Properties

Label 725.2.a.g.1.4
Level $725$
Weight $2$
Character 725.1
Self dual yes
Analytic conductor $5.789$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(1,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.792287\) of defining polynomial
Character \(\chi\) \(=\) 725.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{2} +0.792287 q^{3} +1.00000 q^{4} +1.37228 q^{6} +5.04868 q^{7} -1.73205 q^{8} -2.37228 q^{9} +0.627719 q^{11} +0.792287 q^{12} +4.25639 q^{13} +8.74456 q^{14} -5.00000 q^{16} -1.58457 q^{17} -4.10891 q^{18} +4.00000 q^{19} +4.00000 q^{21} +1.08724 q^{22} +3.46410 q^{23} -1.37228 q^{24} +7.37228 q^{26} -4.25639 q^{27} +5.04868 q^{28} -1.00000 q^{29} -3.37228 q^{31} -5.19615 q^{32} +0.497333 q^{33} -2.74456 q^{34} -2.37228 q^{36} +3.16915 q^{37} +6.92820 q^{38} +3.37228 q^{39} -4.74456 q^{41} +6.92820 q^{42} -10.8896 q^{43} +0.627719 q^{44} +6.00000 q^{46} -10.8896 q^{47} -3.96143 q^{48} +18.4891 q^{49} -1.25544 q^{51} +4.25639 q^{52} +4.25639 q^{53} -7.37228 q^{54} -8.74456 q^{56} +3.16915 q^{57} -1.73205 q^{58} -10.7446 q^{59} +6.00000 q^{61} -5.84096 q^{62} -11.9769 q^{63} +1.00000 q^{64} +0.861407 q^{66} -1.87953 q^{67} -1.58457 q^{68} +2.74456 q^{69} +6.74456 q^{71} +4.10891 q^{72} -6.92820 q^{73} +5.48913 q^{74} +4.00000 q^{76} +3.16915 q^{77} +5.84096 q^{78} +11.3723 q^{79} +3.74456 q^{81} -8.21782 q^{82} -9.80240 q^{83} +4.00000 q^{84} -18.8614 q^{86} -0.792287 q^{87} -1.08724 q^{88} -0.744563 q^{89} +21.4891 q^{91} +3.46410 q^{92} -2.67181 q^{93} -18.8614 q^{94} -4.11684 q^{96} -6.92820 q^{97} +32.0241 q^{98} -1.48913 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 6 q^{6} + 2 q^{9} + 14 q^{11} + 12 q^{14} - 20 q^{16} + 16 q^{19} + 16 q^{21} + 6 q^{24} + 18 q^{26} - 4 q^{29} - 2 q^{31} + 12 q^{34} + 2 q^{36} + 2 q^{39} + 4 q^{41} + 14 q^{44} + 24 q^{46}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) 0.792287 0.457427 0.228714 0.973494i \(-0.426548\pi\)
0.228714 + 0.973494i \(0.426548\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.37228 0.560232
\(7\) 5.04868 1.90822 0.954110 0.299456i \(-0.0968053\pi\)
0.954110 + 0.299456i \(0.0968053\pi\)
\(8\) −1.73205 −0.612372
\(9\) −2.37228 −0.790760
\(10\) 0 0
\(11\) 0.627719 0.189264 0.0946322 0.995512i \(-0.469833\pi\)
0.0946322 + 0.995512i \(0.469833\pi\)
\(12\) 0.792287 0.228714
\(13\) 4.25639 1.18051 0.590255 0.807217i \(-0.299027\pi\)
0.590255 + 0.807217i \(0.299027\pi\)
\(14\) 8.74456 2.33708
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) −1.58457 −0.384316 −0.192158 0.981364i \(-0.561549\pi\)
−0.192158 + 0.981364i \(0.561549\pi\)
\(18\) −4.10891 −0.968480
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 1.08724 0.231800
\(23\) 3.46410 0.722315 0.361158 0.932505i \(-0.382382\pi\)
0.361158 + 0.932505i \(0.382382\pi\)
\(24\) −1.37228 −0.280116
\(25\) 0 0
\(26\) 7.37228 1.44582
\(27\) −4.25639 −0.819142
\(28\) 5.04868 0.954110
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −3.37228 −0.605680 −0.302840 0.953041i \(-0.597935\pi\)
−0.302840 + 0.953041i \(0.597935\pi\)
\(32\) −5.19615 −0.918559
\(33\) 0.497333 0.0865746
\(34\) −2.74456 −0.470689
\(35\) 0 0
\(36\) −2.37228 −0.395380
\(37\) 3.16915 0.521005 0.260502 0.965473i \(-0.416112\pi\)
0.260502 + 0.965473i \(0.416112\pi\)
\(38\) 6.92820 1.12390
\(39\) 3.37228 0.539997
\(40\) 0 0
\(41\) −4.74456 −0.740976 −0.370488 0.928837i \(-0.620810\pi\)
−0.370488 + 0.928837i \(0.620810\pi\)
\(42\) 6.92820 1.06904
\(43\) −10.8896 −1.66065 −0.830327 0.557276i \(-0.811846\pi\)
−0.830327 + 0.557276i \(0.811846\pi\)
\(44\) 0.627719 0.0946322
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) −10.8896 −1.58842 −0.794208 0.607645i \(-0.792114\pi\)
−0.794208 + 0.607645i \(0.792114\pi\)
\(48\) −3.96143 −0.571784
\(49\) 18.4891 2.64130
\(50\) 0 0
\(51\) −1.25544 −0.175796
\(52\) 4.25639 0.590255
\(53\) 4.25639 0.584660 0.292330 0.956318i \(-0.405569\pi\)
0.292330 + 0.956318i \(0.405569\pi\)
\(54\) −7.37228 −1.00324
\(55\) 0 0
\(56\) −8.74456 −1.16854
\(57\) 3.16915 0.419764
\(58\) −1.73205 −0.227429
\(59\) −10.7446 −1.39882 −0.699411 0.714719i \(-0.746554\pi\)
−0.699411 + 0.714719i \(0.746554\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) −5.84096 −0.741803
\(63\) −11.9769 −1.50894
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0.861407 0.106032
\(67\) −1.87953 −0.229621 −0.114810 0.993387i \(-0.536626\pi\)
−0.114810 + 0.993387i \(0.536626\pi\)
\(68\) −1.58457 −0.192158
\(69\) 2.74456 0.330407
\(70\) 0 0
\(71\) 6.74456 0.800432 0.400216 0.916421i \(-0.368935\pi\)
0.400216 + 0.916421i \(0.368935\pi\)
\(72\) 4.10891 0.484240
\(73\) −6.92820 −0.810885 −0.405442 0.914121i \(-0.632883\pi\)
−0.405442 + 0.914121i \(0.632883\pi\)
