Properties

Label 7232.2.a.bn.1.16
Level $7232$
Weight $2$
Character 7232.1
Self dual yes
Analytic conductor $57.748$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7232,2,Mod(1,7232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7232 = 2^{6} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,-10,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.7478107418\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 43 x^{16} + 760 x^{14} - 7095 x^{12} + 37240 x^{10} - 107142 x^{8} + 149152 x^{6} - 72200 x^{4} + \cdots - 800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{10}\cdot 5 \)
Twist minimal: no (minimal twist has level 3616)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(2.69830\) of defining polynomial
Character \(\chi\) \(=\) 7232.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69830 q^{3} -3.42881 q^{5} -2.84717 q^{7} +4.28081 q^{9} +4.71823 q^{11} +6.74669 q^{13} -9.25194 q^{15} -7.43351 q^{17} +4.76127 q^{19} -7.68251 q^{21} +0.359963 q^{23} +6.75672 q^{25} +3.45601 q^{27} +1.26714 q^{29} -3.41913 q^{31} +12.7312 q^{33} +9.76239 q^{35} +4.25370 q^{37} +18.2046 q^{39} +4.67337 q^{41} -10.0952 q^{43} -14.6781 q^{45} +6.65306 q^{47} +1.10637 q^{49} -20.0578 q^{51} -9.13377 q^{53} -16.1779 q^{55} +12.8473 q^{57} -0.225839 q^{59} -12.4007 q^{61} -12.1882 q^{63} -23.1331 q^{65} +10.6330 q^{67} +0.971288 q^{69} +1.60620 q^{71} +4.98656 q^{73} +18.2316 q^{75} -13.4336 q^{77} +11.9260 q^{79} -3.51709 q^{81} +7.11944 q^{83} +25.4881 q^{85} +3.41913 q^{87} +9.32338 q^{89} -19.2090 q^{91} -9.22583 q^{93} -16.3255 q^{95} +1.52558 q^{97} +20.1978 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 10 q^{5} + 32 q^{9} + 12 q^{13} + 16 q^{17} - 14 q^{21} + 44 q^{25} - 22 q^{29} + 24 q^{33} + 4 q^{37} + 50 q^{41} - 32 q^{45} + 58 q^{49} - 2 q^{53} + 46 q^{57} - 10 q^{61} + 40 q^{65} - 22 q^{69}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.69830 1.55786 0.778932 0.627109i \(-0.215762\pi\)
0.778932 + 0.627109i \(0.215762\pi\)
\(4\) 0 0
\(5\) −3.42881 −1.53341 −0.766705 0.642000i \(-0.778105\pi\)
−0.766705 + 0.642000i \(0.778105\pi\)
\(6\) 0 0
\(7\) −2.84717 −1.07613 −0.538064 0.842904i \(-0.680844\pi\)
−0.538064 + 0.842904i \(0.680844\pi\)
\(8\) 0 0
\(9\) 4.28081 1.42694
\(10\) 0 0
\(11\) 4.71823 1.42260 0.711299 0.702889i \(-0.248107\pi\)
0.711299 + 0.702889i \(0.248107\pi\)
\(12\) 0 0
\(13\) 6.74669 1.87119 0.935597 0.353070i \(-0.114862\pi\)
0.935597 + 0.353070i \(0.114862\pi\)
\(14\) 0 0
\(15\) −9.25194 −2.38884
\(16\) 0 0
\(17\) −7.43351 −1.80289 −0.901445 0.432893i \(-0.857493\pi\)
−0.901445 + 0.432893i \(0.857493\pi\)
\(18\) 0 0
\(19\) 4.76127 1.09231 0.546156 0.837684i \(-0.316091\pi\)
0.546156 + 0.837684i \(0.316091\pi\)
\(20\) 0 0
\(21\) −7.68251 −1.67646
\(22\) 0 0
\(23\) 0.359963 0.0750575 0.0375288 0.999296i \(-0.488051\pi\)
0.0375288 + 0.999296i \(0.488051\pi\)
\(24\) 0 0
\(25\) 6.75672 1.35134
\(26\) 0 0
\(27\) 3.45601 0.665110
\(28\) 0 0
\(29\) 1.26714 0.235302 0.117651 0.993055i \(-0.462464\pi\)
0.117651 + 0.993055i \(0.462464\pi\)
\(30\) 0 0
\(31\) −3.41913 −0.614094 −0.307047 0.951694i \(-0.599341\pi\)
−0.307047 + 0.951694i \(0.599341\pi\)
\(32\) 0 0
\(33\) 12.7312 2.21621
\(34\) 0 0
\(35\) 9.76239 1.65015
\(36\) 0 0
\(37\) 4.25370 0.699305 0.349652 0.936880i \(-0.386300\pi\)
0.349652 + 0.936880i \(0.386300\pi\)
\(38\) 0 0
\(39\) 18.2046 2.91506
\(40\) 0 0
\(41\) 4.67337 0.729858 0.364929 0.931035i \(-0.381093\pi\)
0.364929 + 0.931035i \(0.381093\pi\)
\(42\) 0 0
\(43\) −10.0952 −1.53950 −0.769749 0.638347i \(-0.779619\pi\)
−0.769749 + 0.638347i \(0.779619\pi\)
\(44\) 0 0
\(45\) −14.6781 −2.18808
\(46\) 0 0
\(47\) 6.65306 0.970449 0.485225 0.874390i \(-0.338738\pi\)
0.485225 + 0.874390i \(0.338738\pi\)
\(48\) 0 0
\(49\) 1.10637 0.158053
\(50\) 0 0
\(51\) −20.0578 −2.80866
\(52\) 0 0
\(53\) −9.13377 −1.25462 −0.627310 0.778770i \(-0.715844\pi\)
−0.627310 + 0.778770i \(0.715844\pi\)
\(54\) 0 0
\(55\) −16.1779 −2.18143
\(56\) 0 0
\(57\) 12.8473 1.70167
\(58\) 0 0
\(59\) −0.225839 −0.0294018 −0.0147009 0.999892i \(-0.504680\pi\)
−0.0147009 + 0.999892i \(0.504680\pi\)
\(60\) 0 0
\(61\) −12.4007 −1.58775 −0.793873 0.608083i \(-0.791939\pi\)
