Properties

Label 7232.2.a.v.1.3
Level $7232$
Weight $2$
Character 7232.1
Self dual yes
Analytic conductor $57.748$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7232,2,Mod(1,7232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7232 = 2^{6} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,-4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.7478107418\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 226)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.17557\) of defining polynomial
Character \(\chi\) \(=\) 7232.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28408 q^{3} -0.273457 q^{5} -1.23607 q^{7} -1.35114 q^{9} -2.35114 q^{11} +5.04029 q^{13} -0.351141 q^{15} +4.47214 q^{17} +3.75621 q^{19} -1.58721 q^{21} +1.32739 q^{23} -4.92522 q^{25} -5.58721 q^{27} -5.31375 q^{29} +6.82328 q^{31} -3.01905 q^{33} +0.338012 q^{35} -1.86067 q^{37} +6.47214 q^{39} +1.10194 q^{41} +5.43945 q^{43} +0.369480 q^{45} +6.02967 q^{47} -5.47214 q^{49} +5.74258 q^{51} -8.49338 q^{53} +0.642937 q^{55} +4.82328 q^{57} +0.243785 q^{59} +6.85765 q^{61} +1.67010 q^{63} -1.37831 q^{65} -5.28408 q^{67} +1.70447 q^{69} -1.08540 q^{71} +13.7638 q^{73} -6.32437 q^{75} +2.90617 q^{77} +5.03186 q^{79} -3.12099 q^{81} -0.919299 q^{83} -1.22294 q^{85} -6.82328 q^{87} +14.0000 q^{89} -6.23015 q^{91} +8.76163 q^{93} -1.02717 q^{95} +13.2917 q^{97} +3.17672 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{5} + 4 q^{7} + 4 q^{9} - 4 q^{13} + 8 q^{15} - 6 q^{19} + 12 q^{21} + 6 q^{23} + 4 q^{25} - 4 q^{27} - 4 q^{35} + 8 q^{37} + 8 q^{39} + 8 q^{41} - 6 q^{43} + 16 q^{45} + 6 q^{47} - 4 q^{49}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.28408 0.741363 0.370682 0.928760i \(-0.379124\pi\)
0.370682 + 0.928760i \(0.379124\pi\)
\(4\) 0 0
\(5\) −0.273457 −0.122294 −0.0611469 0.998129i \(-0.519476\pi\)
−0.0611469 + 0.998129i \(0.519476\pi\)
\(6\) 0 0
\(7\) −1.23607 −0.467190 −0.233595 0.972334i \(-0.575049\pi\)
−0.233595 + 0.972334i \(0.575049\pi\)
\(8\) 0 0
\(9\) −1.35114 −0.450380
\(10\) 0 0
\(11\) −2.35114 −0.708896 −0.354448 0.935076i \(-0.615331\pi\)
−0.354448 + 0.935076i \(0.615331\pi\)
\(12\) 0 0
\(13\) 5.04029 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(14\) 0 0
\(15\) −0.351141 −0.0906642
\(16\) 0 0
\(17\) 4.47214 1.08465 0.542326 0.840168i \(-0.317544\pi\)
0.542326 + 0.840168i \(0.317544\pi\)
\(18\) 0 0
\(19\) 3.75621 0.861735 0.430867 0.902415i \(-0.358208\pi\)
0.430867 + 0.902415i \(0.358208\pi\)
\(20\) 0 0
\(21\) −1.58721 −0.346357
\(22\) 0 0
\(23\) 1.32739 0.276780 0.138390 0.990378i \(-0.455807\pi\)
0.138390 + 0.990378i \(0.455807\pi\)
\(24\) 0 0
\(25\) −4.92522 −0.985044
\(26\) 0 0
\(27\) −5.58721 −1.07526
\(28\) 0 0
\(29\) −5.31375 −0.986739 −0.493369 0.869820i \(-0.664235\pi\)
−0.493369 + 0.869820i \(0.664235\pi\)
\(30\) 0 0
\(31\) 6.82328 1.22550 0.612748 0.790278i \(-0.290064\pi\)
0.612748 + 0.790278i \(0.290064\pi\)
\(32\) 0 0
\(33\) −3.01905 −0.525549
\(34\) 0 0
\(35\) 0.338012 0.0571345
\(36\) 0 0
\(37\) −1.86067 −0.305892 −0.152946 0.988235i \(-0.548876\pi\)
−0.152946 + 0.988235i \(0.548876\pi\)
\(38\) 0 0
\(39\) 6.47214 1.03637
\(40\) 0 0
\(41\) 1.10194 0.172095 0.0860474 0.996291i \(-0.472576\pi\)
0.0860474 + 0.996291i \(0.472576\pi\)
\(42\) 0 0
\(43\) 5.43945 0.829508 0.414754 0.909934i \(-0.363868\pi\)
0.414754 + 0.909934i \(0.363868\pi\)
\(44\) 0 0
\(45\) 0.369480 0.0550788
\(46\) 0 0
\(47\) 6.02967 0.879518 0.439759 0.898116i \(-0.355064\pi\)
0.439759 + 0.898116i \(0.355064\pi\)
\(48\) 0 0
\(49\) −5.47214 −0.781734
\(50\) 0 0
\(51\) 5.74258 0.804121
\(52\) 0 0
\(53\) −8.49338 −1.16666 −0.583328 0.812237i \(-0.698250\pi\)
−0.583328 + 0.812237i \(0.698250\pi\)
\(54\) 0 0
\(55\) 0.642937 0.0866936
\(56\) 0 0
\(57\) 4.82328 0.638859
\(58\) 0 0
\(59\) 0.243785 0.0317381 0.0158691 0.999874i \(-0.494949\pi\)
0.0158691 + 0.999874i \(0.494949\pi\)
\(60\) 0 0
\(61\) 6.85765 0.878032 0.439016 0.898479i \(-0.355327\pi\)
0.439016 + 0.898479i \(0.355327\pi\)
\(62\) 0 0
\(63\) 1.67010 0.210413
\(64\) 0 0
\(65\) −1.37831 −0.170958
\(66\) 0 0
\(67\) −5.28408 −0.645553 −0.322777 0.946475i \(-0.604616\pi\)
−0.322777 + 0.946475i \(0.604616\pi\)
