6681i 1.82727i
\(214\) −6.10731 −0.417487
\(215\) 0 0
\(216\) 8.09890 0.551060
\(217\) − 8.49693i − 0.576809i
\(218\) − 12.8371i − 0.869438i
\(219\) −18.7070 −1.26410
\(220\) 0 0
\(221\) 6.73820 0.453261
\(222\) 9.07838i 0.609301i
\(223\) 6.72979i 0.450660i 0.974282 + 0.225330i \(0.0723461\pi\)
−0.974282 + 0.225330i \(0.927654\pi\)
\(224\) 28.1483 1.88074
\(225\) 0 0
\(226\) −4.23287 −0.281566
\(227\) − 22.2472i − 1.47660i −0.674472 0.738301i \(-0.735629\pi\)
0.674472 0.738301i \(-0.264371\pi\)
\(228\) − 26.4391i − 1.75097i
\(229\) 7.16290 0.473338 0.236669 0.971590i \(-0.423944\pi\)
0.236669 + 0.971590i \(0.423944\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) − 1.53919i − 0.101053i
\(233\) − 30.1978i − 1.97832i −0.146831 0.989162i \(-0.546907\pi\)
0.146831 0.989162i \(-0.453093\pi\)
\(234\) −0.738205 −0.0482580
\(235\) 0 0
\(236\) −9.75872 −0.635239
\(237\) 17.4452i 1.13319i
\(238\) 12.4969i 0.810056i
\(239\) 6.43907 0.416509 0.208254 0.978075i \(-0.433222\pi\)
0.208254 + 0.978075i \(0.433222\pi\)
\(240\) 0 0
\(241\) 10.9939 0.708177 0.354088 0.935212i \(-0.384791\pi\)
0.354088 + 0.935212i \(0.384791\pi\)
\(242\) − 23.0072i − 1.47896i
\(243\) 0.814315i 0.0522383i
\(244\) 35.2762 2.25833
\(245\) 0 0
\(246\) −20.7792 −1.32484
\(247\) 24.7792i 1.57667i
\(248\) 3.52586i 0.223892i
\(249\) −5.34632 −0.338809
\(250\) 0 0
\(251\) 9.41014 0.593963 0.296981 0.954883i \(-0.404020\pi\)
0.296981 + 0.954883i \(0.404020\pi\)
\(252\) − 0.787653i − 0.0496175i
\(253\) 4.18342i 0.263009i
\(254\) 48.8020 3.06211
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) 5.81658i 0.362828i 0.983407 + 0.181414i \(0.0580675\pi\)
−0.983407 + 0.181414i \(0.941933\pi\)
\(258\) 46.5380i 2.89733i
\(259\) 9.07838 0.564103
\(260\) 0 0
\(261\) 0.0783777 0.00485146
\(262\) 8.38962i 0.518313i
\(263\) 8.91321i 0.549612i 0.961500 + 0.274806i \(0.0886137\pi\)
−0.961500 + 0.274806i \(0.911386\pi\)
\(264\) −1.65983 −0.102155
\(265\) 0 0
\(266\) −45.9565 −2.81777
\(267\) − 2.42469i − 0.148389i
\(268\) − 28.8020i − 1.75936i
\(269\) 16.4391 1.00231 0.501154 0.865358i \(-0.332909\pi\)
0.501154 + 0.865358i \(0.332909\pi\)
\(270\) 0 0
\(271\) 29.4101 1.78654 0.893269 0.449522i \(-0.148406\pi\)
0.893269 + 0.449522i \(0.148406\pi\)
\(272\) 3.22672i 0.195649i
\(273\) − 27.5174i − 1.66543i
\(274\) −46.1894 −2.79040
\(275\) 0 0
\(276\) −30.7070 −1.84834
\(277\) 11.0784i 0.665635i 0.942991 + 0.332818i \(0.107999\pi\)
−0.942991 + 0.332818i \(0.892001\pi\)
\(278\) − 17.5753i − 1.05410i
\(279\) −0.179542 −0.0107489
\(280\) 0 0
\(281\) −21.1194 −1.25988 −0.629939 0.776644i \(-0.716920\pi\)
−0.629939 + 0.776644i \(0.716920\pi\)
\(282\) − 8.49693i − 0.505985i
\(283\) 13.7815i 0.819226i 0.912259 + 0.409613i \(0.134336\pi\)
−0.912259 + 0.409613i \(0.865664\pi\)
\(284\) −42.2700 −2.50826
\(285\) 0 0
\(286\) 5.94214 0.351366
\(287\) 20.7792i 1.22656i
\(288\) − 0.594780i − 0.0350478i
\(289\) 14.5897 0.858217
\(290\) 0 0
\(291\) −23.0205 −1.34949
\(292\) − 29.6514i − 1.73522i
\(293\) − 6.14834i − 0.359190i −0.983741 0.179595i \(-0.942521\pi\)
0.983741 0.179595i \(-0.0574787\pi\)
\(294\) 25.0700 1.46211
\(295\) 0 0
\(296\) −3.76713 −0.218960
\(297\) − 3.31965i − 0.192626i
\(298\) − 27.8576i − 1.61375i
\(299\) 28.7792 1.66435
\(300\) 0 0
\(301\) 46.5380 2.68240
\(302\) − 44.6947i − 2.57189i
\(303\) 1.88882i 0.108510i
\(304\) −11.8660 −0.680564
\(305\) 0 0
\(306\) 0.264063 0.0150955
\(307\) 10.3896i 0.592967i 0.955038 + 0.296484i \(0.0958140\pi\)
−0.955038 + 0.296484i \(0.904186\pi\)
\(308\) 6.34017i 0.361265i
\(309\) 26.7070 1.51931
\(310\) 0 0
\(311\) 18.7565 1.06358 0.531791 0.846876i \(-0.321519\pi\)
