Properties

Label 7232.2.a.bn.1.14
Level $7232$
Weight $2$
Character 7232.1
Self dual yes
Analytic conductor $57.748$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7232,2,Mod(1,7232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7232 = 2^{6} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,-10,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.7478107418\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 43 x^{16} + 760 x^{14} - 7095 x^{12} + 37240 x^{10} - 107142 x^{8} + 149152 x^{6} - 72200 x^{4} + \cdots - 800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{10}\cdot 5 \)
Twist minimal: no (minimal twist has level 3616)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(2.40641\) of defining polynomial
Character \(\chi\) \(=\) 7232.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.40641 q^{3} -4.21710 q^{5} +3.22264 q^{7} +2.79083 q^{9} -4.08286 q^{11} +1.84698 q^{13} -10.1481 q^{15} +5.67522 q^{17} +4.09027 q^{19} +7.75501 q^{21} -6.11509 q^{23} +12.7839 q^{25} -0.503343 q^{27} -3.67363 q^{29} +8.84028 q^{31} -9.82506 q^{33} -13.5902 q^{35} -11.9721 q^{37} +4.44461 q^{39} +4.78001 q^{41} +4.73093 q^{43} -11.7692 q^{45} -6.11041 q^{47} +3.38540 q^{49} +13.6569 q^{51} +0.898949 q^{53} +17.2178 q^{55} +9.84288 q^{57} -1.68397 q^{59} +14.3393 q^{61} +8.99385 q^{63} -7.78891 q^{65} +11.9139 q^{67} -14.7154 q^{69} +8.45105 q^{71} -6.29847 q^{73} +30.7634 q^{75} -13.1576 q^{77} -4.73671 q^{79} -9.58375 q^{81} +2.28784 q^{83} -23.9329 q^{85} -8.84028 q^{87} -4.43267 q^{89} +5.95216 q^{91} +21.2734 q^{93} -17.2491 q^{95} +14.7164 q^{97} -11.3946 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 10 q^{5} + 32 q^{9} + 12 q^{13} + 16 q^{17} - 14 q^{21} + 44 q^{25} - 22 q^{29} + 24 q^{33} + 4 q^{37} + 50 q^{41} - 32 q^{45} + 58 q^{49} - 2 q^{53} + 46 q^{57} - 10 q^{61} + 40 q^{65} - 22 q^{69}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.40641 1.38934 0.694672 0.719326i \(-0.255549\pi\)
0.694672 + 0.719326i \(0.255549\pi\)
\(4\) 0 0
\(5\) −4.21710 −1.88594 −0.942972 0.332873i \(-0.891982\pi\)
−0.942972 + 0.332873i \(0.891982\pi\)
\(6\) 0 0
\(7\) 3.22264 1.21804 0.609021 0.793154i \(-0.291562\pi\)
0.609021 + 0.793154i \(0.291562\pi\)
\(8\) 0 0
\(9\) 2.79083 0.930278
\(10\) 0 0
\(11\) −4.08286 −1.23103 −0.615514 0.788126i \(-0.711052\pi\)
−0.615514 + 0.788126i \(0.711052\pi\)
\(12\) 0 0
\(13\) 1.84698 0.512261 0.256130 0.966642i \(-0.417552\pi\)
0.256130 + 0.966642i \(0.417552\pi\)
\(14\) 0 0
\(15\) −10.1481 −2.62022
\(16\) 0 0
\(17\) 5.67522 1.37644 0.688221 0.725501i \(-0.258392\pi\)
0.688221 + 0.725501i \(0.258392\pi\)
\(18\) 0 0
\(19\) 4.09027 0.938372 0.469186 0.883099i \(-0.344547\pi\)
0.469186 + 0.883099i \(0.344547\pi\)
\(20\) 0 0
\(21\) 7.75501 1.69228
\(22\) 0 0