−0.793873 + 0.608083i \(0.791939\pi\)
\(62\) 0 0
\(63\) −12.1882 −1.53557
\(64\) 0 0
\(65\) −23.1331 −2.86931
\(66\) 0 0
\(67\) 10.6330 1.29903 0.649514 0.760349i \(-0.274972\pi\)
0.649514 + 0.760349i \(0.274972\pi\)
\(68\) 0 0
\(69\) 0.971288 0.116929
\(70\) 0 0
\(71\) 1.60620 0.190621 0.0953103 0.995448i \(-0.469616\pi\)
0.0953103 + 0.995448i \(0.469616\pi\)
\(72\) 0 0
\(73\) 4.98656 0.583633 0.291816 0.956474i \(-0.405740\pi\)
0.291816 + 0.956474i \(0.405740\pi\)
\(74\) 0 0
\(75\) 18.2316 2.10521
\(76\) 0 0
\(77\) −13.4336 −1.53090
\(78\) 0 0
\(79\) 11.9260 1.34178 0.670892 0.741555i \(-0.265911\pi\)
0.670892 + 0.741555i \(0.265911\pi\)
\(80\) 0 0
\(81\) −3.51709 −0.390787
\(82\) 0 0
\(83\) 7.11944 0.781460 0.390730 0.920505i \(-0.372223\pi\)
0.390730 + 0.920505i \(0.372223\pi\)
\(84\) 0 0
\(85\) 25.4881 2.76457
\(86\) 0 0
\(87\) 3.41913 0.366569
\(88\) 0 0
\(89\) 9.32338 0.988276 0.494138 0.869383i \(-0.335484\pi\)
0.494138 + 0.869383i \(0.335484\pi\)
\(90\) 0 0
\(91\) −19.2090 −2.01365
\(92\) 0 0
\(93\) −9.22583 −0.956674
\(94\) 0 0
\(95\) −16.3255 −1.67496
\(96\) 0 0
\(97\) 1.52558 0.154899 0.0774495 0.996996i \(-0.475322\pi\)
0.0774495 + 0.996996i \(0.475322\pi\)
\(98\) 0 0
\(99\) 20.1978 2.02996
\(100\) 0 0
\(101\) 15.0599 1.49851 0.749256 0.662280i \(-0.230411\pi\)
0.749256 + 0.662280i \(0.230411\pi\)
\(102\) 0 0
\(103\) 13.8666 1.36632 0.683159 0.730269i \(-0.260605\pi\)
0.683159 + 0.730269i \(0.260605\pi\)
\(104\) 0 0
\(105\) 26.3418 2.57070
\(106\) 0 0
\(107\) 10.4193 1.00727 0.503637 0.863916i \(-0.331995\pi\)
0.503637 + 0.863916i \(0.331995\pi\)
\(108\) 0 0
\(109\) 9.62687 0.922087 0.461044 0.887377i \(-0.347475\pi\)
0.461044 + 0.887377i \(0.347475\pi\)
\(110\) 0 0
\(111\) 11.4778 1.08942
\(112\) 0 0
\(113\) −1.00000 −0.0940721
\(114\) 0 0
\(115\) −1.23424 −0.115094
\(116\) 0 0
\(117\) 28.8813 2.67008
\(118\) 0 0
\(119\) 21.1645 1.94014
\(120\) 0 0
\(121\) 11.2617 1.02379
\(122\) 0 0
\(123\) 12.6102 1.13702
\(124\) 0 0
\(125\) −6.02344 −0.538753
\(126\) 0 0
\(127\) 13.2031 1.17159 0.585794 0.810460i \(-0.300783\pi\)
0.585794 + 0.810460i \(0.300783\pi\)
\(128\) 0 0
\(129\) −27.2398 −2.39833
\(130\) 0 0
\(131\) −18.1645 −1.58704 −0.793519 0.608545i \(-0.791753\pi\)
−0.793519 + 0.608545i \(0.791753\pi\)
\(132\) 0 0
\(133\) −13.5562 −1.17547
\(134\) 0 0
\(135\) −11.8500 −1.01989
\(136\) 0 0
\(137\) −19.9747 −1.70655 −0.853276 0.521459i \(-0.825388\pi\)
−0.853276 + 0.521459i \(0.825388\pi\)
\(138\) 0 0
\(139\) 7.81379 0.662757 0.331378 0.943498i \(-0.392486\pi\)
0.331378 + 0.943498i \(0.392486\pi\)
\(140\) 0 0
\(141\) 17.9519 1.51183
\(142\) 0 0
\(143\) 31.8324 2.66196
\(144\) 0 0
\(145\) −4.34479 −0.360815
\(146\) 0 0
\(147\) 2.98532 0.246225
\(148\) 0 0
\(149\) −10.8185 −0.886287 −0.443144 0.896451i \(-0.646137\pi\)
−0.443144 + 0.896451i \(0.646137\pi\)
\(150\) 0 0
\(151\) −7.16369 −0.582973 −0.291487 0.956575i \(-0.594150\pi\)
−0.291487 + 0.956575i \(0.594150\pi\)
\(152\) 0 0
\(153\) −31.8215 −2.57261
\(154\) 0 0
\(155\) 11.7235 0.941657
\(156\) 0 0
\(157\) 10.5871 0.844943 0.422471 0.906376i \(-0.361163\pi\)
0.422471 + 0.906376i \(0.361163\pi\)
\(158\) 0 0
\(159\) −24.6456 −1.95453
\(160\) 0 0
\(161\) −1.02488 −0.0807715
\(162\) 0 0
\(163\) 17.3434 1.35844 0.679220 0.733935i \(-0.262318\pi\)
0.679220 + 0.733935i \(0.262318\pi\)
\(164\) 0 0
\(165\) −43.6528 −3.39836
\(166\) 0 0
\(167\) 7.37120 0.570401 0.285200 0.958468i \(-0.407940\pi\)
0.285200 + 0.958468i \(0.407940\pi\)
\(168\) 0 0
\(169\) 32.5178 2.50137
\(170\) 0 0
\(171\) 20.3821 1.55866
\(172\) 0 0
\(173\) 11.3961 0.866428 0.433214 0.901291i \(-0.357379\pi\)
0.433214 + 0.901291i \(0.357379\pi\)
\(174\) 0 0
\(175\) −19.2375 −1.45422
\(176\) 0 0
\(177\) −0.609382 −0.0458040
\(178\) 0 0
\(179\) 12.4196 0.928284 0.464142 0.885761i \(-0.346363\pi\)
0.464142 + 0.885761i \(0.346363\pi\)
\(180\) 0 0
\(181\) −10.2194 −0.759600 −0.379800 0.925069i \(-0.624007\pi\)
−0.379800 + 0.925069i \(0.624007\pi\)
\(182\) 0 0
\(183\) −33.4608 −2.47349
\(184\) 0 0
\(185\) −14.5851 −1.07232
\(186\) 0 0
\(187\) −35.0730 −2.56479
\(188\) 0 0
\(189\) −9.83985 −0.715744
\(190\) 0 0