\(74\) 5.48913 0.638098
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 3.16915 0.361158
\(78\) 5.84096 0.661359
\(79\) 11.3723 1.27948 0.639741 0.768591i \(-0.279042\pi\)
0.639741 + 0.768591i \(0.279042\pi\)
\(80\) 0 0
\(81\) 3.74456 0.416063
\(82\) −8.21782 −0.907507
\(83\) −9.80240 −1.07595 −0.537976 0.842960i \(-0.680811\pi\)
−0.537976 + 0.842960i \(0.680811\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) −18.8614 −2.03388
\(87\) −0.792287 −0.0849421
\(88\) −1.08724 −0.115900
\(89\) −0.744563 −0.0789235 −0.0394617 0.999221i \(-0.512564\pi\)
−0.0394617 + 0.999221i \(0.512564\pi\)
\(90\) 0 0
\(91\) 21.4891 2.25267
\(92\) 3.46410 0.361158
\(93\) −2.67181 −0.277054
\(94\) −18.8614 −1.94541
\(95\) 0 0
\(96\) −4.11684 −0.420174
\(97\) −6.92820 −0.703452 −0.351726 0.936103i \(-0.614405\pi\)
−0.351726 + 0.936103i \(0.614405\pi\)
\(98\) 32.0241 3.23492
\(99\) −1.48913 −0.149663
\(100\) 0 0
\(101\) −3.25544 −0.323928 −0.161964 0.986797i \(-0.551783\pi\)
−0.161964 + 0.986797i \(0.551783\pi\)
\(102\) −2.17448 −0.215306
\(103\) 3.46410 0.341328 0.170664 0.985329i \(-0.445409\pi\)
0.170664 + 0.985329i \(0.445409\pi\)
\(104\) −7.37228 −0.722912
\(105\) 0 0
\(106\) 7.37228 0.716059
\(107\) −5.04868 −0.488074 −0.244037 0.969766i \(-0.578472\pi\)
−0.244037 + 0.969766i \(0.578472\pi\)
\(108\) −4.25639 −0.409571
\(109\) −16.1168 −1.54371 −0.771857 0.635796i \(-0.780672\pi\)
−0.771857 + 0.635796i \(0.780672\pi\)
\(110\) 0 0
\(111\) 2.51087 0.238322
\(112\) −25.2434 −2.38528
\(113\) −15.4410 −1.45257 −0.726283 0.687396i \(-0.758754\pi\)
−0.726283 + 0.687396i \(0.758754\pi\)
\(114\) 5.48913 0.514104
\(115\) 0 0
\(116\) −1.00000 −0.0928477
\(117\) −10.0974 −0.933500
\(118\) −18.6101 −1.71320
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) −10.6060 −0.964179
\(122\) 10.3923 0.940875
\(123\) −3.75906 −0.338943
\(124\) −3.37228 −0.302840
\(125\) 0 0
\(126\) −20.7446 −1.84807
\(127\) 3.46410 0.307389 0.153695 0.988118i \(-0.450883\pi\)
0.153695 + 0.988118i \(0.450883\pi\)
\(128\) 12.1244 1.07165
\(129\) −8.62772 −0.759628
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0.497333 0.0432873
\(133\) 20.1947 1.75110
\(134\) −3.25544 −0.281227
\(135\) 0 0
\(136\) 2.74456 0.235344
\(137\) 6.92820 0.591916 0.295958 0.955201i \(-0.404361\pi\)
0.295958 + 0.955201i \(0.404361\pi\)
\(138\) 4.75372 0.404664
\(139\) −2.74456 −0.232791 −0.116395 0.993203i \(-0.537134\pi\)
−0.116395 + 0.993203i \(0.537134\pi\)
\(140\) 0 0
\(141\) −8.62772 −0.726585
\(142\) 11.6819 0.980325
\(143\) 2.67181 0.223428
\(144\) 11.8614 0.988451
\(145\) 0 0
\(146\) −12.0000 −0.993127
\(147\) 14.6487 1.20820
\(148\) 3.16915 0.260502
\(149\) −3.88316 −0.318121 −0.159060 0.987269i \(-0.550846\pi\)
−0.159060 + 0.987269i \(0.550846\pi\)
\(150\) 0 0
\(151\) 13.4891 1.09773 0.548865 0.835911i \(-0.315060\pi\)
0.548865 + 0.835911i \(0.315060\pi\)
\(152\) −6.92820 −0.561951
\(153\) 3.75906 0.303902
\(154\) 5.48913 0.442326
\(155\) 0 0
\(156\) 3.37228 0.269999
\(157\) 13.8564 1.10586 0.552931 0.833227i \(-0.313509\pi\)
0.552931 + 0.833227i \(0.313509\pi\)
\(158\) 19.6974 1.56704
\(159\) 3.37228 0.267439
\(160\) 0 0
\(161\) 17.4891 1.37834
\(162\) 6.48577 0.509570
\(163\) −16.2333 −1.27149 −0.635744 0.771900i \(-0.719307\pi\)
−0.635744 + 0.771900i \(0.719307\pi\)
\(164\) −4.74456 −0.370488
\(165\) 0 0
\(166\) −16.9783 −1.31777
\(167\) 16.7306 1.29465 0.647326 0.762213i \(-0.275887\pi\)
0.647326 + 0.762213i \(0.275887\pi\)
\(168\) −6.92820 −0.534522
\(169\) 5.11684 0.393603
\(170\) 0 0
\(171\) −9.48913 −0.725652
\(172\) −10.8896 −0.830327
\(173\) 23.9538 1.82117 0.910585 0.413321i \(-0.135631\pi\)
0.910585 + 0.413321i \(0.135631\pi\)
\(174\) −1.37228 −0.104032
\(175\) 0 0
\(176\) −3.13859 −0.236580
\(177\) −8.51278 −0.639860
\(178\) −1.28962 −0.0966611
\(179\) 5.25544 0.392810 0.196405 0.980523i \(-0.437073\pi\)
0.196405 + 0.980523i \(0.437073\pi\)
\(180\) 0 0
\(181\) 14.8614 1.10464 0.552320 0.833632i \(-0.313743\pi\)
0.552320 + 0.833632i \(0.313743\pi\)
\(182\) 37.2203 2.75895
\(183\) 4.75372 0.351405
\(184\) −6.00000 −0.442326
\(185\) 0 0
\(186\) −4.62772 −0.339321
\(187\) −0.994667 −0.0727372
\(188\) −10.8896 −0.794208
\(189\) −21.4891 −1.56310
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0.792287 0.0571784
\(193\) 6.92820 0.498703 0.249351 0.968413i \(-0.419783\pi\)
0.249351 + 0.968413i \(0.419783\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) 18.4891 1.32065
\(197\) 0.589907 0.0420292 0.0210146 0.999779i \(-0.493310\pi\)
0.0210146 + 0.999779i \(0.493310\pi\)
\(198\) −2.57924 −0.183299
\(199\) 13.4891 0.956219 0.478109 0.878300i \(-0.341322\pi\)
0.478109 + 0.878300i \(0.341322\pi\)