\(23\) −6.11509 −1.27508 −0.637542 0.770416i \(-0.720049\pi\)
−0.637542 + 0.770416i \(0.720049\pi\)
\(24\) 0 0
\(25\) 12.7839 2.55678
\(26\) 0 0
\(27\) −0.503343 −0.0968684
\(28\) 0 0
\(29\) −3.67363 −0.682176 −0.341088 0.940031i \(-0.610795\pi\)
−0.341088 + 0.940031i \(0.610795\pi\)
\(30\) 0 0
\(31\) 8.84028 1.58776 0.793881 0.608073i \(-0.208057\pi\)
0.793881 + 0.608073i \(0.208057\pi\)
\(32\) 0 0
\(33\) −9.82506 −1.71032
\(34\) 0 0
\(35\) −13.5902 −2.29716
\(36\) 0 0
\(37\) −11.9721 −1.96820 −0.984101 0.177611i \(-0.943163\pi\)
−0.984101 + 0.177611i \(0.943163\pi\)
\(38\) 0 0
\(39\) 4.44461 0.711707
\(40\) 0 0
\(41\) 4.78001 0.746513 0.373256 0.927728i \(-0.378241\pi\)
0.373256 + 0.927728i \(0.378241\pi\)
\(42\) 0 0
\(43\) 4.73093 0.721460 0.360730 0.932670i \(-0.382528\pi\)
0.360730 + 0.932670i \(0.382528\pi\)
\(44\) 0 0
\(45\) −11.7692 −1.75445
\(46\) 0 0
\(47\) −6.11041 −0.891295 −0.445647 0.895209i \(-0.647026\pi\)
−0.445647 + 0.895209i \(0.647026\pi\)
\(48\) 0 0
\(49\) 3.38540 0.483628
\(50\) 0 0
\(51\) 13.6569 1.91235
\(52\) 0 0
\(53\) 0.898949 0.123480 0.0617401 0.998092i \(-0.480335\pi\)
0.0617401 + 0.998092i \(0.480335\pi\)
\(54\) 0 0
\(55\) 17.2178 2.32165
\(56\) 0 0
\(57\) 9.84288 1.30372
\(58\) 0 0
\(59\) −1.68397 −0.219234 −0.109617 0.993974i \(-0.534962\pi\)
−0.109617 + 0.993974i \(0.534962\pi\)
\(60\) 0 0
\(61\) 14.3393 1.83595 0.917977 0.396633i \(-0.129821\pi\)
0.917977 + 0.396633i \(0.129821\pi\)
\(62\) 0 0
\(63\) 8.99385 1.13312
\(64\) 0 0
\(65\) −7.78891 −0.966095
\(66\) 0 0
\(67\) 11.9139 1.45552 0.727758 0.685834i \(-0.240562\pi\)
0.727758 + 0.685834i \(0.240562\pi\)
\(68\) 0 0
\(69\) −14.7154 −1.77153
\(70\) 0 0
\(71\) 8.45105 1.00296 0.501478 0.865171i \(-0.332790\pi\)
0.501478 + 0.865171i \(0.332790\pi\)
\(72\) 0 0
\(73\) −6.29847 −0.737180 −0.368590 0.929592i \(-0.620159\pi\)
−0.368590 + 0.929592i \(0.620159\pi\)
\(74\) 0 0
\(75\) 30.7634 3.55225
\(76\) 0 0
\(77\) −13.1576 −1.49945
\(78\) 0 0
\(79\) −4.73671 −0.532922 −0.266461 0.963846i \(-0.585854\pi\)
−0.266461 + 0.963846i \(0.585854\pi\)
\(80\) 0 0
\(81\) −9.58375 −1.06486
\(82\) 0 0
\(83\) 2.28784 0.251123 0.125561 0.992086i \(-0.459927\pi\)
0.125561 + 0.992086i \(0.459927\pi\)
\(84\) 0 0
\(85\) −23.9329 −2.59589
\(86\) 0 0
\(87\) −8.84028 −0.947778
\(88\) 0 0
\(89\) −4.43267 −0.469862 −0.234931 0.972012i \(-0.575486\pi\)
−0.234931 + 0.972012i \(0.575486\pi\)
\(90\) 0 0
\(91\) 5.95216 0.623956
\(92\) 0 0
\(93\) 21.2734 2.20595
\(94\) 0 0
\(95\) −17.2491 −1.76972
\(96\) 0 0
\(97\) 14.7164 1.49423 0.747114 0.664695i \(-0.231439\pi\)
0.747114 + 0.664695i \(0.231439\pi\)
\(98\) 0 0
\(99\) −11.3946 −1.14520
\(100\) 0 0
\(101\) 8.16162 0.812112 0.406056 0.913848i \(-0.366904\pi\)
0.406056 + 0.913848i \(0.366904\pi\)
\(102\) 0 0
\(103\) 0.579459 0.0570958 0.0285479 0.999592i \(-0.490912\pi\)