\(191\) 8.14408 0.589285 0.294643 0.955608i \(-0.404799\pi\)
0.294643 + 0.955608i \(0.404799\pi\)
\(192\) 0 0
\(193\) −10.2754 −0.739639 −0.369819 0.929104i \(-0.620580\pi\)
−0.369819 + 0.929104i \(0.620580\pi\)
\(194\) 0 0
\(195\) −62.4199 −4.46999
\(196\) 0 0
\(197\) 13.9307 0.992519 0.496260 0.868174i \(-0.334706\pi\)
0.496260 + 0.868174i \(0.334706\pi\)
\(198\) 0 0
\(199\) 20.3218 1.44057 0.720287 0.693676i \(-0.244010\pi\)
0.720287 + 0.693676i \(0.244010\pi\)
\(200\) 0 0
\(201\) 28.6910 2.02371
\(202\) 0 0
\(203\) −3.60777 −0.253216
\(204\) 0 0
\(205\) −16.0241 −1.11917
\(206\) 0 0
\(207\) 1.54093 0.107102
\(208\) 0 0
\(209\) 22.4648 1.55392
\(210\) 0 0
\(211\) 10.5670 0.727464 0.363732 0.931504i \(-0.381502\pi\)
0.363732 + 0.931504i \(0.381502\pi\)
\(212\) 0 0
\(213\) 4.33400 0.296961
\(214\) 0 0
\(215\) 34.6144 2.36068
\(216\) 0 0
\(217\) 9.73484 0.660844
\(218\) 0 0
\(219\) 13.4552 0.909220
\(220\) 0 0
\(221\) −50.1515 −3.37356
\(222\) 0 0
\(223\) −8.09983 −0.542404 −0.271202 0.962522i \(-0.587421\pi\)
−0.271202 + 0.962522i \(0.587421\pi\)
\(224\) 0 0
\(225\) 28.9242 1.92828
\(226\) 0 0
\(227\) −20.8655 −1.38489 −0.692445 0.721470i \(-0.743467\pi\)
−0.692445 + 0.721470i \(0.743467\pi\)
\(228\) 0 0
\(229\) −15.6142 −1.03181 −0.515906 0.856645i \(-0.672545\pi\)
−0.515906 + 0.856645i \(0.672545\pi\)
\(230\) 0 0
\(231\) −36.2478 −2.38493
\(232\) 0 0
\(233\) −12.6714 −0.830129 −0.415064 0.909792i \(-0.636241\pi\)
−0.415064 + 0.909792i \(0.636241\pi\)
\(234\) 0 0
\(235\) −22.8121 −1.48810
\(236\) 0 0
\(237\) 32.1800 2.09032
\(238\) 0 0
\(239\) −0.568349 −0.0367634 −0.0183817 0.999831i \(-0.505851\pi\)
−0.0183817 + 0.999831i \(0.505851\pi\)
\(240\) 0 0
\(241\) 14.8124 0.954151 0.477076 0.878862i \(-0.341697\pi\)
0.477076 + 0.878862i \(0.341697\pi\)
\(242\) 0 0
\(243\) −19.8582 −1.27390
\(244\) 0 0
\(245\) −3.79354 −0.242360
\(246\) 0 0
\(247\) 32.1228 2.04393
\(248\) 0 0
\(249\) 19.2104 1.21741
\(250\) 0 0
\(251\) −16.3285 −1.03064 −0.515322 0.856997i \(-0.672328\pi\)
−0.515322 + 0.856997i \(0.672328\pi\)
\(252\) 0 0
\(253\) 1.69839 0.106777
\(254\) 0 0
\(255\) 68.7744 4.30682
\(256\) 0 0
\(257\) 9.93074 0.619463 0.309731 0.950824i \(-0.399761\pi\)
0.309731 + 0.950824i \(0.399761\pi\)
\(258\) 0 0
\(259\) −12.1110 −0.752542
\(260\) 0 0
\(261\) 5.42440 0.335762
\(262\) 0 0
\(263\) −15.5531 −0.959043 −0.479521 0.877530i \(-0.659190\pi\)
−0.479521 + 0.877530i \(0.659190\pi\)
\(264\) 0 0
\(265\) 31.3179 1.92385
\(266\) 0 0
\(267\) 25.1573 1.53960
\(268\) 0 0
\(269\) 4.70625 0.286945 0.143473 0.989654i \(-0.454173\pi\)
0.143473 + 0.989654i \(0.454173\pi\)
\(270\) 0 0
\(271\) 11.2569 0.683809 0.341905 0.939735i \(-0.388928\pi\)
0.341905 + 0.939735i \(0.388928\pi\)
\(272\) 0 0
\(273\) −51.8315 −3.13698
\(274\) 0 0
\(275\) 31.8797 1.92242
\(276\) 0 0
\(277\) 19.9915 1.20117 0.600586 0.799560i \(-0.294934\pi\)
0.600586 + 0.799560i \(0.294934\pi\)
\(278\) 0 0
\(279\) −14.6366 −0.876273
\(280\) 0 0
\(281\) −6.27396 −0.374273 −0.187136 0.982334i \(-0.559921\pi\)
−0.187136 + 0.982334i \(0.559921\pi\)
\(282\) 0 0
\(283\) 25.5139 1.51664 0.758321 0.651881i \(-0.226020\pi\)
0.758321 + 0.651881i \(0.226020\pi\)
\(284\) 0 0
\(285\) −44.0510 −2.60936
\(286\) 0 0
\(287\) −13.3059 −0.785421
\(288\) 0 0
\(289\) 38.2571 2.25042
\(290\) 0 0
\(291\) 4.11646 0.241311
\(292\) 0 0
\(293\) 18.4943 1.08045 0.540225 0.841521i \(-0.318339\pi\)
0.540225 + 0.841521i \(0.318339\pi\)
\(294\) 0 0
\(295\) 0.774360 0.0450850
\(296\) 0 0
\(297\) 16.3062 0.946184
\(298\) 0 0
\(299\) 2.42856 0.140447
\(300\) 0 0
\(301\) 28.7426 1.65670
\(302\) 0 0
\(303\) 40.6360 2.33448
\(304\) 0 0
\(305\) 42.5196 2.43466
\(306\) 0 0
\(307\) −2.32452 −0.132667 −0.0663337 0.997797i \(-0.521130\pi\)
−0.0663337 + 0.997797i \(0.521130\pi\)
\(308\) 0 0
\(309\) 37.4163 2.12854
\(310\) 0 0
\(311\) −21.9024 −1.24197 −0.620985 0.783822i \(-0.713267\pi\)
−0.620985 + 0.783822i \(0.713267\pi\)
\(312\) 0 0
\(313\) 29.6212 1.67429 0.837145 0.546982i \(-0.184223\pi\)
0.837145 + 0.546982i \(0.184223\pi\)
\(314\) 0 0
\(315\) 41.7910 2.35465
\(316\) 0 0
\(317\) 17.6672 0.992290 0.496145 0.868240i \(-0.334748\pi\)
0.496145 + 0.868240i \(0.334748\pi\)
\(318\) 0 0