\(68\) 0 0
\(69\) 1.70447 0.205195
\(70\) 0 0
\(71\) −1.08540 −0.128813 −0.0644067 0.997924i \(-0.520515\pi\)
−0.0644067 + 0.997924i \(0.520515\pi\)
\(72\) 0 0
\(73\) 13.7638 1.61093 0.805467 0.592641i \(-0.201915\pi\)
0.805467 + 0.592641i \(0.201915\pi\)
\(74\) 0 0
\(75\) −6.32437 −0.730276
\(76\) 0 0
\(77\) 2.90617 0.331189
\(78\) 0 0
\(79\) 5.03186 0.566129 0.283065 0.959101i \(-0.408649\pi\)
0.283065 + 0.959101i \(0.408649\pi\)
\(80\) 0 0
\(81\) −3.12099 −0.346777
\(82\) 0 0
\(83\) −0.919299 −0.100906 −0.0504531 0.998726i \(-0.516067\pi\)
−0.0504531 + 0.998726i \(0.516067\pi\)
\(84\) 0 0
\(85\) −1.22294 −0.132646
\(86\) 0 0
\(87\) −6.82328 −0.731532
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) −6.23015 −0.653097
\(92\) 0 0
\(93\) 8.76163 0.908538
\(94\) 0 0
\(95\) −1.02717 −0.105385
\(96\) 0 0
\(97\) 13.2917 1.34957 0.674783 0.738016i \(-0.264237\pi\)
0.674783 + 0.738016i \(0.264237\pi\)
\(98\) 0 0
\(99\) 3.17672 0.319273
\(100\) 0 0
\(101\) −13.1311 −1.30659 −0.653297 0.757102i \(-0.726615\pi\)
−0.653297 + 0.757102i \(0.726615\pi\)
\(102\) 0 0
\(103\) −10.3404 −1.01887 −0.509435 0.860509i \(-0.670146\pi\)
−0.509435 + 0.860509i \(0.670146\pi\)
\(104\) 0 0
\(105\) 0.434034 0.0423574
\(106\) 0 0
\(107\) −5.43945 −0.525851 −0.262926 0.964816i \(-0.584687\pi\)
−0.262926 + 0.964816i \(0.584687\pi\)
\(108\) 0 0
\(109\) −2.02124 −0.193600 −0.0968000 0.995304i \(-0.530861\pi\)
−0.0968000 + 0.995304i \(0.530861\pi\)
\(110\) 0 0
\(111\) −2.38924 −0.226777
\(112\) 0 0
\(113\) −1.00000 −0.0940721
\(114\) 0 0
\(115\) −0.362985 −0.0338485
\(116\) 0 0
\(117\) −6.81015 −0.629598
\(118\) 0 0
\(119\) −5.52786 −0.506738
\(120\) 0 0
\(121\) −5.47214 −0.497467
\(122\) 0 0
\(123\) 1.41498 0.127585
\(124\) 0 0
\(125\) 2.71413 0.242759
\(126\) 0 0
\(127\) 21.5468 1.91197 0.955985 0.293416i \(-0.0947922\pi\)
0.955985 + 0.293416i \(0.0947922\pi\)
\(128\) 0 0
\(129\) 6.98468 0.614967
\(130\) 0 0
\(131\) 18.4449 1.61153 0.805767 0.592232i \(-0.201753\pi\)
0.805767 + 0.592232i \(0.201753\pi\)
\(132\) 0 0
\(133\) −4.64294 −0.402594
\(134\) 0 0
\(135\) 1.52786 0.131498
\(136\) 0 0
\(137\) 13.2169 1.12920 0.564598 0.825366i \(-0.309031\pi\)
0.564598 + 0.825366i \(0.309031\pi\)
\(138\) 0 0
\(139\) −0.313039 −0.0265516 −0.0132758 0.999912i \(-0.504226\pi\)
−0.0132758 + 0.999912i \(0.504226\pi\)
\(140\) 0 0
\(141\) 7.74258 0.652043
\(142\) 0 0
\(143\) −11.8504 −0.990984
\(144\) 0 0
\(145\) 1.45309 0.120672
\(146\) 0 0
\(147\) −7.02666 −0.579549
\(148\) 0 0
\(149\) −12.5850 −1.03100 −0.515502 0.856888i \(-0.672395\pi\)
−0.515502 + 0.856888i \(0.672395\pi\)
\(150\) 0 0
\(151\) 8.44246 0.687038 0.343519 0.939146i \(-0.388381\pi\)
0.343519 + 0.939146i \(0.388381\pi\)
\(152\) 0 0
\(153\) −6.04249 −0.488506
\(154\) 0 0
\(155\) −1.86588 −0.149871
\(156\) 0 0
\(157\) 0.997808 0.0796337 0.0398169 0.999207i \(-0.487323\pi\)
0.0398169 + 0.999207i \(0.487323\pi\)
\(158\) 0 0
\(159\) −10.9062 −0.864916
\(160\) 0 0
\(161\) −1.64074 −0.129309
\(162\) 0 0
\(163\) 3.90398 0.305783 0.152892 0.988243i \(-0.451141\pi\)
0.152892 + 0.988243i \(0.451141\pi\)
\(164\) 0 0
\(165\) 0.825582 0.0642715
\(166\) 0 0
\(167\) 14.2275 1.10096 0.550480 0.834849i \(-0.314445\pi\)
0.550480 + 0.834849i \(0.314445\pi\)
\(168\) 0 0
\(169\) 12.4046 0.954197
\(170\) 0 0
\(171\) −5.07518 −0.388108
\(172\) 0 0
\(173\) −0.884927 −0.0672798 −0.0336399 0.999434i \(-0.510710\pi\)
−0.0336399 + 0.999434i \(0.510710\pi\)
\(174\) 0 0
\(175\) 6.08791 0.460203
\(176\) 0 0
\(177\) 0.313039 0.0235295
\(178\) 0 0
\(179\) 15.7027 1.17367 0.586837 0.809705i \(-0.300373\pi\)
0.586837 + 0.809705i \(0.300373\pi\)
\(180\) 0 0
\(181\) 10.4501 0.776747 0.388374 0.921502i \(-0.373037\pi\)
0.388374 + 0.921502i \(0.373037\pi\)
\(182\) 0 0
\(183\) 8.80576 0.650941
\(184\) 0 0
\(185\) 0.508813 0.0374087
\(186\) 0 0
\(187\) −10.5146 −0.768905
\(188\) 0 0
\(189\) 6.90617 0.502350
\(190\) 0 0
\(191\) 14.9833 1.08416 0.542078 0.840328i \(-0.317638\pi\)
0.542078 + 0.840328i \(0.317638\pi\)
\(192\) 0 0
\(193\) 3.49119 0.251301 0.125651 0.992075i \(-0.459898\pi\)
0.125651 + 0.992075i \(0.459898\pi\)
\(194\) 0 0
\(195\) −1.76985 −0.126742
\(196\) 0 0