0.0285479 + 0.999592i \(0.490912\pi\)
\(104\) 0 0
\(105\) −32.7036 −3.19155
\(106\) 0 0
\(107\) 17.6236 1.70373 0.851867 0.523758i \(-0.175470\pi\)
0.851867 + 0.523758i \(0.175470\pi\)
\(108\) 0 0
\(109\) −8.83689 −0.846420 −0.423210 0.906032i \(-0.639097\pi\)
−0.423210 + 0.906032i \(0.639097\pi\)
\(110\) 0 0
\(111\) −28.8098 −2.73451
\(112\) 0 0
\(113\) −1.00000 −0.0940721
\(114\) 0 0
\(115\) 25.7879 2.40474
\(116\) 0 0
\(117\) 5.15462 0.476545
\(118\) 0 0
\(119\) 18.2892 1.67657
\(120\) 0 0
\(121\) 5.66975 0.515432
\(122\) 0 0
\(123\) 11.5027 1.03716
\(124\) 0 0
\(125\) −32.8255 −2.93600
\(126\) 0 0
\(127\) 8.06072 0.715274 0.357637 0.933861i \(-0.383583\pi\)
0.357637 + 0.933861i \(0.383583\pi\)
\(128\) 0 0
\(129\) 11.3846 1.00236
\(130\) 0 0
\(131\) −5.46852 −0.477787 −0.238894 0.971046i \(-0.576785\pi\)
−0.238894 + 0.971046i \(0.576785\pi\)
\(132\) 0 0
\(133\) 13.1815 1.14298
\(134\) 0 0
\(135\) 2.12265 0.182688
\(136\) 0 0
\(137\) −6.18480 −0.528403 −0.264202 0.964467i \(-0.585108\pi\)
−0.264202 + 0.964467i \(0.585108\pi\)
\(138\) 0 0
\(139\) −6.96213 −0.590520 −0.295260 0.955417i \(-0.595406\pi\)
−0.295260 + 0.955417i \(0.595406\pi\)
\(140\) 0 0
\(141\) −14.7042 −1.23832
\(142\) 0 0
\(143\) −7.54098 −0.630608
\(144\) 0 0
\(145\) 15.4921 1.28655
\(146\) 0 0
\(147\) 8.14667 0.671926
\(148\) 0 0
\(149\) 19.7956 1.62172 0.810858 0.585243i \(-0.199001\pi\)
0.810858 + 0.585243i \(0.199001\pi\)
\(150\) 0 0
\(151\) 18.5020 1.50567 0.752837 0.658207i \(-0.228685\pi\)
0.752837 + 0.658207i \(0.228685\pi\)
\(152\) 0 0
\(153\) 15.8386 1.28047
\(154\) 0 0
\(155\) −37.2803 −2.99443
\(156\) 0 0
\(157\) −2.38935 −0.190691 −0.0953454 0.995444i \(-0.530396\pi\)
−0.0953454 + 0.995444i \(0.530396\pi\)
\(158\) 0 0
\(159\) 2.16325 0.171556
\(160\) 0 0
\(161\) −19.7067 −1.55311
\(162\) 0 0
\(163\) 2.03808 0.159634 0.0798172 0.996810i \(-0.474566\pi\)
0.0798172 + 0.996810i \(0.474566\pi\)
\(164\) 0 0
\(165\) 41.4332 3.22557
\(166\) 0 0
\(167\) 9.43837 0.730363 0.365182 0.930936i \(-0.381007\pi\)
0.365182 + 0.930936i \(0.381007\pi\)
\(168\) 0 0
\(169\) −9.58865 −0.737589
\(170\) 0 0
\(171\) 11.4153 0.872946
\(172\) 0 0
\(173\) 13.8683 1.05439 0.527195 0.849744i \(-0.323244\pi\)
0.527195 + 0.849744i \(0.323244\pi\)
\(174\) 0 0
\(175\) 41.1979 3.11427
\(176\) 0 0
\(177\) −4.05233 −0.304592
\(178\) 0 0
\(179\) 5.67339 0.424049 0.212025 0.977264i \(-0.431994\pi\)
0.212025 + 0.977264i \(0.431994\pi\)
\(180\) 0 0
\(181\) 16.1549 1.20078 0.600391 0.799706i \(-0.295012\pi\)
0.600391 + 0.799706i \(0.295012\pi\)
\(182\) 0 0
\(183\) 34.5062 2.55077
\(184\) 0 0
\(185\) 50.4875 3.71192
\(186\) 0 0
\(187\) −23.1711 −1.69444
\(188\) 0 0
\(189\) −1.62209 −0.117990
\(190\) 0 0
\(191\) 1.19109 0.0861841 0.0430920 0.999071i \(-0.486279\pi\)