0.531791 + 0.846876i \(0.321519\pi\)
\(312\) 11.4186i 0.646448i
\(313\) − 12.3402i − 0.697508i −0.937214 0.348754i \(-0.886605\pi\)
0.937214 0.348754i \(-0.113395\pi\)
\(314\) 13.1278 0.740846
\(315\) 0 0
\(316\) −27.6514 −1.55551
\(317\) − 30.6986i − 1.72421i −0.506734 0.862103i \(-0.669147\pi\)
0.506734 0.862103i \(-0.330853\pi\)
\(318\) 3.41855i 0.191703i
\(319\) −0.630898 −0.0353235
\(320\) 0 0
\(321\) −4.81044 −0.268493
\(322\) 53.3751i 2.97448i
\(323\) − 8.86376i − 0.493193i
\(324\) 23.7298 1.31832
\(325\) 0 0
\(326\) −34.6453 −1.91882
\(327\) − 10.1112i − 0.559150i
\(328\) − 8.62249i − 0.476097i
\(329\) −8.49693 −0.468451
\(330\) 0 0
\(331\) −4.08065 −0.224293 −0.112146 0.993692i \(-0.535773\pi\)
−0.112146 + 0.993692i \(0.535773\pi\)
\(332\) − 8.47414i − 0.465079i
\(333\) − 0.191828i − 0.0105121i
\(334\) 24.5464 1.34312
\(335\) 0 0
\(336\) 13.1773 0.718879
\(337\) − 18.3630i − 1.00029i −0.865940 0.500147i \(-0.833279\pi\)
0.865940 0.500147i \(-0.166721\pi\)
\(338\) − 12.6670i − 0.688995i
\(339\) −3.33403 −0.181080
\(340\) 0 0
\(341\) 1.44521 0.0782627
\(342\) 0.971071i 0.0525095i
\(343\) 0.894960i 0.0483233i
\(344\) −19.3112 −1.04119
\(345\) 0 0
\(346\) −22.7792 −1.22462
\(347\) 8.97107i 0.481592i 0.970576 + 0.240796i \(0.0774085\pi\)
−0.970576 + 0.240796i \(0.922591\pi\)
\(348\) − 4.63090i − 0.248242i
\(349\) −26.1978 −1.40234 −0.701168 0.712996i \(-0.747338\pi\)
−0.701168 + 0.712996i \(0.747338\pi\)
\(350\) 0 0
\(351\) −22.8371 −1.21895
\(352\) 4.78765i 0.255183i
\(353\) 26.2823i 1.39887i 0.714698 + 0.699433i \(0.246564\pi\)
−0.714698 + 0.699433i \(0.753436\pi\)
\(354\) −13.3607 −0.710113
\(355\) 0 0
\(356\) 3.84324 0.203692
\(357\) 9.84324i 0.520960i
\(358\) 26.7214i 1.41227i
\(359\) −22.8722 −1.20715 −0.603574 0.797307i \(-0.706257\pi\)
−0.603574 + 0.797307i \(0.706257\pi\)
\(360\) 0 0
\(361\) 13.5958 0.715570
\(362\) − 3.47641i − 0.182716i
\(363\) − 18.1217i − 0.951142i
\(364\) 43.6163 2.28612
\(365\) 0 0
\(366\) 48.2967 2.52451
\(367\) − 11.0700i − 0.577848i −0.957352 0.288924i \(-0.906703\pi\)
0.957352 0.288924i \(-0.0932974\pi\)
\(368\) 13.7815i 0.718411i
\(369\) 0.439070 0.0228571
\(370\) 0 0
\(371\) 3.41855 0.177482
\(372\) 10.6081i 0.550005i
\(373\) − 11.5753i − 0.599347i −0.954042 0.299673i \(-0.903122\pi\)
0.954042 0.299673i \(-0.0968777\pi\)
\(374\) −2.12556 −0.109910
\(375\) 0 0
\(376\) 3.52586 0.181832
\(377\) 4.34017i 0.223530i
\(378\) − 42.3545i − 2.17848i
\(379\) 9.31124 0.478286 0.239143 0.970984i \(-0.423133\pi\)
0.239143 + 0.970984i \(0.423133\pi\)
\(380\) 0 0
\(381\) 38.4391 1.96929
\(382\) 29.5669i 1.51277i
\(383\) − 33.9649i − 1.73553i −0.496978 0.867763i \(-0.665557\pi\)
0.496978 0.867763i \(-0.334443\pi\)
\(384\) −19.7237 −1.00652
\(385\) 0 0
\(386\) −36.8287 −1.87453
\(387\) − 0.983357i − 0.0499868i
\(388\) − 36.4885i − 1.85242i
\(389\) 4.12556 0.209174 0.104587 0.994516i \(-0.466648\pi\)
0.104587 + 0.994516i \(0.466648\pi\)
\(390\) 0 0
\(391\) −10.2946 −0.520620
\(392\) 10.4030i 0.525428i
\(393\) 6.60811i 0.333335i
\(394\) 0.125559 0.00632555
\(395\) 0 0
\(396\) 0.133969 0.00673220
\(397\) 17.1050i 0.858477i 0.903191 + 0.429239i \(0.141218\pi\)
−0.903191 + 0.429239i \(0.858782\pi\)
\(398\) − 11.7009i − 0.586511i
\(399\) −36.1978 −1.81216
\(400\) 0 0
\(401\) −0.554787 −0.0277048 −0.0138524 0.999904i \(-0.504409\pi\)
−0.0138524 + 0.999904i \(0.504409\pi\)
\(402\) − 39.4329i − 1.96674i
\(403\) − 9.94214i − 0.495253i
\(404\) −2.99386 −0.148950
\(405\) 0 0
\(406\) −8.04945 −0.399487
\(407\) 1.54411i 0.0765387i
\(408\) − 4.08452i − 0.202214i
\(409\) 20.6537 1.02126 0.510629 0.859801i \(-0.329412\pi\)