\(200\) 0 0
\(201\) −1.48913 −0.105035
\(202\) −5.63858 −0.396729
\(203\) −5.04868 −0.354348
\(204\) −1.25544 −0.0878982
\(205\) 0 0
\(206\) 6.00000 0.418040
\(207\) −8.21782 −0.571178
\(208\) −21.2819 −1.47564
\(209\) 2.51087 0.173681
\(210\) 0 0
\(211\) 6.11684 0.421101 0.210550 0.977583i \(-0.432474\pi\)
0.210550 + 0.977583i \(0.432474\pi\)
\(212\) 4.25639 0.292330
\(213\) 5.34363 0.366139
\(214\) −8.74456 −0.597766
\(215\) 0 0
\(216\) 7.37228 0.501620
\(217\) −17.0256 −1.15577
\(218\) −27.9152 −1.89066
\(219\) −5.48913 −0.370921
\(220\) 0 0
\(221\) −6.74456 −0.453688
\(222\) 4.34896 0.291883
\(223\) −10.3923 −0.695920 −0.347960 0.937509i \(-0.613126\pi\)
−0.347960 + 0.937509i \(0.613126\pi\)
\(224\) −26.2337 −1.75281
\(225\) 0 0
\(226\) −26.7446 −1.77902
\(227\) 0.294954 0.0195768 0.00978838 0.999952i \(-0.496884\pi\)
0.00978838 + 0.999952i \(0.496884\pi\)
\(228\) 3.16915 0.209882
\(229\) −12.7446 −0.842184 −0.421092 0.907018i \(-0.638353\pi\)
−0.421092 + 0.907018i \(0.638353\pi\)
\(230\) 0 0
\(231\) 2.51087 0.165203
\(232\) 1.73205 0.113715
\(233\) 0.497333 0.0325814 0.0162907 0.999867i \(-0.494814\pi\)
0.0162907 + 0.999867i \(0.494814\pi\)
\(234\) −17.4891 −1.14330
\(235\) 0 0
\(236\) −10.7446 −0.699411
\(237\) 9.01011 0.585270
\(238\) −13.8564 −0.898177
\(239\) 28.2337 1.82629 0.913143 0.407640i \(-0.133648\pi\)
0.913143 + 0.407640i \(0.133648\pi\)
\(240\) 0 0
\(241\) 6.62772 0.426929 0.213464 0.976951i \(-0.431525\pi\)
0.213464 + 0.976951i \(0.431525\pi\)
\(242\) −18.3701 −1.18087
\(243\) 15.7359 1.00946
\(244\) 6.00000 0.384111
\(245\) 0 0
\(246\) −6.51087 −0.415118
\(247\) 17.0256 1.08331
\(248\) 5.84096 0.370901
\(249\) −7.76631 −0.492170
\(250\) 0 0
\(251\) 7.37228 0.465334 0.232667 0.972556i \(-0.425255\pi\)
0.232667 + 0.972556i \(0.425255\pi\)
\(252\) −11.9769 −0.754472
\(253\) 2.17448 0.136708
\(254\) 6.00000 0.376473
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 17.5229 1.09305 0.546524 0.837444i \(-0.315951\pi\)
0.546524 + 0.837444i \(0.315951\pi\)
\(258\) −14.9436 −0.930351
\(259\) 16.0000 0.994192
\(260\) 0 0
\(261\) 2.37228 0.146841
\(262\) −6.92820 −0.428026
\(263\) 9.89497 0.610150 0.305075 0.952328i \(-0.401318\pi\)
0.305075 + 0.952328i \(0.401318\pi\)
\(264\) −0.861407 −0.0530159
\(265\) 0 0
\(266\) 34.9783 2.14465
\(267\) −0.589907 −0.0361017
\(268\) −1.87953 −0.114810
\(269\) 23.4891 1.43216 0.716079 0.698020i \(-0.245935\pi\)
0.716079 + 0.698020i \(0.245935\pi\)
\(270\) 0 0
\(271\) −8.86141 −0.538292 −0.269146 0.963099i \(-0.586741\pi\)
−0.269146 + 0.963099i \(0.586741\pi\)
\(272\) 7.92287 0.480395
\(273\) 17.0256 1.03043
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 2.74456 0.165203
\(277\) −6.92820 −0.416275 −0.208138 0.978100i \(-0.566740\pi\)
−0.208138 + 0.978100i \(0.566740\pi\)
\(278\) −4.75372 −0.285109
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −1.37228 −0.0818634 −0.0409317 0.999162i \(-0.513033\pi\)
−0.0409317 + 0.999162i \(0.513033\pi\)
\(282\) −14.9436 −0.889881
\(283\) 4.05401 0.240986 0.120493 0.992714i \(-0.461552\pi\)
0.120493 + 0.992714i \(0.461552\pi\)
\(284\) 6.74456 0.400216
\(285\) 0 0
\(286\) 4.62772 0.273643
\(287\) −23.9538 −1.41395
\(288\) 12.3267 0.726360
\(289\) −14.4891 −0.852301
\(290\) 0 0
\(291\) −5.48913 −0.321778
\(292\) −6.92820 −0.405442
\(293\) −2.17448 −0.127035 −0.0635173 0.997981i \(-0.520232\pi\)
−0.0635173 + 0.997981i \(0.520232\pi\)
\(294\) 25.3723 1.47974
\(295\) 0 0
\(296\) −5.48913 −0.319049
\(297\) −2.67181 −0.155034
\(298\) −6.72582 −0.389616
\(299\) 14.7446 0.852700
\(300\) 0 0
\(301\) −54.9783 −3.16889
\(302\) 23.3639 1.34444
\(303\) −2.57924 −0.148174
\(304\) −20.0000 −1.14708
\(305\) 0 0
\(306\) 6.51087 0.372202
\(307\) 14.0588 0.802377 0.401189 0.915995i \(-0.368597\pi\)
0.401189 + 0.915995i \(0.368597\pi\)
\(308\) 3.16915 0.180579
\(309\) 2.74456 0.156133
\(310\) 0 0
\(311\) 26.9783 1.52980 0.764898 0.644151i \(-0.222789\pi\)
0.764898 + 0.644151i \(0.222789\pi\)
\(312\) −5.84096 −0.330679
\(313\) −14.3537 −0.811321 −0.405661 0.914024i \(-0.632959\pi\)
−0.405661 + 0.914024i \(0.632959\pi\)
\(314\) 24.0000 1.35440
\(315\) 0 0
\(316\) 11.3723 0.639741
\(317\) −22.3692 −1.25638 −0.628189 0.778061i \(-0.716204\pi\)
−0.628189 + 0.778061i \(0.716204\pi\)
\(318\) 5.84096 0.327545
\(319\) −0.627719 −0.0351455
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 30.2921 1.68811
\(323\) −6.33830 −0.352672
\(324\) 3.74456 0.208031
\(325\) 0 0
\(326\) −28.1168 −1.55725
\(327\) −12.7692 −0.706136
\(328\) 8.21782 0.453753
\(329\) −54.9783 −3.03105
\(330\) 0 0
\(331\) 28.8614 1.58637 0.793183 0.608983i \(-0.208422\pi\)
0.793183 + 0.608983i \(0.208422\pi\)
\(332\) −9.80240 −0.537976
