Properties

Label 725.2.a.g.1.2
Level $725$
Weight $2$
Character 725.1
Self dual yes
Analytic conductor $5.789$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(1,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.52434\) of defining polynomial
Character \(\chi\) \(=\) 725.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} +2.52434 q^{3} +1.00000 q^{4} -4.37228 q^{6} +1.58457 q^{7} +1.73205 q^{8} +3.37228 q^{9} +6.37228 q^{11} +2.52434 q^{12} -0.939764 q^{13} -2.74456 q^{14} -5.00000 q^{16} -5.04868 q^{17} -5.84096 q^{18} +4.00000 q^{19} +4.00000 q^{21} -11.0371 q^{22} -3.46410 q^{23} +4.37228 q^{24} +1.62772 q^{26} +0.939764 q^{27} +1.58457 q^{28} -1.00000 q^{29} +2.37228 q^{31} +5.19615 q^{32} +16.0858 q^{33} +8.74456 q^{34} +3.37228 q^{36} +10.0974 q^{37} -6.92820 q^{38} -2.37228 q^{39} +6.74456 q^{41} -6.92820 q^{42} -5.69349 q^{43} +6.37228 q^{44} +6.00000 q^{46} -5.69349 q^{47} -12.6217 q^{48} -4.48913 q^{49} -12.7446 q^{51} -0.939764 q^{52} -0.939764 q^{53} -1.62772 q^{54} +2.74456 q^{56} +10.0974 q^{57} +1.73205 q^{58} +0.744563 q^{59} +6.00000 q^{61} -4.10891 q^{62} +5.34363 q^{63} +1.00000 q^{64} -27.8614 q^{66} +8.51278 q^{67} -5.04868 q^{68} -8.74456 q^{69} -4.74456 q^{71} +5.84096 q^{72} +6.92820 q^{73} -17.4891 q^{74} +4.00000 q^{76} +10.0974 q^{77} +4.10891 q^{78} +5.62772 q^{79} -7.74456 q^{81} -11.6819 q^{82} -16.7306 q^{83} +4.00000 q^{84} +9.86141 q^{86} -2.52434 q^{87} +11.0371 q^{88} +10.7446 q^{89} -1.48913 q^{91} -3.46410 q^{92} +5.98844 q^{93} +9.86141 q^{94} +13.1168 q^{96} +6.92820 q^{97} +7.77539 q^{98} +21.4891 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 6 q^{6} + 2 q^{9} + 14 q^{11} + 12 q^{14} - 20 q^{16} + 16 q^{19} + 16 q^{21} + 6 q^{24} + 18 q^{26} - 4 q^{29} - 2 q^{31} + 12 q^{34} + 2 q^{36} + 2 q^{39} + 4 q^{41} + 14 q^{44} + 24 q^{46}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) 2.52434 1.45743 0.728714 0.684819i \(-0.240119\pi\)
0.728714 + 0.684819i \(0.240119\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −4.37228 −1.78498
\(7\) 1.58457 0.598913 0.299456 0.954110i \(-0.403195\pi\)
0.299456 + 0.954110i \(0.403195\pi\)
\(8\) 1.73205 0.612372
\(9\) 3.37228 1.12409
\(10\) 0 0
\(11\) 6.37228 1.92132 0.960658 0.277736i \(-0.0895839\pi\)
0.960658 + 0.277736i \(0.0895839\pi\)
\(12\) 2.52434 0.728714
\(13\) −0.939764 −0.260644 −0.130322 0.991472i \(-0.541601\pi\)
−0.130322 + 0.991472i \(0.541601\pi\)
\(14\) −2.74456 −0.733515
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) −5.04868 −1.22448 −0.612242 0.790671i \(-0.709732\pi\)
−0.612242 + 0.790671i \(0.709732\pi\)
\(18\) −5.84096 −1.37673
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) −11.0371 −2.35312
\(23\) −3.46410 −0.722315 −0.361158 0.932505i \(-0.617618\pi\)
−0.361158 + 0.932505i \(0.617618\pi\)
\(24\) 4.37228 0.892488
\(25\) 0 0
\(26\) 1.62772 0.319222
\(27\) 0.939764 0.180858
\(28\) 1.58457 0.299456
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 2.37228 0.426074 0.213037 0.977044i \(-0.431664\pi\)
0.213037 + 0.977044i \(0.431664\pi\)
\(32\) 5.19615 0.918559
\(33\) 16.0858 2.80018
\(34\) 8.74456 1.49968
\(35\) 0 0
\(36\) 3.37228 0.562047
\(37\) 10.0974 1.65999 0.829997 0.557768i \(-0.188342\pi\)
0.829997 + 0.557768i \(0.188342\pi\)
\(38\) −6.92820 −1.12390
\(39\) −2.37228 −0.379869
\(40\) 0 0
\(41\) 6.74456 1.05332 0.526662 0.850075i \(-0.323443\pi\)
0.526662 + 0.850075i \(0.323443\pi\)
\(42\) −6.92820 −1.06904
\(43\) −5.69349 −0.868248 −0.434124 0.900853i \(-0.642942\pi\)
−0.434124 + 0.900853i \(0.642942\pi\)
\(44\) 6.37228 0.960658
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) −5.69349 −0.830480 −0.415240 0.909712i \(-0.636302\pi\)
−0.415240 + 0.909712i \(0.636302\pi\)
\(48\) −12.6217 −1.82178
\(49\) −4.48913 −0.641304
\(50\) 0 0
\(51\) −12.7446 −1.78460
\(52\) −0.939764 −0.130322
\(53\) −0.939764 −0.129086 −0.0645432 0.997915i \(-0.520559\pi\)
−0.0645432 + 0.997915i \(0.520559\pi\)
\(54\) −1.62772 −0.221504
\(55\) 0 0
\(56\) 2.74456 0.366758
\(57\) 10.0974 1.33743
\(58\) 1.73205 0.227429
\(59\) 0.744563 0.0969338 0.0484669 0.998825i \(-0.484566\pi\)
0.0484669 + 0.998825i \(0.484566\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) −4.10891 −0.521832
\(63\) 5.34363 0.673234
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −27.8614 −3.42950
\(67\) 8.51278 1.04000 0.520001 0.854166i \(-0.325932\pi\)
0.520001 + 0.854166i \(0.325932\pi\)
\(68\) −5.04868 −0.612242
\(69\) −8.74456 −1.05272
\(70\) 0 0
\(71\) −4.74456 −0.563076 −0.281538 0.959550i \(-0.590845\pi\)
−0.281538 + 0.959550i \(0.590845\pi\)
\(72\) 5.84096 0.688364
\(73\) 6.92820 0.810885 0.405442 0.914121i \(-0.367117\pi\)
0.405442 + 0.914121i \(0.367117\pi\)