0.510629 + 0.859801i \(0.329412\pi\)
\(410\) 0 0
\(411\) −36.3812 −1.79455
\(412\) 42.3318i 2.08554i
\(413\) 13.3607i 0.657437i
\(414\) 1.12783 0.0554296
\(415\) 0 0
\(416\) 32.9360 1.61482
\(417\) − 13.8432i − 0.677907i
\(418\) − 7.81658i − 0.382322i
\(419\) 6.02666 0.294422 0.147211 0.989105i \(-0.452970\pi\)
0.147211 + 0.989105i \(0.452970\pi\)
\(420\) 0 0
\(421\) −12.5380 −0.611063 −0.305532 0.952182i \(-0.598834\pi\)
−0.305532 + 0.952182i \(0.598834\pi\)
\(422\) 9.00227i 0.438224i
\(423\) 0.179542i 0.00872962i
\(424\) −1.41855 −0.0688909
\(425\) 0 0
\(426\) −57.8720 −2.80391
\(427\) − 48.2967i − 2.33724i
\(428\) − 7.62475i − 0.368556i
\(429\) 4.68035 0.225969
\(430\) 0 0
\(431\) −18.0410 −0.869006 −0.434503 0.900670i \(-0.643076\pi\)
−0.434503 + 0.900670i \(0.643076\pi\)
\(432\) − 10.9360i − 0.526158i
\(433\) − 18.8143i − 0.904158i −0.891978 0.452079i \(-0.850682\pi\)
0.891978 0.452079i \(-0.149318\pi\)
\(434\) 18.4391 0.885104
\(435\) 0 0
\(436\) 16.0267 0.767538
\(437\) − 37.8576i − 1.81098i
\(438\) − 40.5958i − 1.93974i
\(439\) −5.54411 −0.264606 −0.132303 0.991209i \(-0.542237\pi\)
−0.132303 + 0.991209i \(0.542237\pi\)
\(440\) 0 0
\(441\) −0.529734 −0.0252254
\(442\) 14.6225i 0.695521i
\(443\) − 17.8082i − 0.846092i −0.906108 0.423046i \(-0.860961\pi\)
0.906108 0.423046i \(-0.139039\pi\)
\(444\) −11.3340 −0.537889
\(445\) 0 0
\(446\) −14.6042 −0.691531
\(447\) − 21.9421i − 1.03783i
\(448\) 45.6658i 2.15751i
\(449\) 10.6947 0.504715 0.252358 0.967634i \(-0.418794\pi\)
0.252358 + 0.967634i \(0.418794\pi\)
\(450\) 0 0
\(451\) −3.53427 −0.166422
\(452\) − 5.28458i − 0.248566i
\(453\) − 35.2039i − 1.65403i
\(454\) 48.2784 2.26582
\(455\) 0 0
\(456\) 15.0205 0.703400
\(457\) − 21.7998i − 1.01975i −0.860249 0.509875i \(-0.829692\pi\)
0.860249 0.509875i \(-0.170308\pi\)
\(458\) 15.5441i 0.726329i
\(459\) 8.16904 0.381298
\(460\) 0 0
\(461\) 22.4124 1.04385 0.521925 0.852991i \(-0.325214\pi\)
0.521925 + 0.852991i \(0.325214\pi\)
\(462\) 8.68035i 0.403846i
\(463\) 2.10277i 0.0977241i 0.998806 + 0.0488621i \(0.0155595\pi\)
−0.998806 + 0.0488621i \(0.984441\pi\)
\(464\) −2.07838 −0.0964863
\(465\) 0 0
\(466\) 65.5318 3.03570
\(467\) − 18.6042i − 0.860901i −0.902614 0.430451i \(-0.858355\pi\)
0.902614 0.430451i \(-0.141645\pi\)
\(468\) − 0.921622i − 0.0426020i
\(469\) −39.4329 −1.82084
\(470\) 0 0
\(471\) 10.3402 0.476450
\(472\) − 5.54411i − 0.255188i
\(473\) 7.91548i 0.363954i
\(474\) −37.8576 −1.73886
\(475\) 0 0
\(476\) −15.6020 −0.715115
\(477\) − 0.0722347i − 0.00330740i
\(478\) 13.9733i 0.639126i
\(479\) −8.89884 −0.406598 −0.203299 0.979117i \(-0.565166\pi\)
−0.203299 + 0.979117i \(0.565166\pi\)
\(480\) 0 0
\(481\) 10.6225 0.484344
\(482\) 23.8576i 1.08668i
\(483\) 42.0410i 1.91293i
\(484\) 28.7237 1.30562
\(485\) 0 0
\(486\) −1.76713 −0.0801588
\(487\) − 12.9711i − 0.587775i −0.955840 0.293888i \(-0.905051\pi\)
0.955840 0.293888i \(-0.0949492\pi\)
\(488\) 20.0410i 0.907215i
\(489\) −27.2885 −1.23403
\(490\) 0 0
\(491\) −13.8615 −0.625561 −0.312780 0.949826i \(-0.601260\pi\)
−0.312780 + 0.949826i \(0.601260\pi\)
\(492\) − 25.9421i − 1.16956i
\(493\) − 1.55252i − 0.0699220i
\(494\) −53.7731 −2.41937
\(495\) 0 0
\(496\) 4.76099 0.213775
\(497\) 57.8720i 2.59591i
\(498\) − 11.6020i − 0.519897i
\(499\) 22.3545 1.00073 0.500364 0.865815i \(-0.333200\pi\)
0.500364 + 0.865815i \(0.333200\pi\)
\(500\) 0 0
\(501\) 19.3340 0.863781
\(502\) 20.4208i 0.911426i
\(503\) − 34.4885i − 1.53777i −0.639389 0.768884i \(-0.720813\pi\)
0.639389 0.768884i \(-0.279187\pi\)
\(504\) 0.447480 0.0199323
\(505\) 0 0
\(506\) −9.07838 −0.403583
\(507\) − 9.97721i − 0.443104i
\(508\) 60.9276i 2.70322i