\(319\) 5.97866 0.334741
\(320\) 0 0
\(321\) 28.1144 1.56919
\(322\) 0 0
\(323\) −35.3930 −1.96932
\(324\) 0 0
\(325\) 45.5854 2.52863
\(326\) 0 0
\(327\) 25.9762 1.43649
\(328\) 0 0
\(329\) −18.9424 −1.04433
\(330\) 0 0
\(331\) −10.7008 −0.588170 −0.294085 0.955779i \(-0.595015\pi\)
−0.294085 + 0.955779i \(0.595015\pi\)
\(332\) 0 0
\(333\) 18.2093 0.997864
\(334\) 0 0
\(335\) −36.4585 −1.99194
\(336\) 0 0
\(337\) −2.96901 −0.161732 −0.0808661 0.996725i \(-0.525769\pi\)
−0.0808661 + 0.996725i \(0.525769\pi\)
\(338\) 0 0
\(339\) −2.69830 −0.146551
\(340\) 0 0
\(341\) −16.1322 −0.873609
\(342\) 0 0
\(343\) 16.7802 0.906043
\(344\) 0 0
\(345\) −3.33036 −0.179300
\(346\) 0 0
\(347\) 8.56410 0.459745 0.229872 0.973221i \(-0.426169\pi\)
0.229872 + 0.973221i \(0.426169\pi\)
\(348\) 0 0
\(349\) 4.98871 0.267039 0.133520 0.991046i \(-0.457372\pi\)
0.133520 + 0.991046i \(0.457372\pi\)
\(350\) 0 0
\(351\) 23.3166 1.24455
\(352\) 0 0
\(353\) 17.3096 0.921295 0.460648 0.887583i \(-0.347617\pi\)
0.460648 + 0.887583i \(0.347617\pi\)
\(354\) 0 0
\(355\) −5.50734 −0.292299
\(356\) 0 0
\(357\) 57.1080 3.02248
\(358\) 0 0
\(359\) −30.8672 −1.62911 −0.814554 0.580088i \(-0.803018\pi\)
−0.814554 + 0.580088i \(0.803018\pi\)
\(360\) 0 0
\(361\) 3.66974 0.193144
\(362\) 0 0
\(363\) 30.3873 1.59492
\(364\) 0 0
\(365\) −17.0980 −0.894948
\(366\) 0 0
\(367\) −35.8032 −1.86891 −0.934456 0.356078i \(-0.884114\pi\)
−0.934456 + 0.356078i \(0.884114\pi\)
\(368\) 0 0
\(369\) 20.0058 1.04146
\(370\) 0 0
\(371\) 26.0054 1.35013
\(372\) 0 0
\(373\) −11.6236 −0.601850 −0.300925 0.953648i \(-0.597295\pi\)
−0.300925 + 0.953648i \(0.597295\pi\)
\(374\) 0 0
\(375\) −16.2530 −0.839304
\(376\) 0 0
\(377\) 8.54901 0.440297
\(378\) 0 0
\(379\) −27.5715 −1.41625 −0.708126 0.706086i \(-0.750459\pi\)
−0.708126 + 0.706086i \(0.750459\pi\)
\(380\) 0 0
\(381\) 35.6260 1.82517
\(382\) 0 0
\(383\) −20.2709 −1.03580 −0.517898 0.855442i \(-0.673285\pi\)
−0.517898 + 0.855442i \(0.673285\pi\)
\(384\) 0 0
\(385\) 46.0612 2.34749
\(386\) 0 0
\(387\) −43.2155 −2.19677
\(388\) 0 0
\(389\) 1.56013 0.0791016 0.0395508 0.999218i \(-0.487407\pi\)
0.0395508 + 0.999218i \(0.487407\pi\)
\(390\) 0 0
\(391\) −2.67579 −0.135320
\(392\) 0 0
\(393\) −49.0132 −2.47239
\(394\) 0 0
\(395\) −40.8921 −2.05750
\(396\) 0 0
\(397\) −9.30840 −0.467175 −0.233588 0.972336i \(-0.575047\pi\)
−0.233588 + 0.972336i \(0.575047\pi\)
\(398\) 0 0
\(399\) −36.5785 −1.83122
\(400\) 0 0
\(401\) 18.6036 0.929019 0.464510 0.885568i \(-0.346231\pi\)
0.464510 + 0.885568i \(0.346231\pi\)
\(402\) 0 0
\(403\) −23.0678 −1.14909
\(404\) 0 0
\(405\) 12.0594 0.599237
\(406\) 0 0
\(407\) 20.0699 0.994830
\(408\) 0 0
\(409\) −4.93856 −0.244196 −0.122098 0.992518i \(-0.538962\pi\)
−0.122098 + 0.992518i \(0.538962\pi\)
\(410\) 0 0
\(411\) −53.8977 −2.65858
\(412\) 0 0
\(413\) 0.643003 0.0316401
\(414\) 0 0
\(415\) −24.4112 −1.19830
\(416\) 0 0
\(417\) 21.0839 1.03248
\(418\) 0 0
\(419\) −31.0059 −1.51474 −0.757368 0.652988i \(-0.773515\pi\)
−0.757368 + 0.652988i \(0.773515\pi\)
\(420\) 0 0
\(421\) 21.0530 1.02606 0.513031 0.858370i \(-0.328523\pi\)
0.513031 + 0.858370i \(0.328523\pi\)
\(422\) 0 0
\(423\) 28.4805 1.38477
\(424\) 0 0
\(425\) −50.2261 −2.43632
\(426\) 0 0
\(427\) 35.3069 1.70862
\(428\) 0 0
\(429\) 85.8933 4.14697
\(430\) 0 0
\(431\) −22.8825 −1.10221 −0.551106 0.834435i \(-0.685794\pi\)
−0.551106 + 0.834435i \(0.685794\pi\)
\(432\) 0 0
\(433\) −3.57403 −0.171757 −0.0858786 0.996306i \(-0.527370\pi\)
−0.0858786 + 0.996306i \(0.527370\pi\)
\(434\) 0 0
\(435\) −11.7235 −0.562100
\(436\) 0 0
\(437\) 1.71388 0.0819862
\(438\) 0 0
\(439\) −13.2021 −0.630101 −0.315051 0.949075i \(-0.602022\pi\)
−0.315051 + 0.949075i \(0.602022\pi\)
\(440\) 0 0
\(441\) 4.73617 0.225532
\(442\) 0 0
\(443\) 35.9563 1.70833 0.854167 0.519998i \(-0.174067\pi\)
0.854167 + 0.519998i \(0.174067\pi\)
\(444\) 0 0
\(445\) −31.9681 −1.51543
\(446\) 0 0
\(447\) −29.1916 −1.38071
\(448\) 0 0
\(449\) 2.21274 0.104426 0.0522129 0.998636i \(-0.483373\pi\)
0.0522129 + 0.998636i \(0.483373\pi\)
\(450\) 0 0
\(451\) 22.0500 1.03830
\(452\) 0 0
\(453\) −19.3298 −0.908192
\(454\) 0 0
\(455\) 65.8638 3.08774