\(74\) −17.4891 −2.03307
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 10.0974 1.15070
\(78\) 4.10891 0.465243
\(79\) 5.62772 0.633168 0.316584 0.948565i \(-0.397464\pi\)
0.316584 + 0.948565i \(0.397464\pi\)
\(80\) 0 0
\(81\) −7.74456 −0.860507
\(82\) −11.6819 −1.29005
\(83\) −16.7306 −1.83642 −0.918211 0.396092i \(-0.870366\pi\)
−0.918211 + 0.396092i \(0.870366\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) 9.86141 1.06338
\(87\) −2.52434 −0.270637
\(88\) 11.0371 1.17656
\(89\) 10.7446 1.13892 0.569461 0.822019i \(-0.307152\pi\)
0.569461 + 0.822019i \(0.307152\pi\)
\(90\) 0 0
\(91\) −1.48913 −0.156103
\(92\) −3.46410 −0.361158
\(93\) 5.98844 0.620972
\(94\) 9.86141 1.01713
\(95\) 0 0
\(96\) 13.1168 1.33873
\(97\) 6.92820 0.703452 0.351726 0.936103i \(-0.385595\pi\)
0.351726 + 0.936103i \(0.385595\pi\)
\(98\) 7.77539 0.785433
\(99\) 21.4891 2.15974
\(100\) 0 0
\(101\) −14.7446 −1.46714 −0.733569 0.679615i \(-0.762147\pi\)
−0.733569 + 0.679615i \(0.762147\pi\)
\(102\) 22.0742 2.18567
\(103\) −3.46410 −0.341328 −0.170664 0.985329i \(-0.554591\pi\)
−0.170664 + 0.985329i \(0.554591\pi\)
\(104\) −1.62772 −0.159611
\(105\) 0 0
\(106\) 1.62772 0.158098
\(107\) −1.58457 −0.153187 −0.0765933 0.997062i \(-0.524404\pi\)
−0.0765933 + 0.997062i \(0.524404\pi\)
\(108\) 0.939764 0.0904288
\(109\) 1.11684 0.106974 0.0534871 0.998569i \(-0.482966\pi\)
0.0534871 + 0.998569i \(0.482966\pi\)
\(110\) 0 0
\(111\) 25.4891 2.41932
\(112\) −7.92287 −0.748641
\(113\) 8.80773 0.828562 0.414281 0.910149i \(-0.364033\pi\)
0.414281 + 0.910149i \(0.364033\pi\)
\(114\) −17.4891 −1.63801
\(115\) 0 0
\(116\) −1.00000 −0.0928477
\(117\) −3.16915 −0.292988
\(118\) −1.28962 −0.118719
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 29.6060 2.69145
\(122\) −10.3923 −0.940875
\(123\) 17.0256 1.53514
\(124\) 2.37228 0.213037
\(125\) 0 0
\(126\) −9.25544 −0.824540
\(127\) −3.46410 −0.307389 −0.153695 0.988118i \(-0.549117\pi\)
−0.153695 + 0.988118i \(0.549117\pi\)
\(128\) −12.1244 −1.07165
\(129\) −14.3723 −1.26541
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 16.0858 1.40009
\(133\) 6.33830 0.549600
\(134\) −14.7446 −1.27374
\(135\) 0 0
\(136\) −8.74456 −0.749840
\(137\) −6.92820 −0.591916 −0.295958 0.955201i \(-0.595639\pi\)
−0.295958 + 0.955201i \(0.595639\pi\)
\(138\) 15.1460 1.28932
\(139\) 8.74456 0.741704 0.370852 0.928692i \(-0.379066\pi\)
0.370852 + 0.928692i \(0.379066\pi\)
\(140\) 0 0
\(141\) −14.3723 −1.21036
\(142\) 8.21782 0.689624
\(143\) −5.98844 −0.500778
\(144\) −16.8614 −1.40512
\(145\) 0 0
\(146\) −12.0000 −0.993127
\(147\) −11.3321 −0.934653
\(148\) 10.0974 0.829997
\(149\) −21.1168 −1.72996 −0.864980 0.501807i \(-0.832669\pi\)
−0.864980 + 0.501807i \(0.832669\pi\)
\(150\) 0 0
\(151\) −9.48913 −0.772214 −0.386107 0.922454i \(-0.626180\pi\)
−0.386107 + 0.922454i \(0.626180\pi\)
\(152\) 6.92820 0.561951
\(153\) −17.0256 −1.37643
\(154\) −17.4891 −1.40931
\(155\) 0 0
\(156\) −2.37228 −0.189935
\(157\) −13.8564 −1.10586 −0.552931 0.833227i \(-0.686491\pi\)
−0.552931 + 0.833227i \(0.686491\pi\)
\(158\) −9.74749 −0.775469
\(159\) −2.37228 −0.188134
\(160\) 0 0
\(161\) −5.48913 −0.432604
\(162\) 13.4140 1.05390
\(163\) 6.28339 0.492153 0.246077 0.969250i \(-0.420858\pi\)
0.246077 + 0.969250i \(0.420858\pi\)
\(164\) 6.74456 0.526662
\(165\) 0 0
\(166\) 28.9783 2.24915
\(167\) 9.80240 0.758532 0.379266 0.925288i \(-0.376176\pi\)
0.379266 + 0.925288i \(0.376176\pi\)
\(168\) 6.92820 0.534522
\(169\) −12.1168 −0.932065
\(170\) 0 0
\(171\) 13.4891 1.03154
\(172\) −5.69349 −0.434124
\(173\) −10.6873 −0.812537 −0.406269 0.913754i \(-0.633170\pi\)
−0.406269 + 0.913754i \(0.633170\pi\)
\(174\) 4.37228 0.331462
\(175\) 0 0
\(176\) −31.8614 −2.40164
\(177\) 1.87953 0.141274
\(178\) −18.6101 −1.39489
\(179\) 16.7446 1.25155 0.625774 0.780005i \(-0.284783\pi\)
0.625774 + 0.780005i \(0.284783\pi\)
\(180\) 0 0
\(181\) −13.8614 −1.03031 −0.515155 0.857097i \(-0.672266\pi\)
−0.515155 + 0.857097i \(0.672266\pi\)
\(182\) 2.57924 0.191186
\(183\) 15.1460 1.11963
\(184\) −6.00000 −0.442326
\(185\) 0 0
\(186\) −10.3723 −0.760533
\(187\) −32.1716 −2.35262
\(188\) −5.69349 −0.415240
\(189\) 1.48913 0.108318
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 2.52434 0.182178
\(193\) −6.92820 −0.498703 −0.249351 0.968413i \(-0.580217\pi\)
−0.249351 + 0.968413i \(0.580217\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) −4.48913 −0.320652
\(197\) −27.1229 −1.93243 −0.966214 0.257743i \(-0.917021\pi\)
−0.966214 + 0.257743i \(0.917021\pi\)
\(198\) −37.2203 −2.64513
\(199\) −9.48913 −0.672666 −0.336333 0.941743i \(-0.609187\pi\)
−0.336333 + 0.941743i \(0.609187\pi\)