\(509\) 28.7526 1.27444 0.637218 0.770684i \(-0.280085\pi\)
0.637218 + 0.770684i \(0.280085\pi\)
\(510\) 0 0
\(511\) −40.5958 −1.79585
\(512\) 22.1701i 0.979789i
\(513\) 30.0410i 1.32634i
\(514\) −12.6225 −0.556754
\(515\) 0 0
\(516\) −58.1010 −2.55775
\(517\) − 1.44521i − 0.0635604i
\(518\) 19.7009i 0.865606i
\(519\) −17.9421 −0.787573
\(520\) 0 0
\(521\) −21.6020 −0.946399 −0.473200 0.880955i \(-0.656901\pi\)
−0.473200 + 0.880955i \(0.656901\pi\)
\(522\) 0.170086i 0.00744448i
\(523\) − 4.20620i − 0.183924i −0.995762 0.0919622i \(-0.970686\pi\)
0.995762 0.0919622i \(-0.0293139\pi\)
\(524\) −10.4741 −0.457565
\(525\) 0 0
\(526\) −19.3424 −0.843370
\(527\) 3.55640i 0.154919i
\(528\) 2.24128i 0.0975390i
\(529\) −20.9688 −0.911687
\(530\) 0 0
\(531\) 0.282314 0.0122514
\(532\) − 57.3751i − 2.48752i
\(533\) 24.3135i 1.05314i
\(534\) 5.26180 0.227700
\(535\) 0 0
\(536\) 16.3630 0.706772
\(537\) 21.0472i 0.908253i
\(538\) 35.6742i 1.53802i
\(539\) 4.26406 0.183666
\(540\) 0 0
\(541\) 26.7792 1.15133 0.575665 0.817686i \(-0.304743\pi\)
0.575665 + 0.817686i \(0.304743\pi\)
\(542\) 63.8225i 2.74141i
\(543\) − 2.73820i − 0.117508i
\(544\) −11.7815 −0.505128
\(545\) 0 0
\(546\) 59.7152 2.55558
\(547\) 2.33176i 0.0996990i 0.998757 + 0.0498495i \(0.0158742\pi\)
−0.998757 + 0.0498495i \(0.984126\pi\)
\(548\) − 57.6658i − 2.46336i
\(549\) −1.02052 −0.0435547
\(550\) 0 0
\(551\) 5.70928 0.243223
\(552\) − 17.4452i − 0.742518i
\(553\) 37.8576i 1.60987i
\(554\) −24.0410 −1.02141
\(555\) 0 0
\(556\) 21.9421 0.930554
\(557\) 30.8781i 1.30835i 0.756344 + 0.654174i \(0.226984\pi\)
−0.756344 + 0.654174i \(0.773016\pi\)
\(558\) − 0.389621i − 0.0164940i
\(559\) 54.4534 2.30314
\(560\) 0 0
\(561\) −1.67420 −0.0706849
\(562\) − 45.8310i − 1.93326i
\(563\) 34.1750i 1.44030i 0.693816 + 0.720152i \(0.255928\pi\)
−0.693816 + 0.720152i \(0.744072\pi\)
\(564\) 10.6081 0.446682
\(565\) 0 0
\(566\) −29.9071 −1.25709
\(567\) − 32.4885i − 1.36439i
\(568\) − 24.0144i − 1.00762i
\(569\) 30.6947 1.28679 0.643395 0.765535i \(-0.277525\pi\)
0.643395 + 0.765535i \(0.277525\pi\)
\(570\) 0 0
\(571\) −25.7275 −1.07666 −0.538332 0.842733i \(-0.680945\pi\)
−0.538332 + 0.842733i \(0.680945\pi\)
\(572\) 7.41855i 0.310185i
\(573\) 23.2885i 0.972889i
\(574\) −45.0928 −1.88214
\(575\) 0 0
\(576\) 0.964928 0.0402053
\(577\) 16.0228i 0.667037i 0.942743 + 0.333519i \(0.108236\pi\)
−0.942743 + 0.333519i \(0.891764\pi\)
\(578\) 31.6609i 1.31692i
\(579\) −29.0082 −1.20554
\(580\) 0 0
\(581\) −11.6020 −0.481331
\(582\) − 49.9565i − 2.07076i
\(583\) 0.581449i 0.0240812i
\(584\) 16.8455 0.697072
\(585\) 0 0
\(586\) 13.3424 0.551171
\(587\) 19.6248i 0.810000i 0.914317 + 0.405000i \(0.132729\pi\)
−0.914317 + 0.405000i \(0.867271\pi\)
\(588\) 31.2990i 1.29075i
\(589\) −13.0784 −0.538885
\(590\) 0 0
\(591\) 0.0988967 0.00406807
\(592\) 5.08679i 0.209066i
\(593\) − 30.9627i − 1.27148i −0.771902 0.635742i \(-0.780694\pi\)
0.771902 0.635742i \(-0.219306\pi\)
\(594\) 7.20394 0.295581
\(595\) 0 0
\(596\) 34.7792 1.42461
\(597\) − 9.21622i − 0.377195i
\(598\) 62.4534i 2.55391i
\(599\) −24.4619 −0.999484 −0.499742 0.866174i \(-0.666572\pi\)
−0.499742 + 0.866174i \(0.666572\pi\)
\(600\) 0 0
\(601\) 16.3857 0.668389 0.334194 0.942504i \(-0.391536\pi\)
0.334194 + 0.942504i \(0.391536\pi\)
\(602\) 100.991i 4.11610i
\(603\) 0.833226i 0.0339316i
\(604\) 55.7998 2.27046
\(605\) 0 0
\(606\) −4.09890 −0.166506
\(607\) 16.6986i 0.677775i 0.940827 + 0.338888i \(0.110051\pi\)
−0.940827 + 0.338888i \(0.889949\pi\)
\(608\) − 43.3256i − 1.75709i
\(609\) −6.34017 −0.256917
\(610\) 0 0
\(611\) −9.94214 −0.402216