\(456\) 0 0
\(457\) 4.23134 0.197934 0.0989669 0.995091i \(-0.468446\pi\)
0.0989669 + 0.995091i \(0.468446\pi\)
\(458\) 0 0
\(459\) −25.6903 −1.19912
\(460\) 0 0
\(461\) −18.2833 −0.851540 −0.425770 0.904831i \(-0.639997\pi\)
−0.425770 + 0.904831i \(0.639997\pi\)
\(462\) 0 0
\(463\) 28.9269 1.34435 0.672174 0.740394i \(-0.265361\pi\)
0.672174 + 0.740394i \(0.265361\pi\)
\(464\) 0 0
\(465\) 31.6336 1.46697
\(466\) 0 0
\(467\) 10.3400 0.478479 0.239240 0.970961i \(-0.423102\pi\)
0.239240 + 0.970961i \(0.423102\pi\)
\(468\) 0 0
\(469\) −30.2740 −1.39792
\(470\) 0 0
\(471\) 28.5672 1.31631
\(472\) 0 0
\(473\) −47.6313 −2.19009
\(474\) 0 0
\(475\) 32.1706 1.47609
\(476\) 0 0
\(477\) −39.1000 −1.79026
\(478\) 0 0
\(479\) 31.8858 1.45690 0.728450 0.685099i \(-0.240241\pi\)
0.728450 + 0.685099i \(0.240241\pi\)
\(480\) 0 0
\(481\) 28.6984 1.30853
\(482\) 0 0
\(483\) −2.76542 −0.125831
\(484\) 0 0
\(485\) −5.23091 −0.237523
\(486\) 0 0
\(487\) 7.32866 0.332093 0.166047 0.986118i \(-0.446900\pi\)
0.166047 + 0.986118i \(0.446900\pi\)
\(488\) 0 0
\(489\) 46.7977 2.11626
\(490\) 0 0
\(491\) −0.00305169 −0.000137721 0 −6.88605e−5 1.00000i \(-0.500022\pi\)
−6.88605e−5 1.00000i \(0.500022\pi\)
\(492\) 0 0
\(493\) −9.41932 −0.424225
\(494\) 0 0
\(495\) −69.2545 −3.11276
\(496\) 0 0
\(497\) −4.57311 −0.205132
\(498\) 0 0
\(499\) 15.5176 0.694664 0.347332 0.937742i \(-0.387088\pi\)
0.347332 + 0.937742i \(0.387088\pi\)
\(500\) 0 0
\(501\) 19.8897 0.888606
\(502\) 0 0
\(503\) −13.0145 −0.580286 −0.290143 0.956983i \(-0.593703\pi\)
−0.290143 + 0.956983i \(0.593703\pi\)
\(504\) 0 0
\(505\) −51.6374 −2.29783
\(506\) 0 0
\(507\) 87.7426 3.89679
\(508\) 0 0
\(509\) −22.6054 −1.00197 −0.500984 0.865457i \(-0.667028\pi\)
−0.500984 + 0.865457i \(0.667028\pi\)
\(510\) 0 0
\(511\) −14.1976 −0.628064
\(512\) 0 0
\(513\) 16.4550 0.726507
\(514\) 0 0
\(515\) −47.5460 −2.09513
\(516\) 0 0
\(517\) 31.3907 1.38056
\(518\) 0 0
\(519\) 30.7500 1.34978
\(520\) 0 0
\(521\) 7.22908 0.316712 0.158356 0.987382i \(-0.449381\pi\)
0.158356 + 0.987382i \(0.449381\pi\)
\(522\) 0 0
\(523\) −9.69063 −0.423742 −0.211871 0.977298i \(-0.567956\pi\)
−0.211871 + 0.977298i \(0.567956\pi\)
\(524\) 0 0
\(525\) −51.9085 −2.26547
\(526\) 0 0
\(527\) 25.4161 1.10714
\(528\) 0 0
\(529\) −22.8704 −0.994366
\(530\) 0 0
\(531\) −0.966776 −0.0419545
\(532\) 0 0
\(533\) 31.5298 1.36571
\(534\) 0 0
\(535\) −35.7258 −1.54456
\(536\) 0 0
\(537\) 33.5118 1.44614
\(538\) 0 0
\(539\) 5.22011 0.224846
\(540\) 0 0
\(541\) −1.13780 −0.0489177 −0.0244589 0.999701i \(-0.507786\pi\)
−0.0244589 + 0.999701i \(0.507786\pi\)
\(542\) 0 0
\(543\) −27.5749 −1.18335
\(544\) 0 0
\(545\) −33.0087 −1.41394
\(546\) 0 0
\(547\) −26.0203 −1.11255 −0.556275 0.830998i \(-0.687770\pi\)
−0.556275 + 0.830998i \(0.687770\pi\)
\(548\) 0 0
\(549\) −53.0850 −2.26561
\(550\) 0 0
\(551\) 6.03321 0.257024
\(552\) 0 0
\(553\) −33.9554 −1.44393
\(554\) 0 0
\(555\) −39.3550 −1.67053
\(556\) 0 0
\(557\) −23.8048 −1.00864 −0.504320 0.863517i \(-0.668257\pi\)
−0.504320 + 0.863517i \(0.668257\pi\)
\(558\) 0 0
\(559\) −68.1089 −2.88070
\(560\) 0 0
\(561\) −94.6373 −3.99559
\(562\) 0 0
\(563\) 12.5203 0.527667 0.263833 0.964568i \(-0.415013\pi\)
0.263833 + 0.964568i \(0.415013\pi\)
\(564\) 0 0
\(565\) 3.42881 0.144251
\(566\) 0 0
\(567\) 10.0137 0.420538
\(568\) 0 0
\(569\) 31.5642 1.32324 0.661619 0.749840i \(-0.269870\pi\)
0.661619 + 0.749840i \(0.269870\pi\)
\(570\) 0 0
\(571\) 11.9355 0.499484 0.249742 0.968312i \(-0.419654\pi\)
0.249742 + 0.968312i \(0.419654\pi\)
\(572\) 0 0
\(573\) 21.9752 0.918025
\(574\) 0 0
\(575\) 2.43217 0.101428
\(576\) 0 0
\(577\) 38.1999 1.59028 0.795142 0.606423i \(-0.207396\pi\)
0.795142 + 0.606423i \(0.207396\pi\)
\(578\) 0 0
\(579\) −27.7261 −1.15226
\(580\) 0 0
\(581\) −20.2702 −0.840951
\(582\) 0 0
\(583\) −43.0952 −1.78482
\(584\) 0 0
\(585\) −99.0284 −4.09432
\(586\) 0 0
\(587\) 6.63017 0.273657 0.136828 0.990595i \(-0.456309\pi\)
0.136828 + 0.990595i \(0.456309\pi\)
\(588\) 0 0
\(589\) −16.2794 −0.670781
\(590\) 0 0
\(591\) 37.5891 1.54621
\(592\) 0 0
\(593\) −1.34361 −0.0551756 −0.0275878 0.999619i \(-0.508783\pi\)
−0.0275878 + 0.999619i \(0.508783\pi\)