\(197\) 12.0279 0.856951 0.428475 0.903553i \(-0.359051\pi\)
0.428475 + 0.903553i \(0.359051\pi\)
\(198\) 0 0
\(199\) 5.44027 0.385651 0.192825 0.981233i \(-0.438235\pi\)
0.192825 + 0.981233i \(0.438235\pi\)
\(200\) 0 0
\(201\) −6.78518 −0.478589
\(202\) 0 0
\(203\) 6.56816 0.460994
\(204\) 0 0
\(205\) −0.301335 −0.0210461
\(206\) 0 0
\(207\) −1.79349 −0.124656
\(208\) 0 0
\(209\) −8.83139 −0.610880
\(210\) 0 0
\(211\) 1.83860 0.126574 0.0632872 0.997995i \(-0.479842\pi\)
0.0632872 + 0.997995i \(0.479842\pi\)
\(212\) 0 0
\(213\) −1.39374 −0.0954975
\(214\) 0 0
\(215\) −1.48746 −0.101444
\(216\) 0 0
\(217\) −8.43403 −0.572540
\(218\) 0 0
\(219\) 17.6738 1.19429
\(220\) 0 0
\(221\) 22.5409 1.51626
\(222\) 0 0
\(223\) 20.1103 1.34668 0.673341 0.739332i \(-0.264858\pi\)
0.673341 + 0.739332i \(0.264858\pi\)
\(224\) 0 0
\(225\) 6.65467 0.443645
\(226\) 0 0
\(227\) −15.1744 −1.00716 −0.503581 0.863948i \(-0.667984\pi\)
−0.503581 + 0.863948i \(0.667984\pi\)
\(228\) 0 0
\(229\) 7.08361 0.468098 0.234049 0.972225i \(-0.424802\pi\)
0.234049 + 0.972225i \(0.424802\pi\)
\(230\) 0 0
\(231\) 3.73175 0.245531
\(232\) 0 0
\(233\) −19.8848 −1.30270 −0.651349 0.758779i \(-0.725796\pi\)
−0.651349 + 0.758779i \(0.725796\pi\)
\(234\) 0 0
\(235\) −1.64886 −0.107560
\(236\) 0 0
\(237\) 6.46131 0.419707
\(238\) 0 0
\(239\) 5.09591 0.329627 0.164813 0.986325i \(-0.447298\pi\)
0.164813 + 0.986325i \(0.447298\pi\)
\(240\) 0 0
\(241\) −3.01532 −0.194234 −0.0971170 0.995273i \(-0.530962\pi\)
−0.0971170 + 0.995273i \(0.530962\pi\)
\(242\) 0 0
\(243\) 12.7540 0.818171
\(244\) 0 0
\(245\) 1.49640 0.0956013
\(246\) 0 0
\(247\) 18.9324 1.20464
\(248\) 0 0
\(249\) −1.18045 −0.0748082
\(250\) 0 0
\(251\) 26.9288 1.69973 0.849867 0.526998i \(-0.176682\pi\)
0.849867 + 0.526998i \(0.176682\pi\)
\(252\) 0 0
\(253\) −3.12088 −0.196208
\(254\) 0 0
\(255\) −1.57035 −0.0983392
\(256\) 0 0
\(257\) 20.2741 1.26466 0.632330 0.774699i \(-0.282099\pi\)
0.632330 + 0.774699i \(0.282099\pi\)
\(258\) 0 0
\(259\) 2.29991 0.142909
\(260\) 0 0
\(261\) 7.17963 0.444408
\(262\) 0 0
\(263\) 9.93365 0.612535 0.306268 0.951945i \(-0.400920\pi\)
0.306268 + 0.951945i \(0.400920\pi\)
\(264\) 0 0
\(265\) 2.32258 0.142675
\(266\) 0 0
\(267\) 17.9771 1.10018
\(268\) 0 0
\(269\) −13.5924 −0.828744 −0.414372 0.910108i \(-0.635999\pi\)
−0.414372 + 0.910108i \(0.635999\pi\)
\(270\) 0 0
\(271\) 29.1506 1.77077 0.885385 0.464858i \(-0.153895\pi\)
0.885385 + 0.464858i \(0.153895\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) 11.5799 0.698294
\(276\) 0 0
\(277\) 29.8825 1.79547 0.897733 0.440540i \(-0.145213\pi\)
0.897733 + 0.440540i \(0.145213\pi\)
\(278\) 0 0
\(279\) −9.21921 −0.551940
\(280\) 0 0
\(281\) −21.2432 −1.26726 −0.633630 0.773636i \(-0.718436\pi\)
−0.633630 + 0.773636i \(0.718436\pi\)
\(282\) 0 0
\(283\) −13.9061 −0.826629 −0.413315 0.910588i \(-0.635629\pi\)
−0.413315 + 0.910588i \(0.635629\pi\)
\(284\) 0 0
\(285\) −1.31896 −0.0781285
\(286\) 0 0
\(287\) −1.36208 −0.0804009
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) 17.0676 1.00052
\(292\) 0 0
\(293\) 4.27346 0.249658 0.124829 0.992178i \(-0.460162\pi\)
0.124829 + 0.992178i \(0.460162\pi\)
\(294\) 0 0
\(295\) −0.0666648 −0.00388138
\(296\) 0 0
\(297\) 13.1363 0.762246
\(298\) 0 0
\(299\) 6.69044 0.386918
\(300\) 0 0
\(301\) −6.72353 −0.387538
\(302\) 0 0
\(303\) −16.8614 −0.968661
\(304\) 0 0
\(305\) −1.87528 −0.107378
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) −13.2779 −0.755353
\(310\) 0 0
\(311\) −9.69636 −0.549830 −0.274915 0.961469i \(-0.588650\pi\)
−0.274915 + 0.961469i \(0.588650\pi\)
\(312\) 0 0
\(313\) 18.5550 1.04879 0.524396 0.851474i \(-0.324291\pi\)
0.524396 + 0.851474i \(0.324291\pi\)
\(314\) 0 0
\(315\) −0.456702 −0.0257322
\(316\) 0 0
\(317\) 10.8364 0.608633 0.304317 0.952571i \(-0.401572\pi\)
0.304317 + 0.952571i \(0.401572\pi\)
\(318\) 0 0
\(319\) 12.4934 0.699495
\(320\) 0 0
\(321\) −6.98468 −0.389847
\(322\) 0 0
\(323\) 16.7983 0.934683
\(324\) 0 0
\(325\) −24.8246 −1.37702
\(326\) 0 0
\(327\) −2.59544 −0.143528
\(328\) 0 0
\(329\) −7.45309 −0.410902
\(330\) 0 0
\(331\) 23.3914 1.28571 0.642855 0.765988i \(-0.277750\pi\)