\(333\) −7.51811 −0.411990
\(334\) 28.9783 1.58562
\(335\) 0 0
\(336\) −20.0000 −1.09109
\(337\) −7.92287 −0.431586 −0.215793 0.976439i \(-0.569234\pi\)
−0.215793 + 0.976439i \(0.569234\pi\)
\(338\) 8.86263 0.482064
\(339\) −12.2337 −0.664443
\(340\) 0 0
\(341\) −2.11684 −0.114634
\(342\) −16.4356 −0.888738
\(343\) 58.0049 3.13197
\(344\) 18.8614 1.01694
\(345\) 0 0
\(346\) 41.4891 2.23047
\(347\) −19.8997 −1.06827 −0.534137 0.845398i \(-0.679363\pi\)
−0.534137 + 0.845398i \(0.679363\pi\)
\(348\) −0.792287 −0.0424710
\(349\) 26.8614 1.43786 0.718929 0.695083i \(-0.244633\pi\)
0.718929 + 0.695083i \(0.244633\pi\)
\(350\) 0 0
\(351\) −18.1168 −0.967006
\(352\) −3.26172 −0.173850
\(353\) −10.6873 −0.568825 −0.284413 0.958702i \(-0.591799\pi\)
−0.284413 + 0.958702i \(0.591799\pi\)
\(354\) −14.7446 −0.783665
\(355\) 0 0
\(356\) −0.744563 −0.0394617
\(357\) −6.33830 −0.335458
\(358\) 9.10268 0.481092
\(359\) −13.8832 −0.732725 −0.366362 0.930472i \(-0.619397\pi\)
−0.366362 + 0.930472i \(0.619397\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 25.7407 1.35290
\(363\) −8.40297 −0.441042
\(364\) 21.4891 1.12634
\(365\) 0 0
\(366\) 8.23369 0.430382
\(367\) −10.3923 −0.542474 −0.271237 0.962513i \(-0.587433\pi\)
−0.271237 + 0.962513i \(0.587433\pi\)
\(368\) −17.3205 −0.902894
\(369\) 11.2554 0.585935
\(370\) 0 0
\(371\) 21.4891 1.11566
\(372\) −2.67181 −0.138527
\(373\) 24.4511 1.26603 0.633015 0.774140i \(-0.281817\pi\)
0.633015 + 0.774140i \(0.281817\pi\)
\(374\) −1.72281 −0.0890846
\(375\) 0 0
\(376\) 18.8614 0.972703
\(377\) −4.25639 −0.219215
\(378\) −37.2203 −1.91440
\(379\) 1.48913 0.0764912 0.0382456 0.999268i \(-0.487823\pi\)
0.0382456 + 0.999268i \(0.487823\pi\)
\(380\) 0 0
\(381\) 2.74456 0.140608
\(382\) −27.7128 −1.41791
\(383\) 1.28962 0.0658965 0.0329483 0.999457i \(-0.489510\pi\)
0.0329483 + 0.999457i \(0.489510\pi\)
\(384\) 9.60597 0.490203
\(385\) 0 0
\(386\) 12.0000 0.610784
\(387\) 25.8333 1.31318
\(388\) −6.92820 −0.351726
\(389\) 8.74456 0.443367 0.221683 0.975119i \(-0.428845\pi\)
0.221683 + 0.975119i \(0.428845\pi\)
\(390\) 0 0
\(391\) −5.48913 −0.277597
\(392\) −32.0241 −1.61746
\(393\) −3.16915 −0.159862
\(394\) 1.02175 0.0514750
\(395\) 0 0
\(396\) −1.48913 −0.0748314
\(397\) −15.9383 −0.799921 −0.399961 0.916532i \(-0.630976\pi\)
−0.399961 + 0.916532i \(0.630976\pi\)
\(398\) 23.3639 1.17112
\(399\) 16.0000 0.801002
\(400\) 0 0
\(401\) 4.11684 0.205585 0.102793 0.994703i \(-0.467222\pi\)
0.102793 + 0.994703i \(0.467222\pi\)
\(402\) −2.57924 −0.128641
\(403\) −14.3537 −0.715011
\(404\) −3.25544 −0.161964
\(405\) 0 0
\(406\) −8.74456 −0.433985
\(407\) 1.98933 0.0986076
\(408\) 2.17448 0.107653
\(409\) 38.4674 1.90209 0.951045 0.309053i \(-0.100012\pi\)
0.951045 + 0.309053i \(0.100012\pi\)
\(410\) 0 0
\(411\) 5.48913 0.270759
\(412\) 3.46410 0.170664
\(413\) −54.2458 −2.66926
\(414\) −14.2337 −0.699548
\(415\) 0 0
\(416\) −22.1168 −1.08437
\(417\) −2.17448 −0.106485
\(418\) 4.34896 0.212715
\(419\) 13.2554 0.647570 0.323785 0.946131i \(-0.395044\pi\)
0.323785 + 0.946131i \(0.395044\pi\)
\(420\) 0 0
\(421\) 24.9783 1.21737 0.608683 0.793414i \(-0.291698\pi\)
0.608683 + 0.793414i \(0.291698\pi\)
\(422\) 10.5947 0.515741
\(423\) 25.8333 1.25606
\(424\) −7.37228 −0.358030
\(425\) 0 0
\(426\) 9.25544 0.448427
\(427\) 30.2921 1.46594
\(428\) −5.04868 −0.244037
\(429\) 2.11684 0.102202
\(430\) 0 0
\(431\) −22.7446 −1.09557 −0.547784 0.836620i \(-0.684528\pi\)
−0.547784 + 0.836620i \(0.684528\pi\)
\(432\) 21.2819 1.02393
\(433\) −40.9793 −1.96934 −0.984670 0.174427i \(-0.944193\pi\)
−0.984670 + 0.174427i \(0.944193\pi\)
\(434\) −29.4891 −1.41552
\(435\) 0 0
\(436\) −16.1168 −0.771857
\(437\) 13.8564 0.662842
\(438\) −9.50744 −0.454283
\(439\) −4.23369 −0.202063 −0.101031 0.994883i \(-0.532214\pi\)
−0.101031 + 0.994883i \(0.532214\pi\)
\(440\) 0 0
\(441\) −43.8614 −2.08864
\(442\) −11.6819 −0.555653
\(443\) 20.4897 0.973493 0.486746 0.873543i \(-0.338184\pi\)
0.486746 + 0.873543i \(0.338184\pi\)
\(444\) 2.51087 0.119161
\(445\) 0 0
\(446\) −18.0000 −0.852325
\(447\) −3.07657 −0.145517
\(448\) 5.04868 0.238528
\(449\) −34.4674 −1.62662 −0.813308 0.581833i \(-0.802336\pi\)
−0.813308 + 0.581833i \(0.802336\pi\)
\(450\) 0 0
\(451\) −2.97825 −0.140240
\(452\) −15.4410 −0.726283
\(453\) 10.6873 0.502131
\(454\) 0.510875 0.0239765
\(455\) 0 0
\(456\) −5.48913 −0.257052
\(457\) 37.2203 1.74109 0.870545 0.492089i \(-0.163766\pi\)
0.870545 + 0.492089i \(0.163766\pi\)
\(458\) −22.0742 −1.03146
\(459\) 6.74456 0.314809
\(460\) 0 0
\(461\) 27.4891 1.28030 0.640148 0.768252i \(-0.278873\pi\)
0.640148 + 0.768252i \(0.278873\pi\)
\(462\) 4.34896 0.202332