\(594\) 0 0
\(595\) −72.5688 −2.97503
\(596\) 0 0
\(597\) 54.8343 2.24422
\(598\) 0 0
\(599\) −5.29237 −0.216240 −0.108120 0.994138i \(-0.534483\pi\)
−0.108120 + 0.994138i \(0.534483\pi\)
\(600\) 0 0
\(601\) −4.69432 −0.191485 −0.0957427 0.995406i \(-0.530523\pi\)
−0.0957427 + 0.995406i \(0.530523\pi\)
\(602\) 0 0
\(603\) 45.5179 1.85363
\(604\) 0 0
\(605\) −38.6140 −1.56988
\(606\) 0 0
\(607\) −20.2481 −0.821847 −0.410923 0.911670i \(-0.634794\pi\)
−0.410923 + 0.911670i \(0.634794\pi\)
\(608\) 0 0
\(609\) −9.73484 −0.394475
\(610\) 0 0
\(611\) 44.8861 1.81590
\(612\) 0 0
\(613\) 19.1313 0.772707 0.386354 0.922351i \(-0.373734\pi\)
0.386354 + 0.922351i \(0.373734\pi\)
\(614\) 0 0
\(615\) −43.2378 −1.74352
\(616\) 0 0
\(617\) −12.3171 −0.495867 −0.247934 0.968777i \(-0.579751\pi\)
−0.247934 + 0.968777i \(0.579751\pi\)
\(618\) 0 0
\(619\) −19.0171 −0.764363 −0.382182 0.924087i \(-0.624827\pi\)
−0.382182 + 0.924087i \(0.624827\pi\)
\(620\) 0 0
\(621\) 1.24404 0.0499215
\(622\) 0 0
\(623\) −26.5452 −1.06351
\(624\) 0 0
\(625\) −13.1304 −0.525214
\(626\) 0 0
\(627\) 60.6166 2.42080
\(628\) 0 0
\(629\) −31.6199 −1.26077
\(630\) 0 0
\(631\) 0.611512 0.0243439 0.0121720 0.999926i \(-0.496125\pi\)
0.0121720 + 0.999926i \(0.496125\pi\)
\(632\) 0 0
\(633\) 28.5130 1.13329
\(634\) 0 0
\(635\) −45.2710 −1.79652
\(636\) 0 0
\(637\) 7.46434 0.295748
\(638\) 0 0
\(639\) 6.87583 0.272004
\(640\) 0 0
\(641\) 40.6063 1.60385 0.801926 0.597423i \(-0.203809\pi\)
0.801926 + 0.597423i \(0.203809\pi\)
\(642\) 0 0
\(643\) −39.3007 −1.54987 −0.774933 0.632043i \(-0.782217\pi\)
−0.774933 + 0.632043i \(0.782217\pi\)
\(644\) 0 0
\(645\) 93.3999 3.67762
\(646\) 0 0
\(647\) 24.0464 0.945363 0.472681 0.881233i \(-0.343286\pi\)
0.472681 + 0.881233i \(0.343286\pi\)
\(648\) 0 0
\(649\) −1.06556 −0.0418270
\(650\) 0 0
\(651\) 26.2675 1.02950
\(652\) 0 0
\(653\) 43.7991 1.71399 0.856995 0.515325i \(-0.172329\pi\)
0.856995 + 0.515325i \(0.172329\pi\)
\(654\) 0 0
\(655\) 62.2825 2.43358
\(656\) 0 0
\(657\) 21.3465 0.832807
\(658\) 0 0
\(659\) −30.0355 −1.17002 −0.585009 0.811027i \(-0.698909\pi\)
−0.585009 + 0.811027i \(0.698909\pi\)
\(660\) 0 0
\(661\) 7.06842 0.274930 0.137465 0.990507i \(-0.456105\pi\)
0.137465 + 0.990507i \(0.456105\pi\)
\(662\) 0 0
\(663\) −135.324 −5.25554
\(664\) 0 0
\(665\) 46.4814 1.80247
\(666\) 0 0
\(667\) 0.456125 0.0176612
\(668\) 0 0
\(669\) −21.8557 −0.844992
\(670\) 0 0
\(671\) −58.5093 −2.25873
\(672\) 0 0
\(673\) 5.52677 0.213041 0.106521 0.994310i \(-0.466029\pi\)
0.106521 + 0.994310i \(0.466029\pi\)
\(674\) 0 0
\(675\) 23.3513 0.898792
\(676\) 0 0
\(677\) −11.3344 −0.435618 −0.217809 0.975991i \(-0.569891\pi\)
−0.217809 + 0.975991i \(0.569891\pi\)
\(678\) 0 0
\(679\) −4.34358 −0.166691
\(680\) 0 0
\(681\) −56.3013 −2.15747
\(682\) 0 0
\(683\) −26.7119 −1.02210 −0.511050 0.859551i \(-0.670743\pi\)
−0.511050 + 0.859551i \(0.670743\pi\)
\(684\) 0 0
\(685\) 68.4893 2.61684
\(686\) 0 0
\(687\) −42.1316 −1.60742
\(688\) 0 0
\(689\) −61.6227 −2.34764
\(690\) 0 0
\(691\) 42.1885 1.60493 0.802464 0.596701i \(-0.203522\pi\)
0.802464 + 0.596701i \(0.203522\pi\)
\(692\) 0 0
\(693\) −57.5067 −2.18450
\(694\) 0 0
\(695\) −26.7920 −1.01628
\(696\) 0 0
\(697\) −34.7396 −1.31585
\(698\) 0 0
\(699\) −34.1911 −1.29323
\(700\) 0 0
\(701\) −25.8789 −0.977433 −0.488716 0.872443i \(-0.662535\pi\)
−0.488716 + 0.872443i \(0.662535\pi\)
\(702\) 0 0
\(703\) 20.2531 0.763858
\(704\) 0 0
\(705\) −61.5538 −2.31825
\(706\) 0 0
\(707\) −42.8780 −1.61259
\(708\) 0 0
\(709\) −31.5871 −1.18628 −0.593139 0.805100i \(-0.702112\pi\)
−0.593139 + 0.805100i \(0.702112\pi\)
\(710\) 0 0
\(711\) 51.0531 1.91464
\(712\) 0 0
\(713\) −1.23076 −0.0460923
\(714\) 0 0
\(715\) −109.147 −4.08187
\(716\) 0 0
\(717\) −1.53357 −0.0572724
\(718\) 0 0
\(719\) −18.2918 −0.682169 −0.341084 0.940033i \(-0.610794\pi\)
−0.341084 + 0.940033i \(0.610794\pi\)
\(720\) 0 0
\(721\) −39.4806 −1.47033
\(722\) 0 0
\(723\) 39.9683 1.48644
\(724\) 0 0
\(725\) 8.56172 0.317974
\(726\) 0 0
\(727\) 23.8608 0.884949 0.442475 0.896781i \(-0.354101\pi\)
0.442475 + 0.896781i \(0.354101\pi\)
\(728\) 0 0
\(729\) −43.0320 −1.59378
\(730\) 0 0