\(200\) 0 0
\(201\) 21.4891 1.51573
\(202\) 25.5383 1.79687
\(203\) −1.58457 −0.111215
\(204\) −12.7446 −0.892298
\(205\) 0 0
\(206\) 6.00000 0.418040
\(207\) −11.6819 −0.811950
\(208\) 4.69882 0.325804
\(209\) 25.4891 1.76312
\(210\) 0 0
\(211\) −11.1168 −0.765315 −0.382658 0.923890i \(-0.624991\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(212\) −0.939764 −0.0645432
\(213\) −11.9769 −0.820642
\(214\) 2.74456 0.187614
\(215\) 0 0
\(216\) 1.62772 0.110752
\(217\) 3.75906 0.255181
\(218\) −1.93443 −0.131016
\(219\) 17.4891 1.18181
\(220\) 0 0
\(221\) 4.74456 0.319154
\(222\) −44.1485 −2.96305
\(223\) 10.3923 0.695920 0.347960 0.937509i \(-0.386874\pi\)
0.347960 + 0.937509i \(0.386874\pi\)
\(224\) 8.23369 0.550136
\(225\) 0 0
\(226\) −15.2554 −1.01478
\(227\) −13.5615 −0.900105 −0.450053 0.893002i \(-0.648595\pi\)
−0.450053 + 0.893002i \(0.648595\pi\)
\(228\) 10.0974 0.668713
\(229\) −1.25544 −0.0829616 −0.0414808 0.999139i \(-0.513208\pi\)
−0.0414808 + 0.999139i \(0.513208\pi\)
\(230\) 0 0
\(231\) 25.4891 1.67706
\(232\) −1.73205 −0.113715
\(233\) 16.0858 1.05382 0.526908 0.849923i \(-0.323351\pi\)
0.526908 + 0.849923i \(0.323351\pi\)
\(234\) 5.48913 0.358835
\(235\) 0 0
\(236\) 0.744563 0.0484669
\(237\) 14.2063 0.922796
\(238\) 13.8564 0.898177
\(239\) −6.23369 −0.403224 −0.201612 0.979465i \(-0.564618\pi\)
−0.201612 + 0.979465i \(0.564618\pi\)
\(240\) 0 0
\(241\) 12.3723 0.796969 0.398484 0.917175i \(-0.369536\pi\)
0.398484 + 0.917175i \(0.369536\pi\)
\(242\) −51.2790 −3.29634
\(243\) −22.3692 −1.43498
\(244\) 6.00000 0.384111
\(245\) 0 0
\(246\) −29.4891 −1.88016
\(247\) −3.75906 −0.239183
\(248\) 4.10891 0.260916
\(249\) −42.2337 −2.67645
\(250\) 0 0
\(251\) 1.62772 0.102741 0.0513703 0.998680i \(-0.483641\pi\)
0.0513703 + 0.998680i \(0.483641\pi\)
\(252\) 5.34363 0.336617
\(253\) −22.0742 −1.38779
\(254\) 6.00000 0.376473
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 12.3267 0.768921 0.384460 0.923142i \(-0.374388\pi\)
0.384460 + 0.923142i \(0.374388\pi\)
\(258\) 24.8935 1.54980
\(259\) 16.0000 0.994192
\(260\) 0 0
\(261\) −3.37228 −0.208739
\(262\) 6.92820 0.428026
\(263\) −26.4781 −1.63271 −0.816355 0.577551i \(-0.804008\pi\)
−0.816355 + 0.577551i \(0.804008\pi\)
\(264\) 27.8614 1.71475
\(265\) 0 0
\(266\) −10.9783 −0.673120
\(267\) 27.1229 1.65989
\(268\) 8.51278 0.520001
\(269\) 0.510875 0.0311486 0.0155743 0.999879i \(-0.495042\pi\)
0.0155743 + 0.999879i \(0.495042\pi\)
\(270\) 0 0
\(271\) 19.8614 1.20649 0.603247 0.797554i \(-0.293873\pi\)
0.603247 + 0.797554i \(0.293873\pi\)
\(272\) 25.2434 1.53060
\(273\) −3.75906 −0.227508
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) −8.74456 −0.526361
\(277\) 6.92820 0.416275 0.208138 0.978100i \(-0.433260\pi\)
0.208138 + 0.978100i \(0.433260\pi\)
\(278\) −15.1460 −0.908398
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 4.37228 0.260828 0.130414 0.991460i \(-0.458369\pi\)
0.130414 + 0.991460i \(0.458369\pi\)
\(282\) 24.8935 1.48239
\(283\) −30.5870 −1.81821 −0.909104 0.416568i \(-0.863233\pi\)
−0.909104 + 0.416568i \(0.863233\pi\)
\(284\) −4.74456 −0.281538
\(285\) 0 0
\(286\) 10.3723 0.613326
\(287\) 10.6873 0.630849
\(288\) 17.5229 1.03255
\(289\) 8.48913 0.499360
\(290\) 0 0
\(291\) 17.4891 1.02523
\(292\) 6.92820 0.405442
\(293\) 22.0742 1.28959 0.644795 0.764355i \(-0.276943\pi\)
0.644795 + 0.764355i \(0.276943\pi\)
\(294\) 19.6277 1.14471
\(295\) 0 0
\(296\) 17.4891 1.01653
\(297\) 5.98844 0.347484
\(298\) 36.5754 2.11876
\(299\) 3.25544 0.188267
\(300\) 0 0
\(301\) −9.02175 −0.520005
\(302\) 16.4356 0.945765
\(303\) −37.2203 −2.13825
\(304\) −20.0000 −1.14708
\(305\) 0 0
\(306\) 29.4891 1.68578
\(307\) 15.7908 0.901231 0.450615 0.892718i \(-0.351205\pi\)
0.450615 + 0.892718i \(0.351205\pi\)
\(308\) 10.0974 0.575350
\(309\) −8.74456 −0.497461
\(310\) 0 0
\(311\) −18.9783 −1.07616 −0.538079 0.842894i \(-0.680850\pi\)
−0.538079 + 0.842894i \(0.680850\pi\)
\(312\) −4.10891 −0.232621
\(313\) −2.22938 −0.126012 −0.0630061 0.998013i \(-0.520069\pi\)
−0.0630061 + 0.998013i \(0.520069\pi\)
\(314\) 24.0000 1.35440
\(315\) 0 0
\(316\) 5.62772 0.316584
\(317\) 15.7359 0.883818 0.441909 0.897060i \(-0.354301\pi\)
0.441909 + 0.897060i \(0.354301\pi\)
\(318\) 4.10891 0.230416
\(319\) −6.37228 −0.356779
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 9.50744 0.529829
\(323\) −20.1947 −1.12366
\(324\) −7.74456 −0.430253
\(325\) 0 0
\(326\) −10.8832 −0.602762
\(327\) 2.81929 0.155907
\(328\) 11.6819 0.645026
\(329\) −9.02175 −0.497385
\(330\) 0 0
\(331\) 0.138593 0.00761778 0.00380889 0.999993i \(-0.498788\pi\)
0.00380889 + 0.999993i \(0.498788\pi\)
\(332\) −16.7306 −0.918211