\(463\) −7.22316 −0.335689 −0.167844 0.985814i \(-0.553681\pi\)
−0.167844 + 0.985814i \(0.553681\pi\)
\(464\) 5.00000 0.232119
\(465\) 0 0
\(466\) 0.861407 0.0399039
\(467\) 3.37153 0.156016 0.0780078 0.996953i \(-0.475144\pi\)
0.0780078 + 0.996953i \(0.475144\pi\)
\(468\) −10.0974 −0.466750
\(469\) −9.48913 −0.438167
\(470\) 0 0
\(471\) 10.9783 0.505851
\(472\) 18.6101 0.856601
\(473\) −6.83563 −0.314303
\(474\) 15.6060 0.716806
\(475\) 0 0
\(476\) −8.00000 −0.366679
\(477\) −10.0974 −0.462326
\(478\) 48.9022 2.23673
\(479\) −4.62772 −0.211446 −0.105723 0.994396i \(-0.533716\pi\)
−0.105723 + 0.994396i \(0.533716\pi\)
\(480\) 0 0
\(481\) 13.4891 0.615051
\(482\) 11.4795 0.522879
\(483\) 13.8564 0.630488
\(484\) −10.6060 −0.482090
\(485\) 0 0
\(486\) 27.2554 1.23633
\(487\) −29.0024 −1.31423 −0.657113 0.753792i \(-0.728223\pi\)
−0.657113 + 0.753792i \(0.728223\pi\)
\(488\) −10.3923 −0.470438
\(489\) −12.8614 −0.581613
\(490\) 0 0
\(491\) −23.3723 −1.05478 −0.527388 0.849624i \(-0.676829\pi\)
−0.527388 + 0.849624i \(0.676829\pi\)
\(492\) −3.75906 −0.169471
\(493\) 1.58457 0.0713656
\(494\) 29.4891 1.32678
\(495\) 0 0
\(496\) 16.8614 0.757100
\(497\) 34.0511 1.52740
\(498\) −13.4516 −0.602783
\(499\) 5.25544 0.235266 0.117633 0.993057i \(-0.462469\pi\)
0.117633 + 0.993057i \(0.462469\pi\)
\(500\) 0 0
\(501\) 13.2554 0.592209
\(502\) 12.7692 0.569916
\(503\) 3.37153 0.150329 0.0751645 0.997171i \(-0.476052\pi\)
0.0751645 + 0.997171i \(0.476052\pi\)
\(504\) 20.7446 0.924036
\(505\) 0 0
\(506\) 3.76631 0.167433
\(507\) 4.05401 0.180045
\(508\) 3.46410 0.153695
\(509\) −22.8614 −1.01331 −0.506657 0.862148i \(-0.669119\pi\)
−0.506657 + 0.862148i \(0.669119\pi\)
\(510\) 0 0
\(511\) −34.9783 −1.54735
\(512\) 8.66025 0.382733
\(513\) −17.0256 −0.751697
\(514\) 30.3505 1.33870
\(515\) 0 0
\(516\) −8.62772 −0.379814
\(517\) −6.83563 −0.300631
\(518\) 27.7128 1.21763
\(519\) 18.9783 0.833053
\(520\) 0 0
\(521\) 2.86141 0.125360 0.0626802 0.998034i \(-0.480035\pi\)
0.0626802 + 0.998034i \(0.480035\pi\)
\(522\) 4.10891 0.179842
\(523\) −15.1460 −0.662290 −0.331145 0.943580i \(-0.607435\pi\)
−0.331145 + 0.943580i \(0.607435\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) 17.1386 0.747278
\(527\) 5.34363 0.232772
\(528\) −2.48667 −0.108218
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) 25.4891 1.10613
\(532\) 20.1947 0.875551
\(533\) −20.1947 −0.874730
\(534\) −1.02175 −0.0442154
\(535\) 0 0
\(536\) 3.25544 0.140613
\(537\) 4.16381 0.179682
\(538\) 40.6844 1.75403
\(539\) 11.6060 0.499904
\(540\) 0 0
\(541\) 23.2554 0.999829 0.499915 0.866075i \(-0.333365\pi\)
0.499915 + 0.866075i \(0.333365\pi\)
\(542\) −15.3484 −0.659271
\(543\) 11.7745 0.505292
\(544\) 8.23369 0.353016
\(545\) 0 0
\(546\) 29.4891 1.26202
\(547\) 15.1460 0.647597 0.323799 0.946126i \(-0.395040\pi\)
0.323799 + 0.946126i \(0.395040\pi\)
\(548\) 6.92820 0.295958
\(549\) −14.2337 −0.607479
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) −4.75372 −0.202332
\(553\) 57.4150 2.44153
\(554\) −12.0000 −0.509831
\(555\) 0 0
\(556\) −2.74456 −0.116395
\(557\) 17.6155 0.746391 0.373196 0.927753i \(-0.378262\pi\)
0.373196 + 0.927753i \(0.378262\pi\)
\(558\) 13.8564 0.586588
\(559\) −46.3505 −1.96042
\(560\) 0 0
\(561\) −0.788061 −0.0332720
\(562\) −2.37686 −0.100262
\(563\) 17.8178 0.750932 0.375466 0.926836i \(-0.377483\pi\)
0.375466 + 0.926836i \(0.377483\pi\)
\(564\) −8.62772 −0.363292
\(565\) 0 0
\(566\) 7.02175 0.295146
\(567\) 18.9051 0.793939
\(568\) −11.6819 −0.490163
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 2.67181 0.111714
\(573\) −12.6766 −0.529572
\(574\) −41.4891 −1.73172
\(575\) 0 0
\(576\) −2.37228 −0.0988451
\(577\) −15.4410 −0.642816 −0.321408 0.946941i \(-0.604156\pi\)
−0.321408 + 0.946941i \(0.604156\pi\)
\(578\) −25.0959 −1.04385
\(579\) 5.48913 0.228120
\(580\) 0 0
\(581\) −49.4891 −2.05315
\(582\) −9.50744 −0.394096
\(583\) 2.67181 0.110655
\(584\) 12.0000 0.496564
\(585\) 0 0
\(586\) −3.76631 −0.155585
\(587\) 16.1407 0.666198 0.333099 0.942892i \(-0.391906\pi\)
0.333099 + 0.942892i \(0.391906\pi\)
\(588\) 14.6487 0.604102
\(589\) −13.4891 −0.555810
\(590\) 0 0
\(591\) 0.467376 0.0192253
\(592\) −15.8457 −0.651256
\(593\) −9.01011 −0.370001 −0.185000 0.982738i \(-0.559229\pi\)
−0.185000 + 0.982738i \(0.559229\pi\)
\(594\) −4.62772 −0.189878
\(595\) 0 0
\(596\) −3.88316 −0.159060
\(597\) 10.6873 0.437400
\(598\) 25.5383 1.04434
\(599\) 30.3505 1.24009 0.620045 0.784567i \(-0.287115\pi\)
0.620045 + 0.784567i \(0.287115\pi\)
\(600\) 0 0
\(601\) −7.25544 −0.295955 −0.147978 0.988991i \(-0.547276\pi\)
−0.147978 + 0.988991i \(0.547276\pi\)
\(602\) −95.2251 −3.88109
\(603\) 4.45877 0.181575
\(604\) 13.4891 0.548865