\(731\) 75.0425 2.77555
\(732\) 0 0
\(733\) 28.0183 1.03488 0.517439 0.855720i \(-0.326885\pi\)
0.517439 + 0.855720i \(0.326885\pi\)
\(734\) 0 0
\(735\) −10.2361 −0.377564
\(736\) 0 0
\(737\) 50.1689 1.84800
\(738\) 0 0
\(739\) −52.9841 −1.94905 −0.974526 0.224277i \(-0.927998\pi\)
−0.974526 + 0.224277i \(0.927998\pi\)
\(740\) 0 0
\(741\) 86.6769 3.18416
\(742\) 0 0
\(743\) −18.9763 −0.696173 −0.348087 0.937462i \(-0.613169\pi\)
−0.348087 + 0.937462i \(0.613169\pi\)
\(744\) 0 0
\(745\) 37.0946 1.35904
\(746\) 0 0
\(747\) 30.4770 1.11509
\(748\) 0 0
\(749\) −29.6656 −1.08396
\(750\) 0 0
\(751\) 9.59668 0.350188 0.175094 0.984552i \(-0.443977\pi\)
0.175094 + 0.984552i \(0.443977\pi\)
\(752\) 0 0
\(753\) −44.0591 −1.60560
\(754\) 0 0
\(755\) 24.5629 0.893936
\(756\) 0 0
\(757\) −7.97049 −0.289692 −0.144846 0.989454i \(-0.546269\pi\)
−0.144846 + 0.989454i \(0.546269\pi\)
\(758\) 0 0
\(759\) 4.58276 0.166343
\(760\) 0 0
\(761\) 24.1353 0.874905 0.437453 0.899241i \(-0.355881\pi\)
0.437453 + 0.899241i \(0.355881\pi\)
\(762\) 0 0
\(763\) −27.4093 −0.992285
\(764\) 0 0
\(765\) 109.110 3.94487
\(766\) 0 0
\(767\) −1.52367 −0.0550165
\(768\) 0 0
\(769\) −53.4244 −1.92653 −0.963266 0.268550i \(-0.913456\pi\)
−0.963266 + 0.268550i \(0.913456\pi\)
\(770\) 0 0
\(771\) 26.7961 0.965038
\(772\) 0 0
\(773\) −42.3927 −1.52476 −0.762380 0.647130i \(-0.775969\pi\)
−0.762380 + 0.647130i \(0.775969\pi\)
\(774\) 0 0
\(775\) −23.1021 −0.829851
\(776\) 0 0
\(777\) −32.6791 −1.17236
\(778\) 0 0
\(779\) 22.2512 0.797232
\(780\) 0 0
\(781\) 7.57840 0.271177
\(782\) 0 0
\(783\) 4.37926 0.156502
\(784\) 0 0
\(785\) −36.3011 −1.29564
\(786\) 0 0
\(787\) −4.25766 −0.151769 −0.0758845 0.997117i \(-0.524178\pi\)
−0.0758845 + 0.997117i \(0.524178\pi\)
\(788\) 0 0
\(789\) −41.9668 −1.49406
\(790\) 0 0
\(791\) 2.84717 0.101234
\(792\) 0 0
\(793\) −83.6636 −2.97098
\(794\) 0 0
\(795\) 84.5051 2.99709
\(796\) 0 0
\(797\) 2.48075 0.0878727 0.0439363 0.999034i \(-0.486010\pi\)
0.0439363 + 0.999034i \(0.486010\pi\)
\(798\) 0 0
\(799\) −49.4556 −1.74961
\(800\) 0 0
\(801\) 39.9116 1.41021
\(802\) 0 0
\(803\) 23.5277 0.830275
\(804\) 0 0
\(805\) 3.51410 0.123856
\(806\) 0 0
\(807\) 12.6989 0.447021
\(808\) 0 0
\(809\) 25.0915 0.882171 0.441085 0.897465i \(-0.354594\pi\)
0.441085 + 0.897465i \(0.354594\pi\)
\(810\) 0 0
\(811\) −18.9465 −0.665303 −0.332651 0.943050i \(-0.607943\pi\)
−0.332651 + 0.943050i \(0.607943\pi\)
\(812\) 0 0
\(813\) 30.3745 1.06528
\(814\) 0 0
\(815\) −59.4672 −2.08304
\(816\) 0 0
\(817\) −48.0659 −1.68161
\(818\) 0 0
\(819\) −82.2299 −2.87335
\(820\) 0 0
\(821\) −40.8438 −1.42546 −0.712729 0.701440i \(-0.752541\pi\)
−0.712729 + 0.701440i \(0.752541\pi\)
\(822\) 0 0
\(823\) −16.4136 −0.572143 −0.286072 0.958208i \(-0.592350\pi\)
−0.286072 + 0.958208i \(0.592350\pi\)
\(824\) 0 0
\(825\) 86.0210 2.99487
\(826\) 0 0
\(827\) −34.5387 −1.20103 −0.600513 0.799615i \(-0.705037\pi\)
−0.600513 + 0.799615i \(0.705037\pi\)
\(828\) 0 0
\(829\) −28.9537 −1.00560 −0.502802 0.864401i \(-0.667698\pi\)
−0.502802 + 0.864401i \(0.667698\pi\)
\(830\) 0 0
\(831\) 53.9430 1.87126
\(832\) 0 0
\(833\) −8.22423 −0.284953
\(834\) 0 0
\(835\) −25.2744 −0.874658
\(836\) 0 0
\(837\) −11.8165 −0.408440
\(838\) 0 0
\(839\) 20.9270 0.722480 0.361240 0.932473i \(-0.382353\pi\)
0.361240 + 0.932473i \(0.382353\pi\)
\(840\) 0 0
\(841\) −27.3943 −0.944633
\(842\) 0 0
\(843\) −16.9290 −0.583066
\(844\) 0 0
\(845\) −111.497 −3.83562
\(846\) 0 0
\(847\) −32.0638 −1.10173
\(848\) 0 0
\(849\) 68.8440 2.36272
\(850\) 0 0
\(851\) 1.53118 0.0524881
\(852\) 0 0
\(853\) 44.4090 1.52054 0.760268 0.649610i \(-0.225068\pi\)
0.760268 + 0.649610i \(0.225068\pi\)
\(854\) 0 0
\(855\) −69.8864 −2.39006
\(856\) 0 0
\(857\) 33.3927 1.14067 0.570337 0.821411i \(-0.306813\pi\)
0.570337 + 0.821411i \(0.306813\pi\)
\(858\) 0 0
\(859\) −16.4511 −0.561304 −0.280652 0.959810i \(-0.590551\pi\)
−0.280652 + 0.959810i \(0.590551\pi\)
\(860\) 0 0
\(861\) −35.9032 −1.22358
\(862\) 0 0
\(863\) −22.5206 −0.766609 −0.383304 0.923622i \(-0.625214\pi\)
−0.383304 + 0.923622i \(0.625214\pi\)
\(864\) 0 0
\(865\) −39.0750 −1.32859
\(866\) 0 0
\(867\) 103.229 3.50584