\(333\) 34.0511 1.86599
\(334\) −16.9783 −0.929009
\(335\) 0 0
\(336\) −20.0000 −1.09109
\(337\) −25.2434 −1.37509 −0.687547 0.726140i \(-0.741313\pi\)
−0.687547 + 0.726140i \(0.741313\pi\)
\(338\) 20.9870 1.14154
\(339\) 22.2337 1.20757
\(340\) 0 0
\(341\) 15.1168 0.818623
\(342\) −23.3639 −1.26337
\(343\) −18.2054 −0.982998
\(344\) −9.86141 −0.531691
\(345\) 0 0
\(346\) 18.5109 0.995151
\(347\) −19.8997 −1.06827 −0.534137 0.845398i \(-0.679363\pi\)
−0.534137 + 0.845398i \(0.679363\pi\)
\(348\) −2.52434 −0.135319
\(349\) −1.86141 −0.0996388 −0.0498194 0.998758i \(-0.515865\pi\)
−0.0498194 + 0.998758i \(0.515865\pi\)
\(350\) 0 0
\(351\) −0.883156 −0.0471394
\(352\) 33.1113 1.76484
\(353\) 23.9538 1.27493 0.637465 0.770479i \(-0.279983\pi\)
0.637465 + 0.770479i \(0.279983\pi\)
\(354\) −3.25544 −0.173025
\(355\) 0 0
\(356\) 10.7446 0.569461
\(357\) −20.1947 −1.06882
\(358\) −29.0024 −1.53283
\(359\) −31.1168 −1.64228 −0.821142 0.570724i \(-0.806663\pi\)
−0.821142 + 0.570724i \(0.806663\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 24.0087 1.26187
\(363\) 74.7355 3.92259
\(364\) −1.48913 −0.0780514
\(365\) 0 0
\(366\) −26.2337 −1.37126
\(367\) 10.3923 0.542474 0.271237 0.962513i \(-0.412567\pi\)
0.271237 + 0.962513i \(0.412567\pi\)
\(368\) 17.3205 0.902894
\(369\) 22.7446 1.18403
\(370\) 0 0
\(371\) −1.48913 −0.0773115
\(372\) 5.98844 0.310486
\(373\) 5.39853 0.279525 0.139763 0.990185i \(-0.455366\pi\)
0.139763 + 0.990185i \(0.455366\pi\)
\(374\) 55.7228 2.88136
\(375\) 0 0
\(376\) −9.86141 −0.508563
\(377\) 0.939764 0.0484003
\(378\) −2.57924 −0.132662
\(379\) −21.4891 −1.10382 −0.551911 0.833903i \(-0.686101\pi\)
−0.551911 + 0.833903i \(0.686101\pi\)
\(380\) 0 0
\(381\) −8.74456 −0.447998
\(382\) 27.7128 1.41791
\(383\) 18.6101 0.950933 0.475467 0.879734i \(-0.342279\pi\)
0.475467 + 0.879734i \(0.342279\pi\)
\(384\) −30.6060 −1.56185
\(385\) 0 0
\(386\) 12.0000 0.610784
\(387\) −19.2000 −0.975993
\(388\) 6.92820 0.351726
\(389\) −2.74456 −0.139155 −0.0695774 0.997577i \(-0.522165\pi\)
−0.0695774 + 0.997577i \(0.522165\pi\)
\(390\) 0 0
\(391\) 17.4891 0.884463
\(392\) −7.77539 −0.392717
\(393\) −10.0974 −0.509344
\(394\) 46.9783 2.36673
\(395\) 0 0
\(396\) 21.4891 1.07987
\(397\) −7.27806 −0.365275 −0.182638 0.983180i \(-0.558464\pi\)
−0.182638 + 0.983180i \(0.558464\pi\)
\(398\) 16.4356 0.823845
\(399\) 16.0000 0.801002
\(400\) 0 0
\(401\) −13.1168 −0.655024 −0.327512 0.944847i \(-0.606210\pi\)
−0.327512 + 0.944847i \(0.606210\pi\)
\(402\) −37.2203 −1.85638
\(403\) −2.22938 −0.111054
\(404\) −14.7446 −0.733569
\(405\) 0 0
\(406\) 2.74456 0.136210
\(407\) 64.3432 3.18937
\(408\) −22.0742 −1.09284
\(409\) −30.4674 −1.50651 −0.753257 0.657726i \(-0.771519\pi\)
−0.753257 + 0.657726i \(0.771519\pi\)
\(410\) 0 0
\(411\) −17.4891 −0.862675
\(412\) −3.46410 −0.170664
\(413\) 1.17981 0.0580549
\(414\) 20.2337 0.994432
\(415\) 0 0
\(416\) −4.88316 −0.239416
\(417\) 22.0742 1.08098
\(418\) −44.1485 −2.15937
\(419\) 24.7446 1.20885 0.604425 0.796662i \(-0.293403\pi\)
0.604425 + 0.796662i \(0.293403\pi\)
\(420\) 0 0
\(421\) −20.9783 −1.02242 −0.511209 0.859457i \(-0.670802\pi\)
−0.511209 + 0.859457i \(0.670802\pi\)
\(422\) 19.2549 0.937316
\(423\) −19.2000 −0.933538
\(424\) −1.62772 −0.0790490
\(425\) 0 0
\(426\) 20.7446 1.00508
\(427\) 9.50744 0.460097
\(428\) −1.58457 −0.0765933
\(429\) −15.1168 −0.729848
\(430\) 0 0
\(431\) −11.2554 −0.542155 −0.271078 0.962557i \(-0.587380\pi\)
−0.271078 + 0.962557i \(0.587380\pi\)
\(432\) −4.69882 −0.226072
\(433\) 14.4463 0.694246 0.347123 0.937820i \(-0.387159\pi\)
0.347123 + 0.937820i \(0.387159\pi\)
\(434\) −6.51087 −0.312532
\(435\) 0 0
\(436\) 1.11684 0.0534871
\(437\) −13.8564 −0.662842
\(438\) −30.2921 −1.44741
\(439\) 30.2337 1.44298 0.721488 0.692427i \(-0.243459\pi\)
0.721488 + 0.692427i \(0.243459\pi\)
\(440\) 0 0
\(441\) −15.1386 −0.720885
\(442\) −8.21782 −0.390882
\(443\) −7.22316 −0.343183 −0.171591 0.985168i \(-0.554891\pi\)
−0.171591 + 0.985168i \(0.554891\pi\)
\(444\) 25.4891 1.20966
\(445\) 0 0
\(446\) −18.0000 −0.852325
\(447\) −53.3060 −2.52129
\(448\) 1.58457 0.0748641
\(449\) 34.4674 1.62662 0.813308 0.581833i \(-0.197664\pi\)
0.813308 + 0.581833i \(0.197664\pi\)
\(450\) 0 0
\(451\) 42.9783 2.02377
\(452\) 8.80773 0.414281
\(453\) −23.9538 −1.12545
\(454\) 23.4891 1.10240
\(455\) 0 0
\(456\) 17.4891 0.819003
\(457\) 2.57924 0.120652 0.0603259 0.998179i \(-0.480786\pi\)
0.0603259 + 0.998179i \(0.480786\pi\)
\(458\) 2.17448 0.101607
\(459\) −4.74456 −0.221457
\(460\) 0 0
\(461\) 4.51087 0.210092 0.105046 0.994467i \(-0.466501\pi\)
0.105046 + 0.994467i \(0.466501\pi\)
\(462\) −44.1485 −2.05397
