Properties

Label 7232.2.a.t
Level $7232$
Weight $2$
Character orbit 7232.a
Self dual yes
Analytic conductor $57.748$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7232,2,Mod(1,7232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7232 = 2^{6} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,5,0,1,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.7478107418\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 113)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 2) q^{3} + (2 \beta_{2} + 1) q^{5} + (\beta_{2} - 3) q^{7} + (\beta_{2} - 4 \beta_1 + 3) q^{9} + ( - 2 \beta_{2} - \beta_1 - 1) q^{11} + ( - 2 \beta_{2} + 3 \beta_1 + 1) q^{13} + (2 \beta_{2} - \beta_1) q^{15}+ \cdots + (6 \beta_{2} - \beta_1 + 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 5 q^{3} + q^{5} - 10 q^{7} + 4 q^{9} - 2 q^{11} + 8 q^{13} - 3 q^{15} - 2 q^{17} + 4 q^{19} - 19 q^{21} - 6 q^{23} + 4 q^{25} + 8 q^{27} - 5 q^{29} - 15 q^{31} + 6 q^{33} + 6 q^{35} + 2 q^{37} + 4 q^{39}+ \cdots + 23 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
0 0.198062 0 3.49396 0 −1.75302 0 −2.96077 0
1.2 0 1.55496 0 −2.60388 0 −4.80194 0 −0.582105 0
1.3 0 3.24698 0 0.109916 0 −3.44504 0 7.54288 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(113\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7232.2.a.t 3
4.b odd 2 1 7232.2.a.o 3
8.b even 2 1 113.2.a.c 3
8.d odd 2 1 1808.2.a.i 3
24.h odd 2 1 1017.2.a.q 3
40.f even 2 1 2825.2.a.e 3
56.h odd 2 1 5537.2.a.g 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
113.2.a.c 3 8.b even 2 1
1017.2.a.q 3 24.h odd 2 1
1808.2.a.i 3 8.d odd 2 1
2825.2.a.e 3 40.f even 2 1
5537.2.a.g 3 56.h odd 2 1
7232.2.a.o 3 4.b odd 2 1
7232.2.a.t 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7232))\):

\( T_{3}^{3} - 5T_{3}^{2} + 6T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} - T_{5}^{2} - 9T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{3} + 10T_{7}^{2} + 31T_{7} + 29 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 5 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( T^{3} - T^{2} - 9T + 1 \) Copy content Toggle raw display
$7$ \( T^{3} + 10 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$11$ \( T^{3} + 2 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$13$ \( T^{3} - 8 T^{2} + \cdots + 43 \) Copy content Toggle raw display
$17$ \( T^{3} + 2 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$19$ \( T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{3} + 6 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$29$ \( T^{3} + 5 T^{2} + \cdots - 97 \) Copy content Toggle raw display
$31$ \( T^{3} + 15 T^{2} + \cdots - 211 \) Copy content Toggle raw display
$37$ \( T^{3} - 2 T^{2} + \cdots + 113 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} + \cdots + 29 \) Copy content Toggle raw display
$43$ \( T^{3} - 2 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$47$ \( T^{3} + 7 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$53$ \( T^{3} - 5 T^{2} + \cdots - 29 \) Copy content Toggle raw display
$59$ \( T^{3} + 15 T^{2} + \cdots - 169 \) Copy content Toggle raw display
$61$ \( T^{3} - 21 T^{2} + \cdots - 301 \) Copy content Toggle raw display
$67$ \( T^{3} + 5 T^{2} + \cdots + 43 \) Copy content Toggle raw display
$71$ \( T^{3} - 14T^{2} + 392 \) Copy content Toggle raw display
$73$ \( T^{3} + 11 T^{2} + \cdots + 41 \) Copy content Toggle raw display
$79$ \( T^{3} + 5 T^{2} + \cdots - 125 \) Copy content Toggle raw display
$83$ \( T^{3} + 14 T^{2} + \cdots + 91 \) Copy content Toggle raw display
$89$ \( T^{3} + 16 T^{2} + \cdots - 841 \) Copy content Toggle raw display
$97$ \( T^{3} - 217T + 1183 \) Copy content Toggle raw display
show more
show less