\(868\) 0 0
\(869\) 56.2697 1.90882
\(870\) 0 0
\(871\) 71.7376 2.43073
\(872\) 0 0
\(873\) 6.53071 0.221031
\(874\) 0 0
\(875\) 17.1498 0.579768
\(876\) 0 0
\(877\) −51.2352 −1.73009 −0.865045 0.501694i \(-0.832710\pi\)
−0.865045 + 0.501694i \(0.832710\pi\)
\(878\) 0 0
\(879\) 49.9032 1.68319
\(880\) 0 0
\(881\) −18.9274 −0.637681 −0.318841 0.947808i \(-0.603293\pi\)
−0.318841 + 0.947808i \(0.603293\pi\)
\(882\) 0 0
\(883\) −32.2404 −1.08498 −0.542488 0.840063i \(-0.682518\pi\)
−0.542488 + 0.840063i \(0.682518\pi\)
\(884\) 0 0
\(885\) 2.08945 0.0702362
\(886\) 0 0
\(887\) 55.5605 1.86554 0.932770 0.360472i \(-0.117384\pi\)
0.932770 + 0.360472i \(0.117384\pi\)
\(888\) 0 0
\(889\) −37.5915 −1.26078
\(890\) 0 0
\(891\) −16.5944 −0.555934
\(892\) 0 0
\(893\) 31.6771 1.06003
\(894\) 0 0
\(895\) −42.5844 −1.42344
\(896\) 0 0
\(897\) 6.55297 0.218797
\(898\) 0 0
\(899\) −4.33252 −0.144498
\(900\) 0 0
\(901\) 67.8960 2.26194
\(902\) 0 0
\(903\) 77.5562 2.58091
\(904\) 0 0
\(905\) 35.0402 1.16478
\(906\) 0 0
\(907\) 50.3835 1.67296 0.836479 0.547999i \(-0.184610\pi\)
0.836479 + 0.547999i \(0.184610\pi\)
\(908\) 0 0
\(909\) 64.4684 2.13828
\(910\) 0 0
\(911\) −28.9115 −0.957880 −0.478940 0.877848i \(-0.658979\pi\)
−0.478940 + 0.877848i \(0.658979\pi\)
\(912\) 0 0
\(913\) 33.5911 1.11170
\(914\) 0 0
\(915\) 114.731 3.79287
\(916\) 0 0
\(917\) 51.7174 1.70786
\(918\) 0 0
\(919\) 9.20481 0.303639 0.151819 0.988408i \(-0.451487\pi\)
0.151819 + 0.988408i \(0.451487\pi\)
\(920\) 0 0
\(921\) −6.27225 −0.206678
\(922\) 0 0
\(923\) 10.8365 0.356688
\(924\) 0 0
\(925\) 28.7411 0.945001
\(926\) 0 0
\(927\) 59.3604 1.94965
\(928\) 0 0
\(929\) 14.9304 0.489850 0.244925 0.969542i \(-0.421237\pi\)
0.244925 + 0.969542i \(0.421237\pi\)
\(930\) 0 0
\(931\) 5.26774 0.172643
\(932\) 0 0
\(933\) −59.0992 −1.93482
\(934\) 0 0
\(935\) 120.258 3.93287
\(936\) 0 0
\(937\) −25.4897 −0.832712 −0.416356 0.909202i \(-0.636693\pi\)
−0.416356 + 0.909202i \(0.636693\pi\)
\(938\) 0 0
\(939\) 79.9268 2.60831
\(940\) 0 0
\(941\) 11.8944 0.387747 0.193874 0.981027i \(-0.437895\pi\)
0.193874 + 0.981027i \(0.437895\pi\)
\(942\) 0 0
\(943\) 1.68224 0.0547813
\(944\) 0 0
\(945\) 33.7389 1.09753
\(946\) 0 0
\(947\) −51.7008 −1.68005 −0.840026 0.542547i \(-0.817460\pi\)
−0.840026 + 0.542547i \(0.817460\pi\)
\(948\) 0 0
\(949\) 33.6428 1.09209
\(950\) 0 0
\(951\) 47.6714 1.54585
\(952\) 0 0
\(953\) 32.9830 1.06842 0.534212 0.845351i \(-0.320609\pi\)
0.534212 + 0.845351i \(0.320609\pi\)
\(954\) 0 0
\(955\) −27.9245 −0.903615
\(956\) 0 0
\(957\) 16.1322 0.521481
\(958\) 0 0
\(959\) 56.8713 1.83647
\(960\) 0 0
\(961\) −19.3096 −0.622889
\(962\) 0 0
\(963\) 44.6031 1.43732
\(964\) 0 0
\(965\) 35.2323 1.13417
\(966\) 0 0
\(967\) 14.7191 0.473335 0.236667 0.971591i \(-0.423945\pi\)
0.236667 + 0.971591i \(0.423945\pi\)
\(968\) 0 0
\(969\) −95.5008 −3.06793
\(970\) 0 0
\(971\) −34.5033 −1.10726 −0.553632 0.832762i \(-0.686758\pi\)
−0.553632 + 0.832762i \(0.686758\pi\)
\(972\) 0 0
\(973\) −22.2472 −0.713212
\(974\) 0 0
\(975\) 123.003 3.93925
\(976\) 0 0
\(977\) 43.6620 1.39687 0.698436 0.715672i \(-0.253880\pi\)
0.698436 + 0.715672i \(0.253880\pi\)
\(978\) 0 0
\(979\) 43.9898 1.40592
\(980\) 0 0
\(981\) 41.2108 1.31576
\(982\) 0 0
\(983\) −42.8819 −1.36772 −0.683860 0.729613i \(-0.739700\pi\)
−0.683860 + 0.729613i \(0.739700\pi\)
\(984\) 0 0
\(985\) −47.7656 −1.52194
\(986\) 0 0
\(987\) −51.1122 −1.62692
\(988\) 0 0
\(989\) −3.63389 −0.115551
\(990\) 0 0
\(991\) −29.2724 −0.929868 −0.464934 0.885345i \(-0.653922\pi\)
−0.464934 + 0.885345i \(0.653922\pi\)
\(992\) 0 0
\(993\) −28.8740 −0.916288
\(994\) 0 0
\(995\) −69.6795 −2.20899
\(996\) 0 0
\(997\) 26.4579 0.837930 0.418965 0.908002i \(-0.362393\pi\)
0.418965 + 0.908002i \(0.362393\pi\)
\(998\) 0 0
\(999\) 14.7008 0.465114
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7232.2.a.bn.1.16 18
4.3 odd 2 inner 7232.2.a.bn.1.3 18
8.3 odd 2 3616.2.a.j.1.16 yes 18
8.5 even 2 3616.2.a.j.1.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3616.2.a.j.1.3 18 8.5 even 2
3616.2.a.j.1.16 yes 18 8.3 odd 2
7232.2.a.bn.1.3 18 4.3 odd 2 inner
7232.2.a.bn.1.16 18 1.1 even 1 trivial