\(463\) 20.4897 0.952235 0.476118 0.879382i \(-0.342044\pi\)
0.476118 + 0.879382i \(0.342044\pi\)
\(464\) 5.00000 0.232119
\(465\) 0 0
\(466\) −27.8614 −1.29065
\(467\) 39.7446 1.83916 0.919580 0.392902i \(-0.128529\pi\)
0.919580 + 0.392902i \(0.128529\pi\)
\(468\) −3.16915 −0.146494
\(469\) 13.4891 0.622870
\(470\) 0 0
\(471\) −34.9783 −1.61171
\(472\) 1.28962 0.0593596
\(473\) −36.2805 −1.66818
\(474\) −24.6060 −1.13019
\(475\) 0 0
\(476\) −8.00000 −0.366679
\(477\) −3.16915 −0.145105
\(478\) 10.7971 0.493846
\(479\) −10.3723 −0.473922 −0.236961 0.971519i \(-0.576151\pi\)
−0.236961 + 0.971519i \(0.576151\pi\)
\(480\) 0 0
\(481\) −9.48913 −0.432667
\(482\) −21.4294 −0.976083
\(483\) −13.8564 −0.630488
\(484\) 29.6060 1.34573
\(485\) 0 0
\(486\) 38.7446 1.75749
\(487\) 9.10268 0.412482 0.206241 0.978501i \(-0.433877\pi\)
0.206241 + 0.978501i \(0.433877\pi\)
\(488\) 10.3923 0.470438
\(489\) 15.8614 0.717278
\(490\) 0 0
\(491\) −17.6277 −0.795528 −0.397764 0.917488i \(-0.630214\pi\)
−0.397764 + 0.917488i \(0.630214\pi\)
\(492\) 17.0256 0.767571
\(493\) 5.04868 0.227381
\(494\) 6.51087 0.292938
\(495\) 0 0
\(496\) −11.8614 −0.532593
\(497\) −7.51811 −0.337233
\(498\) 73.1509 3.27797
\(499\) 16.7446 0.749590 0.374795 0.927108i \(-0.377713\pi\)
0.374795 + 0.927108i \(0.377713\pi\)
\(500\) 0 0
\(501\) 24.7446 1.10551
\(502\) −2.81929 −0.125831
\(503\) 39.7446 1.77212 0.886062 0.463567i \(-0.153431\pi\)
0.886062 + 0.463567i \(0.153431\pi\)
\(504\) 9.25544 0.412270
\(505\) 0 0
\(506\) 38.2337 1.69969
\(507\) −30.5870 −1.35842
\(508\) −3.46410 −0.153695
\(509\) 5.86141 0.259802 0.129901 0.991527i \(-0.458534\pi\)
0.129901 + 0.991527i \(0.458534\pi\)
\(510\) 0 0
\(511\) 10.9783 0.485649
\(512\) −8.66025 −0.382733
\(513\) 3.75906 0.165966
\(514\) −21.3505 −0.941732
\(515\) 0 0
\(516\) −14.3723 −0.632704
\(517\) −36.2805 −1.59561
\(518\) −27.7128 −1.21763
\(519\) −26.9783 −1.18421
\(520\) 0 0
\(521\) −25.8614 −1.13301 −0.566504 0.824059i \(-0.691705\pi\)
−0.566504 + 0.824059i \(0.691705\pi\)
\(522\) 5.84096 0.255652
\(523\) −4.75372 −0.207866 −0.103933 0.994584i \(-0.533143\pi\)
−0.103933 + 0.994584i \(0.533143\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) 45.8614 1.99965
\(527\) −11.9769 −0.521721
\(528\) −80.4290 −3.50022
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) 2.51087 0.108963
\(532\) 6.33830 0.274800
\(533\) −6.33830 −0.274542
\(534\) −46.9783 −2.03295
\(535\) 0 0
\(536\) 14.7446 0.636868
\(537\) 42.2689 1.82404
\(538\) −0.884861 −0.0381491
\(539\) −28.6060 −1.23215
\(540\) 0 0
\(541\) 34.7446 1.49379 0.746893 0.664945i \(-0.231545\pi\)
0.746893 + 0.664945i \(0.231545\pi\)
\(542\) −34.4010 −1.47765
\(543\) −34.9909 −1.50160
\(544\) −26.2337 −1.12476
\(545\) 0 0
\(546\) 6.51087 0.278640
\(547\) 4.75372 0.203254 0.101627 0.994823i \(-0.467595\pi\)
0.101627 + 0.994823i \(0.467595\pi\)
\(548\) −6.92820 −0.295958
\(549\) 20.2337 0.863553
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) −15.1460 −0.644658
\(553\) 8.91754 0.379212
\(554\) −12.0000 −0.509831
\(555\) 0 0
\(556\) 8.74456 0.370852
\(557\) −30.8820 −1.30851 −0.654255 0.756274i \(-0.727018\pi\)
−0.654255 + 0.756274i \(0.727018\pi\)
\(558\) −13.8564 −0.586588
\(559\) 5.35053 0.226303
\(560\) 0 0
\(561\) −81.2119 −3.42877
\(562\) −7.57301 −0.319448
\(563\) −1.23472 −0.0520371 −0.0260186 0.999661i \(-0.508283\pi\)
−0.0260186 + 0.999661i \(0.508283\pi\)
\(564\) −14.3723 −0.605182
\(565\) 0 0
\(566\) 52.9783 2.22684
\(567\) −12.2718 −0.515369
\(568\) −8.21782 −0.344812
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) −5.98844 −0.250389
\(573\) −40.3894 −1.68729
\(574\) −18.5109 −0.772629
\(575\) 0 0
\(576\) 3.37228 0.140512
\(577\) 8.80773 0.366671 0.183335 0.983050i \(-0.441311\pi\)
0.183335 + 0.983050i \(0.441311\pi\)
\(578\) −14.7036 −0.611589
\(579\) −17.4891 −0.726823
\(580\) 0 0
\(581\) −26.5109 −1.09986
\(582\) −30.2921 −1.25565
\(583\) −5.98844 −0.248016
\(584\) 12.0000 0.496564
\(585\) 0 0
\(586\) −38.2337 −1.57942
\(587\) 36.9253 1.52407 0.762035 0.647536i \(-0.224200\pi\)
0.762035 + 0.647536i \(0.224200\pi\)
\(588\) −11.3321 −0.467327
\(589\) 9.48913 0.390993
\(590\) 0 0
\(591\) −68.4674 −2.81637
\(592\) −50.4868 −2.07499
\(593\) −14.2063 −0.583381 −0.291691 0.956513i \(-0.594218\pi\)
−0.291691 + 0.956513i \(0.594218\pi\)
\(594\) −10.3723 −0.425580
\(595\) 0 0
\(596\) −21.1168 −0.864980
\(597\) −23.9538 −0.980362
\(598\) −5.63858 −0.230579
\(599\) −21.3505 −0.872359 −0.436180 0.899860i \(-0.643669\pi\)
−0.436180 + 0.899860i \(0.643669\pi\)
\(600\) 0 0
\(601\) −18.7446 −0.764607 −0.382303 0.924037i \(-0.624869\pi\)
−0.382303 + 0.924037i \(0.624869\pi\)
\(602\) 15.6261 0.636873
\(603\) 28.7075 1.16906