\(612\) 0.329673i 0.0133262i
\(613\) − 5.83096i − 0.235510i −0.993043 0.117755i \(-0.962430\pi\)
0.993043 0.117755i \(-0.0375698\pi\)
\(614\) −22.5464 −0.909898
\(615\) 0 0
\(616\) −3.60197 −0.145127
\(617\) − 11.7237i − 0.471976i −0.971756 0.235988i \(-0.924167\pi\)
0.971756 0.235988i \(-0.0758327\pi\)
\(618\) 57.9565i 2.33135i
\(619\) 8.41628 0.338279 0.169139 0.985592i \(-0.445901\pi\)
0.169139 + 0.985592i \(0.445901\pi\)
\(620\) 0 0
\(621\) 34.8904 1.40010
\(622\) 40.7031i 1.63205i
\(623\) − 5.26180i − 0.210809i
\(624\) 15.4186 0.617236
\(625\) 0 0
\(626\) 26.7792 1.07031
\(627\) − 6.15676i − 0.245877i
\(628\) 16.3896i 0.654017i
\(629\) −3.79976 −0.151506
\(630\) 0 0
\(631\) −12.7792 −0.508734 −0.254367 0.967108i \(-0.581867\pi\)
−0.254367 + 0.967108i \(0.581867\pi\)
\(632\) − 15.7093i − 0.624881i
\(633\) 7.09066i 0.281829i
\(634\) 66.6186 2.64576
\(635\) 0 0
\(636\) −4.26794 −0.169235
\(637\) − 29.3340i − 1.16226i
\(638\) − 1.36910i − 0.0542033i
\(639\) 1.22285 0.0483751
\(640\) 0 0
\(641\) −0.0722347 −0.00285310 −0.00142655 0.999999i \(-0.500454\pi\)
−0.00142655 + 0.999999i \(0.500454\pi\)
\(642\) − 10.4391i − 0.411997i
\(643\) − 32.7175i − 1.29025i −0.764076 0.645126i \(-0.776805\pi\)
0.764076 0.645126i \(-0.223195\pi\)
\(644\) −66.6369 −2.62586
\(645\) 0 0
\(646\) 19.2351 0.756796
\(647\) − 15.8082i − 0.621483i −0.950494 0.310742i \(-0.899423\pi\)
0.950494 0.310742i \(-0.100577\pi\)
\(648\) 13.4813i 0.529597i
\(649\) −2.27247 −0.0892024
\(650\) 0 0
\(651\) 14.5236 0.569224
\(652\) − 43.2534i − 1.69393i
\(653\) 15.3112i 0.599175i 0.954069 + 0.299588i \(0.0968491\pi\)
−0.954069 + 0.299588i \(0.903151\pi\)
\(654\) 21.9421 0.858006
\(655\) 0 0
\(656\) −11.6430 −0.454583
\(657\) 0.857798i 0.0334659i
\(658\) − 18.4391i − 0.718830i
\(659\) −17.1278 −0.667205 −0.333603 0.942714i \(-0.608264\pi\)
−0.333603 + 0.942714i \(0.608264\pi\)
\(660\) 0 0
\(661\) −26.2290 −1.02019 −0.510095 0.860118i \(-0.670390\pi\)
−0.510095 + 0.860118i \(0.670390\pi\)
\(662\) − 8.85535i − 0.344173i
\(663\) 11.5174i 0.447301i
\(664\) 4.81432 0.186832
\(665\) 0 0
\(666\) 0.416283 0.0161307
\(667\) − 6.63090i − 0.256749i
\(668\) 30.6453i 1.18570i
\(669\) −11.5031 −0.444734
\(670\) 0 0
\(671\) 8.21461 0.317122
\(672\) 48.1133i 1.85601i
\(673\) − 46.4657i − 1.79112i −0.444938 0.895561i \(-0.646774\pi\)
0.444938 0.895561i \(-0.353226\pi\)
\(674\) 39.8492 1.53493
\(675\) 0 0
\(676\) 15.8143 0.608243
\(677\) − 27.8394i − 1.06995i −0.844867 0.534977i \(-0.820320\pi\)
0.844867 0.534977i \(-0.179680\pi\)
\(678\) − 7.23513i − 0.277864i
\(679\) −49.9565 −1.91716
\(680\) 0 0
\(681\) 38.0267 1.45718
\(682\) 3.13624i 0.120093i
\(683\) − 39.0966i − 1.49599i −0.663704 0.747995i \(-0.731016\pi\)
0.663704 0.747995i \(-0.268984\pi\)
\(684\) −1.21235 −0.0463552
\(685\) 0 0
\(686\) −1.94214 −0.0741513
\(687\) 12.2434i 0.467114i
\(688\) 26.0761i 0.994142i
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 24.7480 0.941460 0.470730 0.882277i \(-0.343991\pi\)
0.470730 + 0.882277i \(0.343991\pi\)
\(692\) − 28.4391i − 1.08109i
\(693\) − 0.183417i − 0.00696745i
\(694\) −19.4680 −0.738995
\(695\) 0 0
\(696\) 2.63090 0.0997239
\(697\) − 8.69717i − 0.329429i
\(698\) − 56.8515i − 2.15186i
\(699\) 51.6163 1.95231
\(700\) 0 0
\(701\) 0.187952 0.00709886 0.00354943 0.999994i \(-0.498870\pi\)
0.00354943 + 0.999994i \(0.498870\pi\)
\(702\) − 49.5585i − 1.87046i
\(703\) − 13.9733i − 0.527014i
\(704\) −7.76713 −0.292735
\(705\) 0 0
\(706\) −57.0349 −2.14654
\(707\) 4.09890i 0.154155i
\(708\) − 16.6803i − 0.626886i
\(709\) −13.6020 −0.510833 −0.255416 0.966831i \(-0.582213\pi\)
−0.255416 + 0.966831i \(0.582213\pi\)