0.642855 + 0.765988i \(0.277750\pi\)
\(332\) 0 0
\(333\) 2.51402 0.137768
\(334\) 0 0
\(335\) 1.44497 0.0789472
\(336\) 0 0
\(337\) −30.6939 −1.67201 −0.836003 0.548725i \(-0.815113\pi\)
−0.836003 + 0.548725i \(0.815113\pi\)
\(338\) 0 0
\(339\) −1.28408 −0.0697416
\(340\) 0 0
\(341\) −16.0425 −0.868749
\(342\) 0 0
\(343\) 15.4164 0.832408
\(344\) 0 0
\(345\) −0.466101 −0.0250940
\(346\) 0 0
\(347\) 3.41641 0.183402 0.0917012 0.995787i \(-0.470770\pi\)
0.0917012 + 0.995787i \(0.470770\pi\)
\(348\) 0 0
\(349\) −36.2851 −1.94230 −0.971148 0.238478i \(-0.923351\pi\)
−0.971148 + 0.238478i \(0.923351\pi\)
\(350\) 0 0
\(351\) −28.1612 −1.50313
\(352\) 0 0
\(353\) −16.4684 −0.876525 −0.438262 0.898847i \(-0.644406\pi\)
−0.438262 + 0.898847i \(0.644406\pi\)
\(354\) 0 0
\(355\) 0.296811 0.0157531
\(356\) 0 0
\(357\) −7.09821 −0.375677
\(358\) 0 0
\(359\) −24.1197 −1.27299 −0.636493 0.771282i \(-0.719616\pi\)
−0.636493 + 0.771282i \(0.719616\pi\)
\(360\) 0 0
\(361\) −4.89085 −0.257413
\(362\) 0 0
\(363\) −7.02666 −0.368804
\(364\) 0 0
\(365\) −3.76382 −0.197007
\(366\) 0 0
\(367\) −34.4413 −1.79782 −0.898910 0.438134i \(-0.855640\pi\)
−0.898910 + 0.438134i \(0.855640\pi\)
\(368\) 0 0
\(369\) −1.48888 −0.0775081
\(370\) 0 0
\(371\) 10.4984 0.545049
\(372\) 0 0
\(373\) −26.3540 −1.36456 −0.682280 0.731091i \(-0.739012\pi\)
−0.682280 + 0.731091i \(0.739012\pi\)
\(374\) 0 0
\(375\) 3.48515 0.179972
\(376\) 0 0
\(377\) −26.7829 −1.37939
\(378\) 0 0
\(379\) 28.5509 1.46656 0.733281 0.679925i \(-0.237988\pi\)
0.733281 + 0.679925i \(0.237988\pi\)
\(380\) 0 0
\(381\) 27.6678 1.41746
\(382\) 0 0
\(383\) −22.7425 −1.16209 −0.581043 0.813873i \(-0.697355\pi\)
−0.581043 + 0.813873i \(0.697355\pi\)
\(384\) 0 0
\(385\) −0.794714 −0.0405024
\(386\) 0 0
\(387\) −7.34946 −0.373594
\(388\) 0 0
\(389\) 36.7249 1.86203 0.931014 0.364982i \(-0.118925\pi\)
0.931014 + 0.364982i \(0.118925\pi\)
\(390\) 0 0
\(391\) 5.93627 0.300210
\(392\) 0 0
\(393\) 23.6847 1.19473
\(394\) 0 0
\(395\) −1.37600 −0.0692341
\(396\) 0 0
\(397\) 14.7183 0.738691 0.369346 0.929292i \(-0.379582\pi\)
0.369346 + 0.929292i \(0.379582\pi\)
\(398\) 0 0
\(399\) −5.96190 −0.298468
\(400\) 0 0
\(401\) −6.79702 −0.339427 −0.169713 0.985493i \(-0.554284\pi\)
−0.169713 + 0.985493i \(0.554284\pi\)
\(402\) 0 0
\(403\) 34.3913 1.71315
\(404\) 0 0
\(405\) 0.853459 0.0424087
\(406\) 0 0
\(407\) 4.37469 0.216845
\(408\) 0 0
\(409\) 9.91919 0.490472 0.245236 0.969463i \(-0.421135\pi\)
0.245236 + 0.969463i \(0.421135\pi\)
\(410\) 0 0
\(411\) 16.9715 0.837145
\(412\) 0 0
\(413\) −0.301335 −0.0148277
\(414\) 0 0
\(415\) 0.251389 0.0123402
\(416\) 0 0
\(417\) −0.401967 −0.0196844
\(418\) 0 0
\(419\) −14.8498 −0.725461 −0.362731 0.931894i \(-0.618155\pi\)
−0.362731 + 0.931894i \(0.618155\pi\)
\(420\) 0 0
\(421\) −3.49119 −0.170150 −0.0850750 0.996375i \(-0.527113\pi\)
−0.0850750 + 0.996375i \(0.527113\pi\)
\(422\) 0 0
\(423\) −8.14694 −0.396118
\(424\) 0 0
\(425\) −22.0263 −1.06843
\(426\) 0 0
\(427\) −8.47652 −0.410208
\(428\) 0 0
\(429\) −15.2169 −0.734679
\(430\) 0 0
\(431\) 38.2963 1.84467 0.922333 0.386395i \(-0.126280\pi\)
0.922333 + 0.386395i \(0.126280\pi\)
\(432\) 0 0
\(433\) −39.4104 −1.89394 −0.946971 0.321320i \(-0.895874\pi\)
−0.946971 + 0.321320i \(0.895874\pi\)
\(434\) 0 0
\(435\) 1.86588 0.0894619
\(436\) 0 0
\(437\) 4.98596 0.238511
\(438\) 0 0
\(439\) −32.1518 −1.53452 −0.767260 0.641336i \(-0.778381\pi\)
−0.767260 + 0.641336i \(0.778381\pi\)
\(440\) 0 0
\(441\) 7.39363 0.352077
\(442\) 0 0
\(443\) −40.0402 −1.90237 −0.951183 0.308627i \(-0.900131\pi\)
−0.951183 + 0.308627i \(0.900131\pi\)
\(444\) 0 0
\(445\) −3.82840 −0.181484
\(446\) 0 0
\(447\) −16.1602 −0.764349
\(448\) 0 0
\(449\) 4.86368 0.229531 0.114766 0.993393i \(-0.463388\pi\)
0.114766 + 0.993393i \(0.463388\pi\)
\(450\) 0 0
\(451\) −2.59083 −0.121997
\(452\) 0 0
\(453\) 10.8408 0.509345
\(454\) 0 0
\(455\) 1.70368 0.0798697
\(456\) 0 0
\(457\) 8.12472 0.380059 0.190029 0.981778i \(-0.439142\pi\)
0.190029 + 0.981778i \(0.439142\pi\)
\(458\) 0 0
\(459\) −24.9868 −1.16628
\(460\) 0 0
\(461\) −5.57177 −0.259503 −0.129752 0.991547i \(-0.541418\pi\)