\(605\) 0 0
\(606\) −4.46738 −0.181475
\(607\) −17.2279 −0.699260 −0.349630 0.936888i \(-0.613693\pi\)
−0.349630 + 0.936888i \(0.613693\pi\)
\(608\) −20.7846 −0.842927
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) −46.3505 −1.87514
\(612\) 3.75906 0.151951
\(613\) 16.9330 0.683917 0.341958 0.939715i \(-0.388910\pi\)
0.341958 + 0.939715i \(0.388910\pi\)
\(614\) 24.3505 0.982707
\(615\) 0 0
\(616\) −5.48913 −0.221163
\(617\) −37.8102 −1.52218 −0.761090 0.648646i \(-0.775335\pi\)
−0.761090 + 0.648646i \(0.775335\pi\)
\(618\) 4.75372 0.191223
\(619\) 31.3723 1.26096 0.630479 0.776206i \(-0.282858\pi\)
0.630479 + 0.776206i \(0.282858\pi\)
\(620\) 0 0
\(621\) −14.7446 −0.591679
\(622\) 46.7277 1.87361
\(623\) −3.75906 −0.150603
\(624\) −16.8614 −0.674996
\(625\) 0 0
\(626\) −24.8614 −0.993662
\(627\) 1.98933 0.0794463
\(628\) 13.8564 0.552931
\(629\) −5.02175 −0.200230
\(630\) 0 0
\(631\) −28.2337 −1.12397 −0.561983 0.827149i \(-0.689961\pi\)
−0.561983 + 0.827149i \(0.689961\pi\)
\(632\) −19.6974 −0.783519
\(633\) 4.84630 0.192623
\(634\) −38.7446 −1.53874
\(635\) 0 0
\(636\) 3.37228 0.133720
\(637\) 78.6969 3.11808
\(638\) −1.08724 −0.0430443
\(639\) −16.0000 −0.632950
\(640\) 0 0
\(641\) −19.4891 −0.769774 −0.384887 0.922964i \(-0.625760\pi\)
−0.384887 + 0.922964i \(0.625760\pi\)
\(642\) −6.92820 −0.273434
\(643\) −15.1460 −0.597301 −0.298650 0.954363i \(-0.596536\pi\)
−0.298650 + 0.954363i \(0.596536\pi\)
\(644\) 17.4891 0.689168
\(645\) 0 0
\(646\) −10.9783 −0.431933
\(647\) −14.1514 −0.556347 −0.278174 0.960531i \(-0.589729\pi\)
−0.278174 + 0.960531i \(0.589729\pi\)
\(648\) −6.48577 −0.254785
\(649\) −6.74456 −0.264747
\(650\) 0 0
\(651\) −13.4891 −0.528681
\(652\) −16.2333 −0.635744
\(653\) −30.8820 −1.20850 −0.604252 0.796793i \(-0.706528\pi\)
−0.604252 + 0.796793i \(0.706528\pi\)
\(654\) −22.1168 −0.864837
\(655\) 0 0
\(656\) 23.7228 0.926220
\(657\) 16.4356 0.641216
\(658\) −95.2251 −3.71226
\(659\) 10.3505 0.403199 0.201600 0.979468i \(-0.435386\pi\)
0.201600 + 0.979468i \(0.435386\pi\)
\(660\) 0 0
\(661\) −39.4891 −1.53595 −0.767974 0.640480i \(-0.778735\pi\)
−0.767974 + 0.640480i \(0.778735\pi\)
\(662\) 49.9894 1.94289
\(663\) −5.34363 −0.207529
\(664\) 16.9783 0.658884
\(665\) 0 0
\(666\) −13.0217 −0.504583
\(667\) −3.46410 −0.134131
\(668\) 16.7306 0.647326
\(669\) −8.23369 −0.318333
\(670\) 0 0
\(671\) 3.76631 0.145397
\(672\) −20.7846 −0.801784
\(673\) −39.8921 −1.53773 −0.768863 0.639413i \(-0.779177\pi\)
−0.768863 + 0.639413i \(0.779177\pi\)
\(674\) −13.7228 −0.528583
\(675\) 0 0
\(676\) 5.11684 0.196802
\(677\) −45.7330 −1.75766 −0.878832 0.477132i \(-0.841676\pi\)
−0.878832 + 0.477132i \(0.841676\pi\)
\(678\) −21.1894 −0.813773
\(679\) −34.9783 −1.34234
\(680\) 0 0
\(681\) 0.233688 0.00895494
\(682\) −3.66648 −0.140397
\(683\) 14.5561 0.556974 0.278487 0.960440i \(-0.410167\pi\)
0.278487 + 0.960440i \(0.410167\pi\)
\(684\) −9.48913 −0.362826
\(685\) 0 0
\(686\) 100.467 3.83586
\(687\) −10.0974 −0.385238
\(688\) 54.4482 2.07582
\(689\) 18.1168 0.690197
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 23.9538 0.910585
\(693\) −7.51811 −0.285589
\(694\) −34.4674 −1.30836
\(695\) 0 0
\(696\) 1.37228 0.0520162
\(697\) 7.51811 0.284769
\(698\) 46.5253 1.76101
\(699\) 0.394031 0.0149036
\(700\) 0 0
\(701\) 0.116844 0.00441314 0.00220657 0.999998i \(-0.499298\pi\)
0.00220657 + 0.999998i \(0.499298\pi\)
\(702\) −31.3793 −1.18434
\(703\) 12.6766 0.478107
\(704\) 0.627719 0.0236580
\(705\) 0 0
\(706\) −18.5109 −0.696666
\(707\) −16.4356 −0.618126
\(708\) −8.51278 −0.319930
\(709\) −35.0951 −1.31802 −0.659012 0.752132i \(-0.729025\pi\)
−0.659012 + 0.752132i \(0.729025\pi\)
\(710\) 0 0
\(711\) −26.9783 −1.01176
\(712\) 1.28962 0.0483306
\(713\) −11.6819 −0.437492
\(714\) −10.9783 −0.410851
\(715\) 0 0
\(716\) 5.25544 0.196405
\(717\) 22.3692 0.835392
\(718\) −24.0463 −0.897401
\(719\) 14.7446 0.549879 0.274940 0.961461i \(-0.411342\pi\)
0.274940 + 0.961461i \(0.411342\pi\)
\(720\) 0 0
\(721\) 17.4891 0.651329
\(722\) −5.19615 −0.193381
\(723\) 5.25106 0.195289
\(724\) 14.8614 0.552320
\(725\) 0 0
\(726\) −14.5544 −0.540163
\(727\) −13.5615 −0.502966 −0.251483 0.967862i \(-0.580918\pi\)
−0.251483 + 0.967862i \(0.580918\pi\)
\(728\) −37.2203 −1.37947
\(729\) 1.23369 0.0456921
\(730\) 0 0
\(731\) 17.2554 0.638215
\(732\) 4.75372 0.175703
\(733\) 27.7128 1.02360 0.511798 0.859106i \(-0.328980\pi\)
0.511798 + 0.859106i \(0.328980\pi\)
\(734\) −18.0000 −0.664392
\(735\) 0 0
\(736\) −18.0000 −0.663489
\(737\) −1.17981 −0.0434590
\(738\) 19.4950 0.717620
\(739\) 15.3723 0.565479 0.282739 0.959197i \(-0.408757\pi\)
0.282739 + 0.959197i \(0.408757\pi\)