\(710\) 0 0
\(711\) 0.799939 0.0300001
\(712\) 2.18342i 0.0818270i
\(713\) 15.1896i 0.568854i
\(714\) −21.3607 −0.799404
\(715\) 0 0
\(716\) −33.3607 −1.24675
\(717\) 11.0061i 0.411032i
\(718\) − 49.6346i − 1.85235i
\(719\) 9.27617 0.345943 0.172971 0.984927i \(-0.444663\pi\)
0.172971 + 0.984927i \(0.444663\pi\)
\(720\) 0 0
\(721\) 57.9565 2.15841
\(722\) 29.5041i 1.09803i
\(723\) 18.7915i 0.698864i
\(724\) 4.34017 0.161301
\(725\) 0 0
\(726\) 39.3256 1.45951
\(727\) 29.0121i 1.07600i 0.842945 + 0.538000i \(0.180820\pi\)
−0.842945 + 0.538000i \(0.819180\pi\)
\(728\) 24.7792i 0.918380i
\(729\) −27.6681 −1.02474
\(730\) 0 0
\(731\) −19.4785 −0.720438
\(732\) 60.2967i 2.22863i
\(733\) 34.0638i 1.25818i 0.777334 + 0.629088i \(0.216572\pi\)
−0.777334 + 0.629088i \(0.783428\pi\)
\(734\) 24.0228 0.886697
\(735\) 0 0
\(736\) −50.3195 −1.85480
\(737\) − 6.70701i − 0.247056i
\(738\) 0.952819i 0.0350738i
\(739\) −1.49466 −0.0549820 −0.0274910 0.999622i \(-0.508752\pi\)
−0.0274910 + 0.999622i \(0.508752\pi\)
\(740\) 0 0
\(741\) −42.3545 −1.55593
\(742\) 7.41855i 0.272344i
\(743\) − 17.8082i − 0.653318i −0.945142 0.326659i \(-0.894077\pi\)
0.945142 0.326659i \(-0.105923\pi\)
\(744\) −6.02666 −0.220948
\(745\) 0 0
\(746\) 25.1194 0.919687
\(747\) 0.245152i 0.00896964i
\(748\) − 2.65368i − 0.0970283i
\(749\) −10.4391 −0.381435
\(750\) 0 0
\(751\) −23.7503 −0.866661 −0.433331 0.901235i \(-0.642662\pi\)
−0.433331 + 0.901235i \(0.642662\pi\)
\(752\) − 4.76099i − 0.173615i
\(753\) 16.0845i 0.586153i
\(754\) −9.41855 −0.343003
\(755\) 0 0
\(756\) 52.8781 1.92316
\(757\) 26.1939i 0.952034i 0.879436 + 0.476017i \(0.157920\pi\)
−0.879436 + 0.476017i \(0.842080\pi\)
\(758\) 20.2062i 0.733922i
\(759\) −7.15061 −0.259551
\(760\) 0 0
\(761\) −44.7214 −1.62115 −0.810574 0.585636i \(-0.800845\pi\)
−0.810574 + 0.585636i \(0.800845\pi\)
\(762\) 83.4161i 3.02185i
\(763\) − 21.9421i − 0.794359i
\(764\) −36.9132 −1.33547
\(765\) 0 0
\(766\) 73.7068 2.66314
\(767\) 15.6332i 0.564481i
\(768\) − 0.715418i − 0.0258154i
\(769\) −10.8950 −0.392882 −0.196441 0.980516i \(-0.562938\pi\)
−0.196441 + 0.980516i \(0.562938\pi\)
\(770\) 0 0
\(771\) −9.94214 −0.358057
\(772\) − 45.9793i − 1.65483i
\(773\) − 34.1171i − 1.22711i −0.789653 0.613554i \(-0.789739\pi\)
0.789653 0.613554i \(-0.210261\pi\)
\(774\) 2.13397 0.0767039
\(775\) 0 0
\(776\) 20.7298 0.744156
\(777\) 15.5174i 0.556685i
\(778\) 8.95282i 0.320974i
\(779\) 31.9832 1.14592
\(780\) 0 0
\(781\) −9.84324 −0.352219
\(782\) − 22.3402i − 0.798883i
\(783\) 5.26180i 0.188041i
\(784\) 14.0472 0.501685
\(785\) 0 0
\(786\) −14.3402 −0.511497
\(787\) 39.7548i 1.41711i 0.705657 + 0.708554i \(0.250652\pi\)
−0.705657 + 0.708554i \(0.749348\pi\)
\(788\) 0.156755i 0.00558418i
\(789\) −15.2351 −0.542385
\(790\) 0 0
\(791\) −7.23513 −0.257252
\(792\) 0.0761103i 0.00270446i
\(793\) − 56.5113i − 2.00678i
\(794\) −37.1194 −1.31732
\(795\) 0 0
\(796\) 14.6081 0.517771
\(797\) 18.7298i 0.663443i 0.943377 + 0.331722i \(0.107629\pi\)
−0.943377 + 0.331722i \(0.892371\pi\)
\(798\) − 78.5523i − 2.78072i
\(799\) 3.55640 0.125816
\(800\) 0 0
\(801\) −0.111183 −0.00392845
\(802\) − 1.20394i − 0.0425125i
\(803\) − 6.90480i − 0.243665i
\(804\) 49.2306 1.73623
\(805\) 0 0
\(806\) 21.5753 0.759958
\(807\) 28.0989i 0.989128i
\(808\) − 1.70086i − 0.0598362i
\(809\) 31.9421 1.12303 0.561513 0.827468i \(-0.310219\pi\)
0.561513 + 0.827468i \(0.310219\pi\)
\(810\) 0 0
\(811\) −17.8888 −0.628161 −0.314081 0.949396i \(-0.601696\pi\)
−0.314081 + 0.949396i \(0.601696\pi\)
\(812\) − 10.0494i − 0.352666i
\(813\) 50.2700i 1.76305i
\(814\) −3.35085 −0.117447
\(815\) 0 0