−0.129752 + 0.991547i \(0.541418\pi\)
\(462\) 0 0
\(463\) 26.7235 1.24195 0.620974 0.783831i \(-0.286737\pi\)
0.620974 + 0.783831i \(0.286737\pi\)
\(464\) 0 0
\(465\) −2.39593 −0.111109
\(466\) 0 0
\(467\) −28.4469 −1.31637 −0.658184 0.752857i \(-0.728675\pi\)
−0.658184 + 0.752857i \(0.728675\pi\)
\(468\) 0 0
\(469\) 6.53148 0.301596
\(470\) 0 0
\(471\) 1.28126 0.0590375
\(472\) 0 0
\(473\) −12.7889 −0.588034
\(474\) 0 0
\(475\) −18.5002 −0.848847
\(476\) 0 0
\(477\) 11.4758 0.525439
\(478\) 0 0
\(479\) −5.05812 −0.231112 −0.115556 0.993301i \(-0.536865\pi\)
−0.115556 + 0.993301i \(0.536865\pi\)
\(480\) 0 0
\(481\) −9.37831 −0.427614
\(482\) 0 0
\(483\) −2.10685 −0.0958648
\(484\) 0 0
\(485\) −3.63471 −0.165044
\(486\) 0 0
\(487\) 11.1660 0.505979 0.252990 0.967469i \(-0.418586\pi\)
0.252990 + 0.967469i \(0.418586\pi\)
\(488\) 0 0
\(489\) 5.01302 0.226696
\(490\) 0 0
\(491\) −32.1169 −1.44942 −0.724708 0.689057i \(-0.758025\pi\)
−0.724708 + 0.689057i \(0.758025\pi\)
\(492\) 0 0
\(493\) −23.7638 −1.07027
\(494\) 0 0
\(495\) −0.868699 −0.0390451
\(496\) 0 0
\(497\) 1.34163 0.0601803
\(498\) 0 0
\(499\) 36.9671 1.65487 0.827437 0.561559i \(-0.189798\pi\)
0.827437 + 0.561559i \(0.189798\pi\)
\(500\) 0 0
\(501\) 18.2693 0.816211
\(502\) 0 0
\(503\) 13.7793 0.614387 0.307193 0.951647i \(-0.400610\pi\)
0.307193 + 0.951647i \(0.400610\pi\)
\(504\) 0 0
\(505\) 3.59080 0.159788
\(506\) 0 0
\(507\) 15.9284 0.707407
\(508\) 0 0
\(509\) −13.6772 −0.606231 −0.303116 0.952954i \(-0.598027\pi\)
−0.303116 + 0.952954i \(0.598027\pi\)
\(510\) 0 0
\(511\) −17.0130 −0.752612
\(512\) 0 0
\(513\) −20.9868 −0.926588
\(514\) 0 0
\(515\) 2.82766 0.124602
\(516\) 0 0
\(517\) −14.1766 −0.623487
\(518\) 0 0
\(519\) −1.13632 −0.0498787
\(520\) 0 0
\(521\) 30.2360 1.32466 0.662331 0.749212i \(-0.269567\pi\)
0.662331 + 0.749212i \(0.269567\pi\)
\(522\) 0 0
\(523\) 25.1287 1.09880 0.549401 0.835559i \(-0.314856\pi\)
0.549401 + 0.835559i \(0.314856\pi\)
\(524\) 0 0
\(525\) 7.81736 0.341177
\(526\) 0 0
\(527\) 30.5146 1.32924
\(528\) 0 0
\(529\) −21.2380 −0.923393
\(530\) 0 0
\(531\) −0.329388 −0.0142942
\(532\) 0 0
\(533\) 5.55412 0.240576
\(534\) 0 0
\(535\) 1.48746 0.0643084
\(536\) 0 0
\(537\) 20.1635 0.870118
\(538\) 0 0
\(539\) 12.8658 0.554168
\(540\) 0 0
\(541\) −43.1046 −1.85321 −0.926606 0.376033i \(-0.877288\pi\)
−0.926606 + 0.376033i \(0.877288\pi\)
\(542\) 0 0
\(543\) 13.4187 0.575852
\(544\) 0 0
\(545\) 0.552724 0.0236761
\(546\) 0 0
\(547\) −19.3217 −0.826135 −0.413067 0.910700i \(-0.635543\pi\)
−0.413067 + 0.910700i \(0.635543\pi\)
\(548\) 0 0
\(549\) −9.26565 −0.395448
\(550\) 0 0
\(551\) −19.9596 −0.850307
\(552\) 0 0
\(553\) −6.21973 −0.264490
\(554\) 0 0
\(555\) 0.653356 0.0277334
\(556\) 0 0
\(557\) 6.89677 0.292226 0.146113 0.989268i \(-0.453324\pi\)
0.146113 + 0.989268i \(0.453324\pi\)
\(558\) 0 0
\(559\) 27.4164 1.15959
\(560\) 0 0
\(561\) −13.5016 −0.570038
\(562\) 0 0
\(563\) 1.36208 0.0574047 0.0287024 0.999588i \(-0.490862\pi\)
0.0287024 + 0.999588i \(0.490862\pi\)
\(564\) 0 0
\(565\) 0.273457 0.0115044
\(566\) 0 0
\(567\) 3.85776 0.162011
\(568\) 0 0
\(569\) 23.9633 1.00459 0.502297 0.864695i \(-0.332488\pi\)
0.502297 + 0.864695i \(0.332488\pi\)
\(570\) 0 0
\(571\) 25.4028 1.06307 0.531536 0.847035i \(-0.321615\pi\)
0.531536 + 0.847035i \(0.321615\pi\)
\(572\) 0 0
\(573\) 19.2398 0.803754
\(574\) 0 0
\(575\) −6.53769 −0.272641
\(576\) 0 0
\(577\) 32.6333 1.35854 0.679271 0.733887i \(-0.262296\pi\)
0.679271 + 0.733887i \(0.262296\pi\)
\(578\) 0 0
\(579\) 4.48296 0.186305
\(580\) 0 0
\(581\) 1.13632 0.0471423
\(582\) 0 0
\(583\) 19.9691 0.827037
\(584\) 0 0
\(585\) 1.86229 0.0769960
\(586\) 0 0
\(587\) 14.2953 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(588\) 0 0
\(589\) 25.6297 1.05605
\(590\) 0 0
\(591\) 15.4447 0.635312
\(592\) 0 0
\(593\) 4.34741 0.178527 0.0892634 0.996008i \(-0.471549\pi\)
0.0892634 + 0.996008i \(0.471549\pi\)
\(594\) 0 0
\(595\) 1.51164 0.0619710
\(596\) 0 0
\(597\) 6.98574 0.285907
\(598\) 0 0
\(599\) −18.1776 −0.742716 −0.371358 0.928490i \(-0.621108\pi\)
−0.371358 + 0.928490i \(0.621108\pi\)
\(600\) 0 0
\(601\) 25.6145 1.04484 0.522418 0.852689i \(-0.325030\pi\)