\(740\) 0 0
\(741\) 13.4891 0.495535
\(742\) 37.2203 1.36640
\(743\) −17.3205 −0.635428 −0.317714 0.948187i \(-0.602915\pi\)
−0.317714 + 0.948187i \(0.602915\pi\)
\(744\) 4.62772 0.169660
\(745\) 0 0
\(746\) 42.3505 1.55056
\(747\) 23.2540 0.850821
\(748\) −0.994667 −0.0363686
\(749\) −25.4891 −0.931352
\(750\) 0 0
\(751\) 48.4674 1.76860 0.884300 0.466919i \(-0.154636\pi\)
0.884300 + 0.466919i \(0.154636\pi\)
\(752\) 54.4482 1.98552
\(753\) 5.84096 0.212857
\(754\) −7.37228 −0.268483
\(755\) 0 0
\(756\) −21.4891 −0.781552
\(757\) −36.2256 −1.31664 −0.658321 0.752738i \(-0.728733\pi\)
−0.658321 + 0.752738i \(0.728733\pi\)
\(758\) 2.57924 0.0936822
\(759\) 1.72281 0.0625342
\(760\) 0 0
\(761\) −30.4674 −1.10444 −0.552221 0.833698i \(-0.686219\pi\)
−0.552221 + 0.833698i \(0.686219\pi\)
\(762\) 4.75372 0.172209
\(763\) −81.3687 −2.94575
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) 2.23369 0.0807064
\(767\) −45.7330 −1.65132
\(768\) 15.0535 0.543195
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) 13.8832 0.499990
\(772\) 6.92820 0.249351
\(773\) 38.4001 1.38115 0.690577 0.723259i \(-0.257357\pi\)
0.690577 + 0.723259i \(0.257357\pi\)
\(774\) 44.7446 1.60831
\(775\) 0 0
\(776\) 12.0000 0.430775
\(777\) 12.6766 0.454770
\(778\) 15.1460 0.543011
\(779\) −18.9783 −0.679966
\(780\) 0 0
\(781\) 4.23369 0.151493
\(782\) −9.50744 −0.339985
\(783\) 4.25639 0.152111
\(784\) −92.4456 −3.30163
\(785\) 0 0
\(786\) −5.48913 −0.195791
\(787\) 0.294954 0.0105140 0.00525698 0.999986i \(-0.498327\pi\)
0.00525698 + 0.999986i \(0.498327\pi\)
\(788\) 0.589907 0.0210146
\(789\) 7.83966 0.279099
\(790\) 0 0
\(791\) −77.9565 −2.77181
\(792\) 2.57924 0.0916493
\(793\) 25.5383 0.906893
\(794\) −27.6060 −0.979699
\(795\) 0 0
\(796\) 13.4891 0.478109
\(797\) −28.7075 −1.01687 −0.508436 0.861100i \(-0.669776\pi\)
−0.508436 + 0.861100i \(0.669776\pi\)
\(798\) 27.7128 0.981023
\(799\) 17.2554 0.610453
\(800\) 0 0
\(801\) 1.76631 0.0624096
\(802\) 7.13058 0.251790
\(803\) −4.34896 −0.153472
\(804\) −1.48913 −0.0525174
\(805\) 0 0
\(806\) −24.8614 −0.875706
\(807\) 18.6101 0.655108
\(808\) 5.63858 0.198365
\(809\) 12.7446 0.448075 0.224037 0.974581i \(-0.428076\pi\)
0.224037 + 0.974581i \(0.428076\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) −5.04868 −0.177174
\(813\) −7.02078 −0.246229
\(814\) 3.44563 0.120769
\(815\) 0 0
\(816\) 6.27719 0.219745
\(817\) −43.5586 −1.52392
\(818\) 66.6274 2.32957
\(819\) −50.9783 −1.78132
\(820\) 0 0
\(821\) 17.3723 0.606297 0.303148 0.952943i \(-0.401962\pi\)
0.303148 + 0.952943i \(0.401962\pi\)
\(822\) 9.50744 0.331610
\(823\) −33.1662 −1.15610 −0.578051 0.816000i \(-0.696187\pi\)
−0.578051 + 0.816000i \(0.696187\pi\)
\(824\) −6.00000 −0.209020
\(825\) 0 0
\(826\) −93.9565 −3.26916
\(827\) −16.8232 −0.584999 −0.292500 0.956266i \(-0.594487\pi\)
−0.292500 + 0.956266i \(0.594487\pi\)
\(828\) −8.21782 −0.285589
\(829\) 26.0000 0.903017 0.451509 0.892267i \(-0.350886\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(830\) 0 0
\(831\) −5.48913 −0.190416
\(832\) 4.25639 0.147564
\(833\) −29.2974 −1.01509
\(834\) −3.76631 −0.130417
\(835\) 0 0
\(836\) 2.51087 0.0868404
\(837\) 14.3537 0.496138
\(838\) 22.9591 0.793109
\(839\) −19.3723 −0.668805 −0.334403 0.942430i \(-0.608535\pi\)
−0.334403 + 0.942430i \(0.608535\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 43.2636 1.49096
\(843\) −1.08724 −0.0374466
\(844\) 6.11684 0.210550
\(845\) 0 0
\(846\) 44.7446 1.53835
\(847\) −53.5461 −1.83987
\(848\) −21.2819 −0.730825
\(849\) 3.21194 0.110233
\(850\) 0 0
\(851\) 10.9783 0.376330
\(852\) 5.34363 0.183070
\(853\) 25.5383 0.874416 0.437208 0.899360i \(-0.355967\pi\)
0.437208 + 0.899360i \(0.355967\pi\)
\(854\) 52.4674 1.79540
\(855\) 0 0
\(856\) 8.74456 0.298883
\(857\) 13.3591 0.456337 0.228169 0.973622i \(-0.426726\pi\)
0.228169 + 0.973622i \(0.426726\pi\)
\(858\) 3.66648 0.125172
\(859\) 51.6060 1.76077 0.880386 0.474257i \(-0.157283\pi\)
0.880386 + 0.474257i \(0.157283\pi\)
\(860\) 0 0
\(861\) −18.9783 −0.646777
\(862\) −39.3947 −1.34179
\(863\) 6.63325 0.225798 0.112899 0.993606i \(-0.463986\pi\)
0.112899 + 0.993606i \(0.463986\pi\)
\(864\) 22.1168 0.752430
\(865\) 0 0
\(866\) −70.9783 −2.41194
\(867\) −11.4795 −0.389866
\(868\) −17.0256 −0.577885
\(869\) 7.13859 0.242160
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 27.9152 0.945328
\(873\) 16.4356 0.556262
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) −5.48913 −0.185460
\(877\) −8.42020 −0.284330 −0.142165 0.989843i \(-0.545406\pi\)
−0.142165 + 0.989843i \(0.545406\pi\)
\(878\) −7.33296 −0.247476
\(879\) −1.72281 −0.0581090
\(880\) 0 0
\(881\) 36.9783 1.24583 0.622914 0.782290i \(-0.285948\pi\)