\(816\) −5.51536 −0.193076
\(817\) − 71.6307i − 2.50604i
\(818\) 44.8203i 1.56710i
\(819\) −1.26180 −0.0440907
\(820\) 0 0
\(821\) 30.9939 1.08169 0.540847 0.841121i \(-0.318104\pi\)
0.540847 + 0.841121i \(0.318104\pi\)
\(822\) − 78.9504i − 2.75371i
\(823\) − 16.5008i − 0.575182i −0.957753 0.287591i \(-0.907146\pi\)
0.957753 0.287591i \(-0.0928544\pi\)
\(824\) −24.0494 −0.837802
\(825\) 0 0
\(826\) −28.9939 −1.00883
\(827\) 43.1155i 1.49927i 0.661849 + 0.749637i \(0.269772\pi\)
−0.661849 + 0.749637i \(0.730228\pi\)
\(828\) 1.40805i 0.0489331i
\(829\) −22.5958 −0.784785 −0.392393 0.919798i \(-0.628353\pi\)
−0.392393 + 0.919798i \(0.628353\pi\)
\(830\) 0 0
\(831\) −18.9360 −0.656882
\(832\) 53.4329i 1.85245i
\(833\) 10.4931i 0.363563i
\(834\) 30.0410 1.04024
\(835\) 0 0
\(836\) 9.75872 0.337513
\(837\) − 12.0533i − 0.416624i
\(838\) 13.0784i 0.451785i
\(839\) −1.21235 −0.0418549 −0.0209274 0.999781i \(-0.506662\pi\)
−0.0209274 + 0.999781i \(0.506662\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) − 27.2085i − 0.937666i
\(843\) − 36.0989i − 1.24331i
\(844\) −11.2390 −0.386863
\(845\) 0 0
\(846\) −0.389621 −0.0133955
\(847\) − 39.3256i − 1.35124i
\(848\) 1.91548i 0.0657778i
\(849\) −23.5564 −0.808453
\(850\) 0 0
\(851\) −16.2290 −0.556323
\(852\) − 72.2511i − 2.47528i
\(853\) − 5.93618i − 0.203251i −0.994823 0.101625i \(-0.967596\pi\)
0.994823 0.101625i \(-0.0324043\pi\)
\(854\) 104.808 3.58646
\(855\) 0 0
\(856\) 4.33176 0.148057
\(857\) 14.5503i 0.497027i 0.968628 + 0.248514i \(0.0799421\pi\)
−0.968628 + 0.248514i \(0.920058\pi\)
\(858\) 10.1568i 0.346746i
\(859\) 6.32192 0.215701 0.107851 0.994167i \(-0.465603\pi\)
0.107851 + 0.994167i \(0.465603\pi\)
\(860\) 0 0
\(861\) −35.5174 −1.21043
\(862\) − 39.1506i − 1.33348i
\(863\) 3.28005i 0.111654i 0.998440 + 0.0558270i \(0.0177795\pi\)
−0.998440 + 0.0558270i \(0.982220\pi\)
\(864\) 39.9299 1.35844
\(865\) 0 0
\(866\) 40.8287 1.38742
\(867\) 24.9378i 0.846932i
\(868\) 23.0205i 0.781367i
\(869\) −6.43907 −0.218430
\(870\) 0 0
\(871\) −46.1399 −1.56339
\(872\) 9.10504i 0.308336i
\(873\) 1.05559i 0.0357264i
\(874\) 82.1543 2.77891
\(875\) 0 0
\(876\) 50.6824 1.71240
\(877\) 18.2823i 0.617350i 0.951168 + 0.308675i \(0.0998855\pi\)
−0.951168 + 0.308675i \(0.900114\pi\)
\(878\) − 12.0312i − 0.406033i
\(879\) 10.5092 0.354467
\(880\) 0 0
\(881\) 29.7464 1.00218 0.501091 0.865394i \(-0.332932\pi\)
0.501091 + 0.865394i \(0.332932\pi\)
\(882\) − 1.14957i − 0.0387080i
\(883\) − 13.8127i − 0.464835i −0.972616 0.232417i \(-0.925336\pi\)
0.972616 0.232417i \(-0.0746635\pi\)
\(884\) −18.2557 −0.614004
\(885\) 0 0
\(886\) 38.6453 1.29831
\(887\) − 56.3318i − 1.89144i −0.324989 0.945718i \(-0.605361\pi\)
0.324989 0.945718i \(-0.394639\pi\)
\(888\) − 6.43907i − 0.216081i
\(889\) 83.4161 2.79769
\(890\) 0 0
\(891\) 5.52586 0.185123
\(892\) − 18.2329i − 0.610482i
\(893\) 13.0784i 0.437651i
\(894\) 47.6163 1.59253
\(895\) 0 0
\(896\) −42.8020 −1.42992
\(897\) 49.1917i 1.64246i
\(898\) 23.2085i 0.774477i
\(899\) −2.29072 −0.0763999
\(900\) 0 0
\(901\) −1.43084 −0.0476681
\(902\) − 7.66967i − 0.255372i
\(903\) 79.5462i 2.64713i
\(904\) 3.00227 0.0998539
\(905\) 0 0
\(906\) 76.3956 2.53807
\(907\) 21.8082i 0.724128i 0.932153 + 0.362064i \(0.117928\pi\)
−0.932153 + 0.362064i \(0.882072\pi\)
\(908\) 60.2739i 2.00026i
\(909\) 0.0866105 0.00287269
\(910\) 0 0
\(911\) 4.76099 0.157739 0.0788693 0.996885i \(-0.474869\pi\)
0.0788693 + 0.996885i \(0.474869\pi\)
\(912\) − 20.2823i − 0.671615i
\(913\) − 1.97334i − 0.0653080i
\(914\) 47.3074 1.56479
\(915\) 0 0
\(916\) −19.4063 −0.641201
\(917\) 14.3402i 0.473554i
\(918\) 17.7275i 0.585096i
