Properties

Label 7232.2.a.x
Level $7232$
Weight $2$
Character orbit 7232.a
Self dual yes
Analytic conductor $57.748$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7232,2,Mod(1,7232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7232 = 2^{6} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,1,0,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.7478107418\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.138136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 3x^{2} + 4x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 904)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{3} + \beta_1 + 1) q^{5} + (\beta_{4} + \beta_1) q^{7} + ( - \beta_{3} + \beta_{2} + \beta_1) q^{9} + (2 \beta_{4} - \beta_{3} - 1) q^{11} + (\beta_{3} + 2 \beta_{2} + 3) q^{13}+ \cdots + ( - 3 \beta_{4} - \beta_{2} - 4 \beta_1 + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{3} + 5 q^{5} + 2 q^{7} - 2 q^{9} - 4 q^{11} + 12 q^{13} + 9 q^{15} - 10 q^{17} + 4 q^{19} + 9 q^{21} + 12 q^{23} - 2 q^{25} + 4 q^{27} + 11 q^{29} + 11 q^{31} - 14 q^{33} + 6 q^{35} + 6 q^{37}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 6x^{3} + 3x^{2} + 4x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 6\nu^{2} - 3\nu + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 7\nu^{2} - 2\nu + 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\nu^{4} - \nu^{3} - 12\nu^{2} - \nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + 2\beta_{2} + 5\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6\beta_{3} + 7\beta_{2} + 9\beta _1 + 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.05592
−0.904340
0.514054
0.786893
2.65931
0 −2.05592 0 1.55403 0 −0.300036 0 1.22679 0
1.2 0 −0.904340 0 −1.65705 0 −1.73667 0 −2.18217 0
1.3 0 0.514054 0 −0.677907 0 2.83280 0 −2.73575 0
1.4 0 0.786893 0 2.31167 0 −1.15083 0 −2.38080 0
1.5 0 2.65931 0 3.46927 0 2.35474 0 4.07193 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(113\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7232.2.a.x 5
4.b odd 2 1 7232.2.a.w 5
8.b even 2 1 1808.2.a.k 5
8.d odd 2 1 904.2.a.b 5
24.f even 2 1 8136.2.a.r 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
904.2.a.b 5 8.d odd 2 1
1808.2.a.k 5 8.b even 2 1
7232.2.a.w 5 4.b odd 2 1
7232.2.a.x 5 1.a even 1 1 trivial
8136.2.a.r 5 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7232))\):

\( T_{3}^{5} - T_{3}^{4} - 6T_{3}^{3} + 3T_{3}^{2} + 4T_{3} - 2 \) Copy content Toggle raw display
\( T_{5}^{5} - 5T_{5}^{4} + T_{5}^{3} + 19T_{5}^{2} - 10T_{5} - 14 \) Copy content Toggle raw display
\( T_{7}^{5} - 2T_{7}^{4} - 7T_{7}^{3} + 7T_{7}^{2} + 16T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - T^{4} - 6 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( T^{5} - 5 T^{4} + \cdots - 14 \) Copy content Toggle raw display
$7$ \( T^{5} - 2 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{5} + 4 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$13$ \( T^{5} - 12 T^{4} + \cdots + 956 \) Copy content Toggle raw display
$17$ \( T^{5} + 10 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$19$ \( T^{5} - 4 T^{4} + \cdots - 62 \) Copy content Toggle raw display
$23$ \( T^{5} - 12 T^{4} + \cdots - 3464 \) Copy content Toggle raw display
$29$ \( T^{5} - 11 T^{4} + \cdots + 4262 \) Copy content Toggle raw display
$31$ \( T^{5} - 11 T^{4} + \cdots - 28 \) Copy content Toggle raw display
$37$ \( T^{5} - 6 T^{4} + \cdots - 2014 \) Copy content Toggle raw display
$41$ \( T^{5} + 19 T^{4} + \cdots + 4036 \) Copy content Toggle raw display
$43$ \( T^{5} - 20 T^{4} + \cdots + 8246 \) Copy content Toggle raw display
$47$ \( T^{5} - 5 T^{4} + \cdots - 472 \) Copy content Toggle raw display
$53$ \( T^{5} - T^{4} + \cdots - 76 \) Copy content Toggle raw display
$59$ \( T^{5} + 15 T^{4} + \cdots - 25826 \) Copy content Toggle raw display
$61$ \( T^{5} - 9 T^{4} + \cdots - 18508 \) Copy content Toggle raw display
$67$ \( T^{5} - 23 T^{4} + \cdots - 71602 \) Copy content Toggle raw display
$71$ \( T^{5} - 22 T^{4} + \cdots + 28544 \) Copy content Toggle raw display
$73$ \( T^{5} + 11 T^{4} + \cdots - 76 \) Copy content Toggle raw display
$79$ \( T^{5} + 11 T^{4} + \cdots + 1696 \) Copy content Toggle raw display
$83$ \( T^{5} - 20 T^{4} + \cdots + 4408 \) Copy content Toggle raw display
$89$ \( T^{5} + 24 T^{4} + \cdots + 2764 \) Copy content Toggle raw display
$97$ \( T^{5} - 357 T^{3} + \cdots - 29792 \) Copy content Toggle raw display
show more
show less