0.622914 + 0.782290i \(0.285948\pi\)
\(882\) −75.9702 −2.55805
\(883\) −1.28962 −0.0433992 −0.0216996 0.999765i \(-0.506908\pi\)
−0.0216996 + 0.999765i \(0.506908\pi\)
\(884\) −6.74456 −0.226844
\(885\) 0 0
\(886\) 35.4891 1.19228
\(887\) −37.4226 −1.25653 −0.628265 0.778000i \(-0.716234\pi\)
−0.628265 + 0.778000i \(0.716234\pi\)
\(888\) −4.34896 −0.145942
\(889\) 17.4891 0.586566
\(890\) 0 0
\(891\) 2.35053 0.0787458
\(892\) −10.3923 −0.347960
\(893\) −43.5586 −1.45763
\(894\) −5.32878 −0.178221
\(895\) 0 0
\(896\) 61.2119 2.04495
\(897\) 11.6819 0.390048
\(898\) −59.6992 −1.99219
\(899\) 3.37228 0.112472
\(900\) 0 0
\(901\) −6.74456 −0.224694
\(902\) −5.15848 −0.171759
\(903\) −43.5586 −1.44954
\(904\) 26.7446 0.889511
\(905\) 0 0
\(906\) 18.5109 0.614983
\(907\) −33.1662 −1.10127 −0.550634 0.834747i \(-0.685614\pi\)
−0.550634 + 0.834747i \(0.685614\pi\)
\(908\) 0.294954 0.00978838
\(909\) 7.72281 0.256150
\(910\) 0 0
\(911\) −26.1168 −0.865290 −0.432645 0.901564i \(-0.642420\pi\)
−0.432645 + 0.901564i \(0.642420\pi\)
\(912\) −15.8457 −0.524705
\(913\) −6.15315 −0.203639
\(914\) 64.4674 2.13239
\(915\) 0 0
\(916\) −12.7446 −0.421092
\(917\) −20.1947 −0.666888
\(918\) 11.6819 0.385561
\(919\) 52.2337 1.72303 0.861515 0.507732i \(-0.169516\pi\)
0.861515 + 0.507732i \(0.169516\pi\)
\(920\) 0 0
\(921\) 11.1386 0.367029
\(922\) 47.6126 1.56804
\(923\) 28.7075 0.944918
\(924\) 2.51087 0.0826017
\(925\) 0 0
\(926\) −12.5109 −0.411133
\(927\) −8.21782 −0.269909
\(928\) 5.19615 0.170572
\(929\) −47.4891 −1.55807 −0.779034 0.626982i \(-0.784290\pi\)
−0.779034 + 0.626982i \(0.784290\pi\)
\(930\) 0 0
\(931\) 73.9565 2.42383
\(932\) 0.497333 0.0162907
\(933\) 21.3745 0.699770
\(934\) 5.83966 0.191079
\(935\) 0 0
\(936\) 17.4891 0.571650
\(937\) −47.9075 −1.56507 −0.782535 0.622606i \(-0.786074\pi\)
−0.782535 + 0.622606i \(0.786074\pi\)
\(938\) −16.4356 −0.536643
\(939\) −11.3723 −0.371120
\(940\) 0 0
\(941\) 25.3723 0.827113 0.413556 0.910479i \(-0.364286\pi\)
0.413556 + 0.910479i \(0.364286\pi\)
\(942\) 19.0149 0.619539
\(943\) −16.4356 −0.535218
\(944\) 53.7228 1.74853
\(945\) 0 0
\(946\) −11.8397 −0.384940
\(947\) −21.9817 −0.714308 −0.357154 0.934046i \(-0.616253\pi\)
−0.357154 + 0.934046i \(0.616253\pi\)
\(948\) 9.01011 0.292635
\(949\) −29.4891 −0.957258
\(950\) 0 0
\(951\) −17.7228 −0.574702
\(952\) 13.8564 0.449089
\(953\) −10.1899 −0.330084 −0.165042 0.986287i \(-0.552776\pi\)
−0.165042 + 0.986287i \(0.552776\pi\)
\(954\) −17.4891 −0.566231
\(955\) 0 0
\(956\) 28.2337 0.913143
\(957\) −0.497333 −0.0160765
\(958\) −8.01544 −0.258967
\(959\) 34.9783 1.12951
\(960\) 0 0
\(961\) −19.6277 −0.633152
\(962\) 23.3639 0.753281
\(963\) 11.9769 0.385950
\(964\) 6.62772 0.213464
\(965\) 0 0
\(966\) 24.0000 0.772187
\(967\) 34.8434 1.12049 0.560244 0.828328i \(-0.310707\pi\)
0.560244 + 0.828328i \(0.310707\pi\)
\(968\) 18.3701 0.590437
\(969\) −5.02175 −0.161322
\(970\) 0 0
\(971\) −6.97825 −0.223943 −0.111971 0.993711i \(-0.535716\pi\)
−0.111971 + 0.993711i \(0.535716\pi\)
\(972\) 15.7359 0.504730
\(973\) −13.8564 −0.444216
\(974\) −50.2337 −1.60959
\(975\) 0 0
\(976\) −30.0000 −0.960277
\(977\) 34.5484 1.10530 0.552651 0.833413i \(-0.313616\pi\)
0.552651 + 0.833413i \(0.313616\pi\)
\(978\) −22.2766 −0.712327
\(979\) −0.467376 −0.0149374
\(980\) 0 0
\(981\) 38.2337 1.22071
\(982\) −40.4820 −1.29183
\(983\) 26.7354 0.852726 0.426363 0.904552i \(-0.359795\pi\)
0.426363 + 0.904552i \(0.359795\pi\)
\(984\) 6.51087 0.207559
\(985\) 0 0
\(986\) 2.74456 0.0874047
\(987\) −43.5586 −1.38648
\(988\) 17.0256 0.541655
\(989\) −37.7228 −1.19952
\(990\) 0 0
\(991\) 17.2554 0.548137 0.274069 0.961710i \(-0.411630\pi\)
0.274069 + 0.961710i \(0.411630\pi\)
\(992\) 17.5229 0.556352
\(993\) 22.8665 0.725647
\(994\) 58.9783 1.87068
\(995\) 0 0
\(996\) −7.76631 −0.246085
\(997\) 37.2203 1.17878 0.589389 0.807850i \(-0.299369\pi\)
0.589389 + 0.807850i \(0.299369\pi\)
\(998\) 9.10268 0.288140
\(999\) −13.4891 −0.426777
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.g.1.4 4
3.2 odd 2 6525.2.a.bk.1.2 4
5.2 odd 4 145.2.b.a.59.3 yes 4
5.3 odd 4 145.2.b.a.59.2 4
5.4 even 2 inner 725.2.a.g.1.1 4
15.2 even 4 1305.2.c.e.784.1 4
15.8 even 4 1305.2.c.e.784.3 4
15.14 odd 2 6525.2.a.bk.1.3 4
20.3 even 4 2320.2.d.c.929.2 4
20.7 even 4 2320.2.d.c.929.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.a.59.2 4 5.3 odd 4
145.2.b.a.59.3 yes 4 5.2 odd 4
725.2.a.g.1.1 4 5.4 even 2 inner
725.2.a.g.1.4 4 1.1 even 1 trivial
1305.2.c.e.784.1 4 15.2 even 4
1305.2.c.e.784.3 4 15.8 even 4
2320.2.d.c.929.2 4 20.3 even 4
2320.2.d.c.929.3 4 20.7 even 4
6525.2.a.bk.1.2 4 3.2 odd 2
6525.2.a.bk.1.3 4 15.14 odd 2