\(604\) −9.48913 −0.386107
\(605\) 0 0
\(606\) 64.4674 2.61881
\(607\) −25.8882 −1.05077 −0.525385 0.850865i \(-0.676079\pi\)
−0.525385 + 0.850865i \(0.676079\pi\)
\(608\) 20.7846 0.842927
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) 5.35053 0.216459
\(612\) −17.0256 −0.688217
\(613\) 39.4496 1.59336 0.796678 0.604404i \(-0.206589\pi\)
0.796678 + 0.604404i \(0.206589\pi\)
\(614\) −27.3505 −1.10378
\(615\) 0 0
\(616\) 17.4891 0.704657
\(617\) 24.5437 0.988091 0.494045 0.869436i \(-0.335518\pi\)
0.494045 + 0.869436i \(0.335518\pi\)
\(618\) 15.1460 0.609263
\(619\) 25.6277 1.03006 0.515032 0.857171i \(-0.327780\pi\)
0.515032 + 0.857171i \(0.327780\pi\)
\(620\) 0 0
\(621\) −3.25544 −0.130636
\(622\) 32.8713 1.31802
\(623\) 17.0256 0.682114
\(624\) 11.8614 0.474836
\(625\) 0 0
\(626\) 3.86141 0.154333
\(627\) 64.3432 2.56962
\(628\) −13.8564 −0.552931
\(629\) −50.9783 −2.03264
\(630\) 0 0
\(631\) 6.23369 0.248159 0.124080 0.992272i \(-0.460402\pi\)
0.124080 + 0.992272i \(0.460402\pi\)
\(632\) 9.74749 0.387735
\(633\) −28.0627 −1.11539
\(634\) −27.2554 −1.08245
\(635\) 0 0
\(636\) −2.37228 −0.0940671
\(637\) 4.21872 0.167152
\(638\) 11.0371 0.436964
\(639\) −16.0000 −0.632950
\(640\) 0 0
\(641\) 3.48913 0.137812 0.0689061 0.997623i \(-0.478049\pi\)
0.0689061 + 0.997623i \(0.478049\pi\)
\(642\) 6.92820 0.273434
\(643\) −4.75372 −0.187468 −0.0937342 0.995597i \(-0.529880\pi\)
−0.0937342 + 0.995597i \(0.529880\pi\)
\(644\) −5.48913 −0.216302
\(645\) 0 0
\(646\) 34.9783 1.37620
\(647\) 27.4179 1.07791 0.538954 0.842335i \(-0.318820\pi\)
0.538954 + 0.842335i \(0.318820\pi\)
\(648\) −13.4140 −0.526951
\(649\) 4.74456 0.186240
\(650\) 0 0
\(651\) 9.48913 0.371908
\(652\) 6.28339 0.246077
\(653\) 17.6155 0.689346 0.344673 0.938723i \(-0.387990\pi\)
0.344673 + 0.938723i \(0.387990\pi\)
\(654\) −4.88316 −0.190947
\(655\) 0 0
\(656\) −33.7228 −1.31665
\(657\) 23.3639 0.911511
\(658\) 15.6261 0.609170
\(659\) −41.3505 −1.61079 −0.805394 0.592740i \(-0.798046\pi\)
−0.805394 + 0.592740i \(0.798046\pi\)
\(660\) 0 0
\(661\) −16.5109 −0.642199 −0.321099 0.947046i \(-0.604052\pi\)
−0.321099 + 0.947046i \(0.604052\pi\)
\(662\) −0.240051 −0.00932984
\(663\) 11.9769 0.465143
\(664\) −28.9783 −1.12457
\(665\) 0 0
\(666\) −58.9783 −2.28536
\(667\) 3.46410 0.134131
\(668\) 9.80240 0.379266
\(669\) 26.2337 1.01425
\(670\) 0 0
\(671\) 38.2337 1.47600
\(672\) 20.7846 0.801784
\(673\) 3.40920 0.131415 0.0657075 0.997839i \(-0.479070\pi\)
0.0657075 + 0.997839i \(0.479070\pi\)
\(674\) 43.7228 1.68414
\(675\) 0 0
\(676\) −12.1168 −0.466032
\(677\) −0.699713 −0.0268922 −0.0134461 0.999910i \(-0.504280\pi\)
−0.0134461 + 0.999910i \(0.504280\pi\)
\(678\) −38.5099 −1.47896
\(679\) 10.9783 0.421307
\(680\) 0 0
\(681\) −34.2337 −1.31184
\(682\) −26.1831 −1.00260
\(683\) 31.8766 1.21973 0.609863 0.792507i \(-0.291225\pi\)
0.609863 + 0.792507i \(0.291225\pi\)
\(684\) 13.4891 0.515770
\(685\) 0 0
\(686\) 31.5326 1.20392
\(687\) −3.16915 −0.120911
\(688\) 28.4674 1.08531
\(689\) 0.883156 0.0336456
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) −10.6873 −0.406269
\(693\) 34.0511 1.29349
\(694\) 34.4674 1.30836
\(695\) 0 0
\(696\) −4.37228 −0.165731
\(697\) −34.0511 −1.28978
\(698\) 3.22405 0.122032
\(699\) 40.6060 1.53586
\(700\) 0 0
\(701\) −17.1168 −0.646494 −0.323247 0.946315i \(-0.604775\pi\)
−0.323247 + 0.946315i \(0.604775\pi\)
\(702\) 1.52967 0.0577337
\(703\) 40.3894 1.52332
\(704\) 6.37228 0.240164
\(705\) 0 0
\(706\) −41.4891 −1.56146
\(707\) −23.3639 −0.878688
\(708\) 1.87953 0.0706370
\(709\) 28.0951 1.05513 0.527567 0.849514i \(-0.323104\pi\)
0.527567 + 0.849514i \(0.323104\pi\)
\(710\) 0 0
\(711\) 18.9783 0.711740
\(712\) 18.6101 0.697444
\(713\) −8.21782 −0.307760
\(714\) 34.9783 1.30903
\(715\) 0 0
\(716\) 16.7446 0.625774
\(717\) −15.7359 −0.587669
\(718\) 53.8960 2.01138
\(719\) 3.25544 0.121407 0.0607037 0.998156i \(-0.480666\pi\)
0.0607037 + 0.998156i \(0.480666\pi\)
\(720\) 0 0
\(721\) −5.48913 −0.204426
\(722\) 5.19615 0.193381
\(723\) 31.2318 1.16152
\(724\) −13.8614 −0.515155
\(725\) 0 0
\(726\) −129.446 −4.80418
\(727\) 0.294954 0.0109392 0.00546961 0.999985i \(-0.498259\pi\)
0.00546961 + 0.999985i \(0.498259\pi\)
\(728\) −2.57924 −0.0955930
\(729\) −33.2337 −1.23088
\(730\) 0 0
\(731\) 28.7446 1.06316
\(732\) 15.1460 0.559813
\(733\) −27.7128 −1.02360 −0.511798 0.859106i \(-0.671020\pi\)
−0.511798 + 0.859106i \(0.671020\pi\)
\(734\) −18.0000 −0.664392
\(735\) 0 0
\(736\) −18.0000 −0.663489
\(737\) 54.2458 1.99817
\(738\) −39.3947 −1.45014
\(739\) 9.62772 0.354161 0.177081 0.984196i \(-0.443335\pi\)
0.177081 + 0.984196i \(0.443335\pi\)
\(740\) 0 0
\(741\) −9.48913 −0.348592