0.522418 + 0.852689i \(0.325030\pi\)
\(602\) 0 0
\(603\) 7.13954 0.290744
\(604\) 0 0
\(605\) 1.49640 0.0608372
\(606\) 0 0
\(607\) 13.2849 0.539218 0.269609 0.962970i \(-0.413106\pi\)
0.269609 + 0.962970i \(0.413106\pi\)
\(608\) 0 0
\(609\) 8.43403 0.341764
\(610\) 0 0
\(611\) 30.3913 1.22950
\(612\) 0 0
\(613\) −22.3871 −0.904208 −0.452104 0.891965i \(-0.649326\pi\)
−0.452104 + 0.891965i \(0.649326\pi\)
\(614\) 0 0
\(615\) −0.386938 −0.0156028
\(616\) 0 0
\(617\) −21.4201 −0.862342 −0.431171 0.902270i \(-0.641899\pi\)
−0.431171 + 0.902270i \(0.641899\pi\)
\(618\) 0 0
\(619\) 6.03050 0.242386 0.121193 0.992629i \(-0.461328\pi\)
0.121193 + 0.992629i \(0.461328\pi\)
\(620\) 0 0
\(621\) −7.41641 −0.297610
\(622\) 0 0
\(623\) −17.3050 −0.693308
\(624\) 0 0
\(625\) 23.8839 0.955356
\(626\) 0 0
\(627\) −11.3402 −0.452884
\(628\) 0 0
\(629\) −8.32115 −0.331786
\(630\) 0 0
\(631\) −6.17923 −0.245991 −0.122996 0.992407i \(-0.539250\pi\)
−0.122996 + 0.992407i \(0.539250\pi\)
\(632\) 0 0
\(633\) 2.36091 0.0938376
\(634\) 0 0
\(635\) −5.89213 −0.233822
\(636\) 0 0
\(637\) −27.5812 −1.09281
\(638\) 0 0
\(639\) 1.46653 0.0580150
\(640\) 0 0
\(641\) −14.3549 −0.566983 −0.283492 0.958975i \(-0.591493\pi\)
−0.283492 + 0.958975i \(0.591493\pi\)
\(642\) 0 0
\(643\) −38.5024 −1.51839 −0.759193 0.650865i \(-0.774406\pi\)
−0.759193 + 0.650865i \(0.774406\pi\)
\(644\) 0 0
\(645\) −1.91001 −0.0752067
\(646\) 0 0
\(647\) 6.76601 0.265999 0.133000 0.991116i \(-0.457539\pi\)
0.133000 + 0.991116i \(0.457539\pi\)
\(648\) 0 0
\(649\) −0.573173 −0.0224990
\(650\) 0 0
\(651\) −10.8300 −0.424460
\(652\) 0 0
\(653\) 29.5718 1.15723 0.578616 0.815600i \(-0.303593\pi\)
0.578616 + 0.815600i \(0.303593\pi\)
\(654\) 0 0
\(655\) −5.04388 −0.197081
\(656\) 0 0
\(657\) −18.5969 −0.725533
\(658\) 0 0
\(659\) −10.1953 −0.397151 −0.198576 0.980086i \(-0.563632\pi\)
−0.198576 + 0.980086i \(0.563632\pi\)
\(660\) 0 0
\(661\) 9.35624 0.363915 0.181958 0.983306i \(-0.441757\pi\)
0.181958 + 0.983306i \(0.441757\pi\)
\(662\) 0 0
\(663\) 28.9443 1.12410
\(664\) 0 0
\(665\) 1.26965 0.0492348
\(666\) 0 0
\(667\) −7.05342 −0.273110
\(668\) 0 0
\(669\) 25.8232 0.998381
\(670\) 0 0
\(671\) −16.1233 −0.622433
\(672\) 0 0
\(673\) −28.4280 −1.09582 −0.547909 0.836538i \(-0.684576\pi\)
−0.547909 + 0.836538i \(0.684576\pi\)
\(674\) 0 0
\(675\) 27.5182 1.05918
\(676\) 0 0
\(677\) −26.5453 −1.02022 −0.510109 0.860110i \(-0.670395\pi\)
−0.510109 + 0.860110i \(0.670395\pi\)
\(678\) 0 0
\(679\) −16.4294 −0.630503
\(680\) 0 0
\(681\) −19.4852 −0.746673
\(682\) 0 0
\(683\) −45.0433 −1.72353 −0.861767 0.507305i \(-0.830642\pi\)
−0.861767 + 0.507305i \(0.830642\pi\)
\(684\) 0 0
\(685\) −3.61426 −0.138094
\(686\) 0 0
\(687\) 9.09591 0.347031
\(688\) 0 0
\(689\) −42.8091 −1.63090
\(690\) 0 0
\(691\) 18.9214 0.719803 0.359902 0.932990i \(-0.382810\pi\)
0.359902 + 0.932990i \(0.382810\pi\)
\(692\) 0 0
\(693\) −3.92665 −0.149161
\(694\) 0 0
\(695\) 0.0856029 0.00324710
\(696\) 0 0
\(697\) 4.92804 0.186663
\(698\) 0 0
\(699\) −25.5337 −0.965772
\(700\) 0 0
\(701\) 29.5285 1.11527 0.557637 0.830085i \(-0.311708\pi\)
0.557637 + 0.830085i \(0.311708\pi\)
\(702\) 0 0
\(703\) −6.98906 −0.263598
\(704\) 0 0
\(705\) −2.11727 −0.0797408
\(706\) 0 0
\(707\) 16.2309 0.610427
\(708\) 0 0
\(709\) −37.3085 −1.40115 −0.700576 0.713578i \(-0.747073\pi\)
−0.700576 + 0.713578i \(0.747073\pi\)
\(710\) 0 0
\(711\) −6.79876 −0.254973
\(712\) 0 0
\(713\) 9.05715 0.339193
\(714\) 0 0
\(715\) 3.24059 0.121191
\(716\) 0 0
\(717\) 6.54355 0.244373
\(718\) 0 0
\(719\) −3.72967 −0.139093 −0.0695467 0.997579i \(-0.522155\pi\)
−0.0695467 + 0.997579i \(0.522155\pi\)
\(720\) 0 0
\(721\) 12.7814 0.476006
\(722\) 0 0
\(723\) −3.87191 −0.143998
\(724\) 0 0
\(725\) 26.1714 0.971981
\(726\) 0 0
\(727\) 50.7068 1.88061 0.940306 0.340331i \(-0.110539\pi\)
0.940306 + 0.340331i \(0.110539\pi\)
\(728\) 0 0
\(729\) 25.7402 0.953339
\(730\) 0 0
\(731\) 24.3259 0.899727
\(732\) 0 0
\(733\) −10.5036 −0.387959 −0.193980 0.981006i \(-0.562140\pi\)
−0.193980 + 0.981006i \(0.562140\pi\)
\(734\) 0 0
\(735\) 1.92149 0.0708753
\(736\) 0 0
\(737\) 12.4236 0.457630