\(919\) −34.1256 −1.12570 −0.562849 0.826560i \(-0.690295\pi\)
−0.562849 + 0.826560i \(0.690295\pi\)
\(920\) 0 0
\(921\) −17.7587 −0.585170
\(922\) 48.6369i 1.60177i
\(923\) 67.7152i 2.22887i
\(924\) −10.8371 −0.356514
\(925\) 0 0
\(926\) −4.56320 −0.149956
\(927\) − 1.22463i − 0.0402222i
\(928\) − 7.58864i − 0.249109i
\(929\) 12.5769 0.412635 0.206318 0.978485i \(-0.433852\pi\)
0.206318 + 0.978485i \(0.433852\pi\)
\(930\) 0 0
\(931\) −38.5874 −1.26465
\(932\) 81.8141i 2.67991i
\(933\) 32.0599i 1.04960i
\(934\) 40.3728 1.32104
\(935\) 0 0
\(936\) 0.523590 0.0171141
\(937\) − 29.7464i − 0.971774i −0.874022 0.485887i \(-0.838497\pi\)
0.874022 0.485887i \(-0.161503\pi\)
\(938\) − 85.5729i − 2.79405i
\(939\) 21.0928 0.688336
\(940\) 0 0
\(941\) −7.47641 −0.243724 −0.121862 0.992547i \(-0.538887\pi\)
−0.121862 + 0.992547i \(0.538887\pi\)
\(942\) 22.4391i 0.731104i
\(943\) − 37.1461i − 1.20964i
\(944\) −7.48625 −0.243657
\(945\) 0 0
\(946\) −17.1773 −0.558481
\(947\) − 15.2846i − 0.496682i −0.968673 0.248341i \(-0.920115\pi\)
0.968673 0.248341i \(-0.0798854\pi\)
\(948\) − 47.2639i − 1.53506i
\(949\) −47.5006 −1.54194
\(950\) 0 0
\(951\) 52.4724 1.70153
\(952\) − 8.86376i − 0.287276i
\(953\) 54.0288i 1.75016i 0.483976 + 0.875081i \(0.339192\pi\)
−0.483976 + 0.875081i \(0.660808\pi\)
\(954\) 0.156755 0.00507515
\(955\) 0 0
\(956\) −17.4452 −0.564219
\(957\) − 1.07838i − 0.0348590i
\(958\) − 19.3112i − 0.623918i
\(959\) −78.9504 −2.54944
\(960\) 0 0
\(961\) −25.7526 −0.830728
\(962\) 23.0517i 0.743217i
\(963\) 0.220580i 0.00710808i
\(964\) −29.7854 −0.959323
\(965\) 0 0
\(966\) −91.2327 −2.93536
\(967\) − 15.7671i − 0.507037i −0.967331 0.253518i \(-0.918412\pi\)
0.967331 0.253518i \(-0.0815878\pi\)
\(968\) 16.3184i 0.524494i
\(969\) 15.1506 0.486708
\(970\) 0 0
\(971\) 48.1627 1.54562 0.772808 0.634640i \(-0.218852\pi\)
0.772808 + 0.634640i \(0.218852\pi\)
\(972\) − 2.20620i − 0.0707640i
\(973\) − 30.0410i − 0.963071i
\(974\) 28.1483 0.901931
\(975\) 0 0
\(976\) 27.0616 0.866219
\(977\) − 8.28685i − 0.265120i −0.991175 0.132560i \(-0.957680\pi\)
0.991175 0.132560i \(-0.0423197\pi\)
\(978\) − 59.2183i − 1.89359i
\(979\) 0.894960 0.0286031
\(980\) 0 0
\(981\) −0.463642 −0.0148029
\(982\) − 30.0806i − 0.959912i
\(983\) − 22.9177i − 0.730963i −0.930819 0.365481i \(-0.880904\pi\)
0.930819 0.365481i \(-0.119096\pi\)
\(984\) 14.7382 0.469837
\(985\) 0 0
\(986\) 3.36910 0.107294
\(987\) − 14.5236i − 0.462291i
\(988\) − 67.1338i − 2.13581i
\(989\) −83.1937 −2.64541
\(990\) 0 0
\(991\) 22.3234 0.709125 0.354562 0.935032i \(-0.384630\pi\)
0.354562 + 0.935032i \(0.384630\pi\)
\(992\) 17.3835i 0.551926i
\(993\) − 6.97495i − 0.221343i
\(994\) −125.587 −3.98339
\(995\) 0 0
\(996\) 14.4846 0.458963
\(997\) 14.3630i 0.454879i 0.973792 + 0.227440i \(0.0730355\pi\)
−0.973792 + 0.227440i \(0.926965\pi\)
\(998\) 48.5113i 1.53560i
\(999\) 12.8781 0.407446
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.b.e.349.6 6
5.2 odd 4 725.2.a.e.1.1 3
5.3 odd 4 145.2.a.c.1.3 3
5.4 even 2 inner 725.2.b.e.349.1 6
15.2 even 4 6525.2.a.be.1.3 3
15.8 even 4 1305.2.a.p.1.1 3
20.3 even 4 2320.2.a.n.1.3 3
35.13 even 4 7105.2.a.o.1.3 3
40.3 even 4 9280.2.a.br.1.1 3
40.13 odd 4 9280.2.a.bj.1.3 3
145.28 odd 4 4205.2.a.f.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.a.c.1.3 3 5.3 odd 4
725.2.a.e.1.1 3 5.2 odd 4
725.2.b.e.349.1 6 5.4 even 2 inner
725.2.b.e.349.6 6 1.1 even 1 trivial
1305.2.a.p.1.1 3 15.8 even 4
2320.2.a.n.1.3 3 20.3 even 4
4205.2.a.f.1.1 3 145.28 odd 4
6525.2.a.be.1.3 3 15.2 even 4
7105.2.a.o.1.3 3 35.13 even 4
9280.2.a.bj.1.3 3 40.13 odd 4
9280.2.a.br.1.1 3 40.3 even 4