\(742\) 2.57924 0.0946869
\(743\) 17.3205 0.635428 0.317714 0.948187i \(-0.397085\pi\)
0.317714 + 0.948187i \(0.397085\pi\)
\(744\) 10.3723 0.380266
\(745\) 0 0
\(746\) −9.35053 −0.342347
\(747\) −56.4203 −2.06431
\(748\) −32.1716 −1.17631
\(749\) −2.51087 −0.0917454
\(750\) 0 0
\(751\) −20.4674 −0.746865 −0.373433 0.927657i \(-0.621819\pi\)
−0.373433 + 0.927657i \(0.621819\pi\)
\(752\) 28.4674 1.03810
\(753\) 4.10891 0.149737
\(754\) −1.62772 −0.0592780
\(755\) 0 0
\(756\) 1.48913 0.0541590
\(757\) 29.5923 1.07555 0.537776 0.843088i \(-0.319265\pi\)
0.537776 + 0.843088i \(0.319265\pi\)
\(758\) 37.2203 1.35190
\(759\) −55.7228 −2.02261
\(760\) 0 0
\(761\) 38.4674 1.39444 0.697221 0.716857i \(-0.254420\pi\)
0.697221 + 0.716857i \(0.254420\pi\)
\(762\) 15.1460 0.548683
\(763\) 1.76972 0.0640682
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) −32.2337 −1.16465
\(767\) −0.699713 −0.0252652
\(768\) 47.9624 1.73069
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) 31.1168 1.12065
\(772\) −6.92820 −0.249351
\(773\) −51.6666 −1.85832 −0.929159 0.369681i \(-0.879467\pi\)
−0.929159 + 0.369681i \(0.879467\pi\)
\(774\) 33.2554 1.19534
\(775\) 0 0
\(776\) 12.0000 0.430775
\(777\) 40.3894 1.44896
\(778\) 4.75372 0.170429
\(779\) 26.9783 0.966596
\(780\) 0 0
\(781\) −30.2337 −1.08185
\(782\) −30.2921 −1.08324
\(783\) −0.939764 −0.0335844
\(784\) 22.4456 0.801630
\(785\) 0 0
\(786\) 17.4891 0.623816
\(787\) −13.5615 −0.483414 −0.241707 0.970349i \(-0.577707\pi\)
−0.241707 + 0.970349i \(0.577707\pi\)
\(788\) −27.1229 −0.966214
\(789\) −66.8397 −2.37955
\(790\) 0 0
\(791\) 13.9565 0.496236
\(792\) 37.2203 1.32256
\(793\) −5.63858 −0.200232
\(794\) 12.6060 0.447369
\(795\) 0 0
\(796\) −9.48913 −0.336333
\(797\) −4.45877 −0.157938 −0.0789688 0.996877i \(-0.525163\pi\)
−0.0789688 + 0.996877i \(0.525163\pi\)
\(798\) −27.7128 −0.981023
\(799\) 28.7446 1.01691
\(800\) 0 0
\(801\) 36.2337 1.28025
\(802\) 22.7190 0.802237
\(803\) 44.1485 1.55797
\(804\) 21.4891 0.757863
\(805\) 0 0
\(806\) 3.86141 0.136012
\(807\) 1.28962 0.0453968
\(808\) −25.5383 −0.898435
\(809\) 1.25544 0.0441388 0.0220694 0.999756i \(-0.492975\pi\)
0.0220694 + 0.999756i \(0.492975\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) −1.58457 −0.0556076
\(813\) 50.1369 1.75838
\(814\) −111.446 −3.90617
\(815\) 0 0
\(816\) 63.7228 2.23074
\(817\) −22.7739 −0.796759
\(818\) 52.7710 1.84510
\(819\) −5.02175 −0.175474
\(820\) 0 0
\(821\) 11.6277 0.405810 0.202905 0.979198i \(-0.434962\pi\)
0.202905 + 0.979198i \(0.434962\pi\)
\(822\) 30.2921 1.05656
\(823\) −33.1662 −1.15610 −0.578051 0.816000i \(-0.696187\pi\)
−0.578051 + 0.816000i \(0.696187\pi\)
\(824\) −6.00000 −0.209020
\(825\) 0 0
\(826\) −2.04350 −0.0711024
\(827\) 33.4063 1.16165 0.580825 0.814028i \(-0.302730\pi\)
0.580825 + 0.814028i \(0.302730\pi\)
\(828\) −11.6819 −0.405975
\(829\) 26.0000 0.903017 0.451509 0.892267i \(-0.350886\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(830\) 0 0
\(831\) 17.4891 0.606691
\(832\) −0.939764 −0.0325804
\(833\) 22.6641 0.785266
\(834\) −38.2337 −1.32392
\(835\) 0 0
\(836\) 25.4891 0.881560
\(837\) 2.22938 0.0770588
\(838\) −42.8588 −1.48053
\(839\) −13.6277 −0.470481 −0.235241 0.971937i \(-0.575588\pi\)
−0.235241 + 0.971937i \(0.575588\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 36.3354 1.25220
\(843\) 11.0371 0.380138
\(844\) −11.1168 −0.382658
\(845\) 0 0
\(846\) 33.2554 1.14335
\(847\) 46.9128 1.61194
\(848\) 4.69882 0.161358
\(849\) −77.2119 −2.64991
\(850\) 0 0
\(851\) −34.9783 −1.19904
\(852\) −11.9769 −0.410321
\(853\) −5.63858 −0.193061 −0.0965307 0.995330i \(-0.530775\pi\)
−0.0965307 + 0.995330i \(0.530775\pi\)
\(854\) −16.4674 −0.563502
\(855\) 0 0
\(856\) −2.74456 −0.0938072
\(857\) −29.9422 −1.02281 −0.511403 0.859341i \(-0.670874\pi\)
−0.511403 + 0.859341i \(0.670874\pi\)
\(858\) 26.1831 0.893878
\(859\) 11.3940 0.388759 0.194380 0.980926i \(-0.437731\pi\)
0.194380 + 0.980926i \(0.437731\pi\)
\(860\) 0 0
\(861\) 26.9783 0.919416
\(862\) 19.4950 0.664002
\(863\) 6.63325 0.225798 0.112899 0.993606i \(-0.463986\pi\)
0.112899 + 0.993606i \(0.463986\pi\)
\(864\) 4.88316 0.166128
\(865\) 0 0
\(866\) −25.0217 −0.850274
\(867\) 21.4294 0.727781
\(868\) 3.75906 0.127591
\(869\) 35.8614 1.21651
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 1.93443 0.0655081
\(873\) 23.3639 0.790747
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) 17.4891 0.590903
\(877\) −41.3292 −1.39559 −0.697793 0.716299i \(-0.745835\pi\)
−0.697793 + 0.716299i \(0.745835\pi\)
\(878\) −52.3663 −1.76728
\(879\) 55.7228 1.87948
\(880\) 0 0
\(881\) −8.97825 −0.302485 −0.151242 0.988497i \(-0.548327\pi\)