\(738\) 0 0
\(739\) 36.9036 1.35752 0.678761 0.734359i \(-0.262517\pi\)
0.678761 + 0.734359i \(0.262517\pi\)
\(740\) 0 0
\(741\) 24.3107 0.893077
\(742\) 0 0
\(743\) −27.4306 −1.00633 −0.503166 0.864190i \(-0.667832\pi\)
−0.503166 + 0.864190i \(0.667832\pi\)
\(744\) 0 0
\(745\) 3.44147 0.126086
\(746\) 0 0
\(747\) 1.24210 0.0454462
\(748\) 0 0
\(749\) 6.72353 0.245672
\(750\) 0 0
\(751\) 15.0962 0.550869 0.275435 0.961320i \(-0.411178\pi\)
0.275435 + 0.961320i \(0.411178\pi\)
\(752\) 0 0
\(753\) 34.5788 1.26012
\(754\) 0 0
\(755\) −2.30865 −0.0840205
\(756\) 0 0
\(757\) −0.208303 −0.00757092 −0.00378546 0.999993i \(-0.501205\pi\)
−0.00378546 + 0.999993i \(0.501205\pi\)
\(758\) 0 0
\(759\) −4.00746 −0.145462
\(760\) 0 0
\(761\) −41.3758 −1.49987 −0.749935 0.661511i \(-0.769915\pi\)
−0.749935 + 0.661511i \(0.769915\pi\)
\(762\) 0 0
\(763\) 2.49839 0.0904479
\(764\) 0 0
\(765\) 1.65236 0.0597413
\(766\) 0 0
\(767\) 1.22875 0.0443675
\(768\) 0 0
\(769\) −45.5051 −1.64096 −0.820478 0.571678i \(-0.806293\pi\)
−0.820478 + 0.571678i \(0.806293\pi\)
\(770\) 0 0
\(771\) 26.0335 0.937573
\(772\) 0 0
\(773\) −46.8456 −1.68492 −0.842459 0.538760i \(-0.818893\pi\)
−0.842459 + 0.538760i \(0.818893\pi\)
\(774\) 0 0
\(775\) −33.6061 −1.20717
\(776\) 0 0
\(777\) 2.95327 0.105948
\(778\) 0 0
\(779\) 4.13914 0.148300
\(780\) 0 0
\(781\) 2.55193 0.0913152
\(782\) 0 0
\(783\) 29.6890 1.06100
\(784\) 0 0
\(785\) −0.272858 −0.00973872
\(786\) 0 0
\(787\) −48.3311 −1.72282 −0.861409 0.507912i \(-0.830417\pi\)
−0.861409 + 0.507912i \(0.830417\pi\)
\(788\) 0 0
\(789\) 12.7556 0.454111
\(790\) 0 0
\(791\) 1.23607 0.0439495
\(792\) 0 0
\(793\) 34.5646 1.22742
\(794\) 0 0
\(795\) 2.98237 0.105774
\(796\) 0 0
\(797\) −34.9772 −1.23895 −0.619477 0.785015i \(-0.712655\pi\)
−0.619477 + 0.785015i \(0.712655\pi\)
\(798\) 0 0
\(799\) 26.9655 0.953971
\(800\) 0 0
\(801\) −18.9160 −0.668363
\(802\) 0 0
\(803\) −32.3607 −1.14198
\(804\) 0 0
\(805\) 0.448674 0.0158137
\(806\) 0 0
\(807\) −17.4537 −0.614401
\(808\) 0 0
\(809\) 47.8115 1.68096 0.840481 0.541841i \(-0.182273\pi\)
0.840481 + 0.541841i \(0.182273\pi\)
\(810\) 0 0
\(811\) −12.7598 −0.448058 −0.224029 0.974582i \(-0.571921\pi\)
−0.224029 + 0.974582i \(0.571921\pi\)
\(812\) 0 0
\(813\) 37.4316 1.31278
\(814\) 0 0
\(815\) −1.06757 −0.0373954
\(816\) 0 0
\(817\) 20.4317 0.714816
\(818\) 0 0
\(819\) 8.41781 0.294142
\(820\) 0 0
\(821\) −43.5657 −1.52045 −0.760227 0.649657i \(-0.774912\pi\)
−0.760227 + 0.649657i \(0.774912\pi\)
\(822\) 0 0
\(823\) 1.44289 0.0502960 0.0251480 0.999684i \(-0.491994\pi\)
0.0251480 + 0.999684i \(0.491994\pi\)
\(824\) 0 0
\(825\) 14.8695 0.517689
\(826\) 0 0
\(827\) 28.2397 0.981990 0.490995 0.871162i \(-0.336633\pi\)
0.490995 + 0.871162i \(0.336633\pi\)
\(828\) 0 0
\(829\) 6.33036 0.219862 0.109931 0.993939i \(-0.464937\pi\)
0.109931 + 0.993939i \(0.464937\pi\)
\(830\) 0 0
\(831\) 38.3715 1.33109
\(832\) 0 0
\(833\) −24.4721 −0.847909
\(834\) 0 0
\(835\) −3.89062 −0.134641
\(836\) 0 0
\(837\) −38.1231 −1.31773
\(838\) 0 0
\(839\) 52.6519 1.81775 0.908873 0.417072i \(-0.136944\pi\)
0.908873 + 0.417072i \(0.136944\pi\)
\(840\) 0 0
\(841\) −0.764045 −0.0263464
\(842\) 0 0
\(843\) −27.2779 −0.939501
\(844\) 0 0
\(845\) −3.39212 −0.116693
\(846\) 0 0
\(847\) 6.76393 0.232411
\(848\) 0 0
\(849\) −17.8565 −0.612833
\(850\) 0 0
\(851\) −2.46983 −0.0846647
\(852\) 0 0
\(853\) −21.1090 −0.722760 −0.361380 0.932419i \(-0.617694\pi\)
−0.361380 + 0.932419i \(0.617694\pi\)
\(854\) 0 0
\(855\) 1.38784 0.0474633
\(856\) 0 0
\(857\) 7.29333 0.249136 0.124568 0.992211i \(-0.460246\pi\)
0.124568 + 0.992211i \(0.460246\pi\)
\(858\) 0 0
\(859\) −1.13617 −0.0387657 −0.0193828 0.999812i \(-0.506170\pi\)
−0.0193828 + 0.999812i \(0.506170\pi\)
\(860\) 0 0
\(861\) −1.74902 −0.0596063
\(862\) 0 0
\(863\) −1.73677 −0.0591202 −0.0295601 0.999563i \(-0.509411\pi\)
−0.0295601 + 0.999563i \(0.509411\pi\)
\(864\) 0 0
\(865\) 0.241990 0.00822790
\(866\) 0 0
\(867\) 3.85224 0.130829
\(868\) 0 0
\(869\) −11.8306 −0.401326
\(870\) 0 0
\(871\) −26.6333 −0.902435
\(872\) 0 0
\(873\) −17.9589 −0.607818
\(874\) 0 0
\(875\) −3.35484 −0.113414
\(876\) 0 0
\(877\) −2.27847 −0.0769385 −0.0384693 0.999260i \(-0.512248\pi\)
−0.0384693 + 0.999260i \(0.512248\pi\)
\(878\) 0 0
\(879\) 5.48746 0.185087
\(880\) 0 0
\(881\) 28.9120 0.974069 0.487035 0.873383i \(-0.338079\pi\)
0.487035 + 0.873383i \(0.338079\pi\)
\(882\) 0 0
\(883\) −41.0479 −1.38137 −0.690686 0.723155i \(-0.742691\pi\)
−0.690686 + 0.723155i \(0.742691\pi\)
\(884\) 0 0
\(885\) −0.0856029 −0.00287751
\(886\) 0 0
\(887\) −23.4411 −0.787074 −0.393537 0.919309i \(-0.628749\pi\)
−0.393537 + 0.919309i \(0.628749\pi\)
\(888\) 0 0
\(889\) −26.6333 −0.893253
\(890\) 0 0
\(891\) 7.33790 0.245829
\(892\) 0 0
\(893\) 22.6487 0.757911
\(894\) 0 0
\(895\) −4.29401 −0.143533
\(896\) 0 0
\(897\) 8.59105 0.286847
\(898\) 0 0
\(899\) −36.2572 −1.20925
\(900\) 0 0
\(901\) −37.9835 −1.26542
\(902\) 0 0
\(903\) −8.63354 −0.287306
\(904\) 0 0
\(905\) −2.85765 −0.0949915
\(906\) 0 0
\(907\) −5.39798 −0.179237 −0.0896185 0.995976i \(-0.528565\pi\)
−0.0896185 + 0.995976i \(0.528565\pi\)
\(908\) 0 0
\(909\) 17.7420 0.588464
\(910\) 0 0
\(911\) −5.06757 −0.167896 −0.0839481 0.996470i \(-0.526753\pi\)
−0.0839481 + 0.996470i \(0.526753\pi\)
\(912\) 0 0
\(913\) 2.16140 0.0715320
\(914\) 0 0
\(915\) −2.40800 −0.0796061
\(916\) 0 0
\(917\) −22.7991 −0.752893
\(918\) 0 0
\(919\) 45.2550 1.49282 0.746412 0.665484i \(-0.231775\pi\)
0.746412 + 0.665484i \(0.231775\pi\)
\(920\) 0 0
\(921\) 5.13632 0.169247
\(922\) 0 0
\(923\) −5.47074 −0.180072
\(924\) 0 0
\(925\) 9.16419 0.301317
\(926\) 0 0
\(927\) 13.9713 0.458879
\(928\) 0 0
\(929\) 8.62169 0.282869 0.141434 0.989948i \(-0.454829\pi\)
0.141434 + 0.989948i \(0.454829\pi\)
\(930\) 0 0
\(931\) −20.5545 −0.673647
\(932\) 0 0
\(933\) −12.4509 −0.407624
\(934\) 0 0
\(935\) 2.87530 0.0940324
\(936\) 0 0
\(937\) −17.5481 −0.573271 −0.286636 0.958040i \(-0.592537\pi\)
−0.286636 + 0.958040i \(0.592537\pi\)
\(938\) 0 0
\(939\) 23.8261 0.777536
\(940\) 0 0
\(941\) 32.7029 1.06608 0.533042 0.846089i \(-0.321049\pi\)
0.533042 + 0.846089i \(0.321049\pi\)
\(942\) 0 0
\(943\) 1.46271 0.0476324
\(944\) 0 0
\(945\) −1.88854 −0.0614343
\(946\) 0 0
\(947\) 59.7085 1.94027 0.970133 0.242575i \(-0.0779921\pi\)
0.970133 + 0.242575i \(0.0779921\pi\)
\(948\) 0 0
\(949\) 69.3737 2.25197
\(950\) 0 0
\(951\) 13.9148 0.451218
\(952\) 0 0
\(953\) −58.8800 −1.90731 −0.953654 0.300904i \(-0.902712\pi\)
−0.953654 + 0.300904i \(0.902712\pi\)
\(954\) 0 0
\(955\) −4.09731 −0.132586
\(956\) 0 0
\(957\) 16.0425 0.518580
\(958\) 0 0
\(959\) −16.3370 −0.527549
\(960\) 0 0
\(961\) 15.5571 0.501842
\(962\) 0 0
\(963\) 7.34946 0.236833
\(964\) 0 0
\(965\) −0.954691 −0.0307326
\(966\) 0 0
\(967\) −51.4799 −1.65548 −0.827741 0.561110i \(-0.810374\pi\)
−0.827741 + 0.561110i \(0.810374\pi\)
\(968\) 0 0
\(969\) 21.5704 0.692939
\(970\) 0 0
\(971\) 27.1359 0.870834 0.435417 0.900229i \(-0.356601\pi\)
0.435417 + 0.900229i \(0.356601\pi\)
\(972\) 0 0
\(973\) 0.386938 0.0124047
\(974\) 0 0
\(975\) −31.8767 −1.02087
\(976\) 0 0
\(977\) 25.8667 0.827548 0.413774 0.910380i \(-0.364210\pi\)
0.413774 + 0.910380i \(0.364210\pi\)
\(978\) 0 0
\(979\) −32.9160 −1.05200
\(980\) 0 0
\(981\) 2.73098 0.0871936
\(982\) 0 0
\(983\) −49.7983 −1.58832 −0.794159 0.607710i \(-0.792088\pi\)
−0.794159 + 0.607710i \(0.792088\pi\)
\(984\) 0 0
\(985\) −3.28911 −0.104800
\(986\) 0 0
\(987\) −9.57035 −0.304628
\(988\) 0 0
\(989\) 7.22027 0.229591
\(990\) 0 0
\(991\) −36.7879 −1.16861 −0.584303 0.811536i \(-0.698632\pi\)
−0.584303 + 0.811536i \(0.698632\pi\)
\(992\) 0 0
\(993\) 30.0365 0.953178
\(994\) 0 0
\(995\) −1.48768 −0.0471627
\(996\) 0 0
\(997\) −6.45172 −0.204328 −0.102164 0.994768i \(-0.532577\pi\)
−0.102164 + 0.994768i \(0.532577\pi\)
\(998\) 0 0
\(999\) 10.3959 0.328913
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7232.2.a.v.1.3 4
4.3 odd 2 7232.2.a.u.1.2 4
8.3 odd 2 226.2.a.d.1.3 4
8.5 even 2 1808.2.a.j.1.2 4
24.11 even 2 2034.2.a.r.1.3 4
40.19 odd 2 5650.2.a.o.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
226.2.a.d.1.3 4 8.3 odd 2
1808.2.a.j.1.2 4 8.5 even 2
2034.2.a.r.1.3 4 24.11 even 2
5650.2.a.o.1.2 4 40.19 odd 2
7232.2.a.u.1.2 4 4.3 odd 2
7232.2.a.v.1.3 4 1.1 even 1 trivial