−0.151242 + 0.988497i \(0.548327\pi\)
\(882\) 26.2208 0.882901
\(883\) −18.6101 −0.626281 −0.313140 0.949707i \(-0.601381\pi\)
−0.313140 + 0.949707i \(0.601381\pi\)
\(884\) 4.74456 0.159577
\(885\) 0 0
\(886\) 12.5109 0.420311
\(887\) −32.2265 −1.08206 −0.541030 0.841003i \(-0.681965\pi\)
−0.541030 + 0.841003i \(0.681965\pi\)
\(888\) 44.1485 1.48153
\(889\) −5.48913 −0.184099
\(890\) 0 0
\(891\) −49.3505 −1.65331
\(892\) 10.3923 0.347960
\(893\) −22.7739 −0.762101
\(894\) 92.3288 3.08794
\(895\) 0 0
\(896\) −19.2119 −0.641826
\(897\) 8.21782 0.274385
\(898\) −59.6992 −1.99219
\(899\) −2.37228 −0.0791200
\(900\) 0 0
\(901\) 4.74456 0.158064
\(902\) −74.4405 −2.47860
\(903\) −22.7739 −0.757869
\(904\) 15.2554 0.507388
\(905\) 0 0
\(906\) 41.4891 1.37838
\(907\) −33.1662 −1.10127 −0.550634 0.834747i \(-0.685614\pi\)
−0.550634 + 0.834747i \(0.685614\pi\)
\(908\) −13.5615 −0.450053
\(909\) −49.7228 −1.64920
\(910\) 0 0
\(911\) −8.88316 −0.294312 −0.147156 0.989113i \(-0.547012\pi\)
−0.147156 + 0.989113i \(0.547012\pi\)
\(912\) −50.4868 −1.67178
\(913\) −106.612 −3.52835
\(914\) −4.46738 −0.147768
\(915\) 0 0
\(916\) −1.25544 −0.0414808
\(917\) −6.33830 −0.209309
\(918\) 8.21782 0.271229
\(919\) 17.7663 0.586057 0.293028 0.956104i \(-0.405337\pi\)
0.293028 + 0.956104i \(0.405337\pi\)
\(920\) 0 0
\(921\) 39.8614 1.31348
\(922\) −7.81306 −0.257310
\(923\) 4.45877 0.146762
\(924\) 25.4891 0.838531
\(925\) 0 0
\(926\) −35.4891 −1.16625
\(927\) −11.6819 −0.383685
\(928\) −5.19615 −0.170572
\(929\) −24.5109 −0.804176 −0.402088 0.915601i \(-0.631715\pi\)
−0.402088 + 0.915601i \(0.631715\pi\)
\(930\) 0 0
\(931\) −17.9565 −0.588501
\(932\) 16.0858 0.526908
\(933\) −47.9075 −1.56842
\(934\) −68.8397 −2.25250
\(935\) 0 0
\(936\) −5.48913 −0.179418
\(937\) 21.3745 0.698275 0.349138 0.937071i \(-0.386475\pi\)
0.349138 + 0.937071i \(0.386475\pi\)
\(938\) −23.3639 −0.762857
\(939\) −5.62772 −0.183654
\(940\) 0 0
\(941\) 19.6277 0.639845 0.319923 0.947444i \(-0.396343\pi\)
0.319923 + 0.947444i \(0.396343\pi\)
\(942\) 60.5841 1.97394
\(943\) −23.3639 −0.760832
\(944\) −3.72281 −0.121167
\(945\) 0 0
\(946\) 62.8397 2.04309
\(947\) −41.0342 −1.33343 −0.666716 0.745311i \(-0.732301\pi\)
−0.666716 + 0.745311i \(0.732301\pi\)
\(948\) 14.2063 0.461398
\(949\) −6.51087 −0.211352
\(950\) 0 0
\(951\) 39.7228 1.28810
\(952\) −13.8564 −0.449089
\(953\) 40.0395 1.29701 0.648504 0.761211i \(-0.275395\pi\)
0.648504 + 0.761211i \(0.275395\pi\)
\(954\) 5.48913 0.177717
\(955\) 0 0
\(956\) −6.23369 −0.201612
\(957\) −16.0858 −0.519980
\(958\) 17.9653 0.580433
\(959\) −10.9783 −0.354506
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) 16.4356 0.529907
\(963\) −5.34363 −0.172196
\(964\) 12.3723 0.398484
\(965\) 0 0
\(966\) 24.0000 0.772187
\(967\) −4.99377 −0.160589 −0.0802945 0.996771i \(-0.525586\pi\)
−0.0802945 + 0.996771i \(0.525586\pi\)
\(968\) 51.2790 1.64817
\(969\) −50.9783 −1.63766
\(970\) 0 0
\(971\) 38.9783 1.25087 0.625436 0.780276i \(-0.284921\pi\)
0.625436 + 0.780276i \(0.284921\pi\)
\(972\) −22.3692 −0.717492
\(973\) 13.8564 0.444216
\(974\) −15.7663 −0.505185
\(975\) 0 0
\(976\) −30.0000 −0.960277
\(977\) 8.56768 0.274104 0.137052 0.990564i \(-0.456237\pi\)
0.137052 + 0.990564i \(0.456237\pi\)
\(978\) −27.4728 −0.878482
\(979\) 68.4674 2.18823
\(980\) 0 0
\(981\) 3.76631 0.120249
\(982\) 30.5321 0.974319
\(983\) 56.1802 1.79187 0.895936 0.444184i \(-0.146506\pi\)
0.895936 + 0.444184i \(0.146506\pi\)
\(984\) 29.4891 0.940079
\(985\) 0 0
\(986\) −8.74456 −0.278484
\(987\) −22.7739 −0.724903
\(988\) −3.75906 −0.119591
\(989\) 19.7228 0.627149
\(990\) 0 0
\(991\) 28.7446 0.913101 0.456551 0.889697i \(-0.349085\pi\)
0.456551 + 0.889697i \(0.349085\pi\)
\(992\) 12.3267 0.391374
\(993\) 0.349857 0.0111024
\(994\) 13.0217 0.413025
\(995\) 0 0
\(996\) −42.2337 −1.33823
\(997\) 2.57924 0.0816854 0.0408427 0.999166i \(-0.486996\pi\)
0.0408427 + 0.999166i \(0.486996\pi\)
\(998\) −29.0024 −0.918056
\(999\) 9.48913 0.300223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.g.1.2 4
3.2 odd 2 6525.2.a.bk.1.4 4
5.2 odd 4 145.2.b.a.59.1 4
5.3 odd 4 145.2.b.a.59.4 yes 4
5.4 even 2 inner 725.2.a.g.1.3 4
15.2 even 4 1305.2.c.e.784.4 4
15.8 even 4 1305.2.c.e.784.2 4
15.14 odd 2 6525.2.a.bk.1.1 4
20.3 even 4 2320.2.d.c.929.1 4
20.7 even 4 2320.2.d.c.929.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.a.59.1 4 5.2 odd 4
145.2.b.a.59.4 yes 4 5.3 odd 4
725.2.a.g.1.2 4 1.1 even 1 trivial
725.2.a.g.1.3 4 5.4 even 2 inner
1305.2.c.e.784.2 4 15.8 even 4
1305.2.c.e.784.4 4 15.2 even 4
2320.2.d.c.929.1 4 20.3 even 4
2320.2.d.c.929.4 4 20.7 even 4
6525.2.a.bk.1.1 4 15.14 odd 2
6525.2.a.bk.1.4 4 3.2 odd 2