0.0430920 + 0.999071i \(0.486279\pi\)
\(192\) 0 0
\(193\) 19.4781 1.40206 0.701032 0.713130i \(-0.252723\pi\)
0.701032 + 0.713130i \(0.252723\pi\)
\(194\) 0 0
\(195\) −18.7433 −1.34224
\(196\) 0 0
\(197\) 22.9253 1.63336 0.816679 0.577092i \(-0.195813\pi\)
0.816679 + 0.577092i \(0.195813\pi\)
\(198\) 0 0
\(199\) 17.4729 1.23862 0.619311 0.785146i \(-0.287412\pi\)
0.619311 + 0.785146i \(0.287412\pi\)
\(200\) 0 0
\(201\) 28.6698 2.02221
\(202\) 0 0
\(203\) −11.8388 −0.830920
\(204\) 0 0
\(205\) −20.1578 −1.40788
\(206\) 0 0
\(207\) −17.0662 −1.18618
\(208\) 0 0
\(209\) −16.7000 −1.15516
\(210\) 0 0
\(211\) −3.24015 −0.223061 −0.111530 0.993761i \(-0.535575\pi\)
−0.111530 + 0.993761i \(0.535575\pi\)
\(212\) 0 0
\(213\) 20.3367 1.39345
\(214\) 0 0
\(215\) −19.9508 −1.36063
\(216\) 0 0
\(217\) 28.4890 1.93396
\(218\) 0 0
\(219\) −15.1567 −1.02420
\(220\) 0 0
\(221\) 10.4820 0.705098
\(222\) 0 0
\(223\) −27.3711 −1.83290 −0.916452 0.400145i \(-0.868960\pi\)
−0.916452 + 0.400145i \(0.868960\pi\)
\(224\) 0 0
\(225\) 35.6778 2.37852
\(226\) 0 0
\(227\) −14.4995 −0.962364 −0.481182 0.876621i \(-0.659792\pi\)
−0.481182 + 0.876621i \(0.659792\pi\)
\(228\) 0 0
\(229\) −9.51830 −0.628987 −0.314494 0.949260i \(-0.601835\pi\)
−0.314494 + 0.949260i \(0.601835\pi\)
\(230\) 0 0
\(231\) −31.6626 −2.08325
\(232\) 0 0
\(233\) 12.8068 0.839004 0.419502 0.907755i \(-0.362205\pi\)
0.419502 + 0.907755i \(0.362205\pi\)
\(234\) 0 0
\(235\) 25.7682 1.68093
\(236\) 0 0
\(237\) −11.3985 −0.740412
\(238\) 0 0
\(239\) 13.2257 0.855497 0.427748 0.903898i \(-0.359307\pi\)
0.427748 + 0.903898i \(0.359307\pi\)
\(240\) 0 0
\(241\) −6.22900 −0.401245 −0.200623 0.979669i \(-0.564297\pi\)
−0.200623 + 0.979669i \(0.564297\pi\)
\(242\) 0 0
\(243\) −21.5525 −1.38259
\(244\) 0 0
\(245\) −14.2766 −0.912096
\(246\) 0 0
\(247\) 7.55466 0.480691
\(248\) 0 0
\(249\) 5.50549 0.348896
\(250\) 0 0
\(251\) 15.0165 0.947833 0.473916 0.880570i \(-0.342840\pi\)
0.473916 + 0.880570i \(0.342840\pi\)
\(252\) 0 0
\(253\) 24.9671 1.56967
\(254\) 0 0
\(255\) −57.5926 −3.60659
\(256\) 0 0
\(257\) −18.2547 −1.13869 −0.569347 0.822097i \(-0.692804\pi\)
−0.569347 + 0.822097i \(0.692804\pi\)
\(258\) 0 0
\(259\) −38.5818 −2.39735
\(260\) 0 0
\(261\) −10.2525 −0.634613
\(262\) 0 0
\(263\) 29.1786 1.79923 0.899614 0.436686i \(-0.143848\pi\)
0.899614 + 0.436686i \(0.143848\pi\)
\(264\) 0 0
\(265\) −3.79096 −0.232877
\(266\) 0 0
\(267\) −10.6668 −0.652801
\(268\) 0 0
\(269\) −9.20086 −0.560986 −0.280493 0.959856i \(-0.590498\pi\)
−0.280493 + 0.959856i \(0.590498\pi\)
\(270\) 0 0
\(271\) −18.5052 −1.12411 −0.562055 0.827100i \(-0.689989\pi\)
−0.562055 + 0.827100i \(0.689989\pi\)
\(272\) 0 0
\(273\) 14.3234 0.866889
\(274\) 0 0
\(275\) −52.1949 −3.14747
\(276\) 0 0
\(277\) −2.14328 −0.128777 −0.0643885 0.997925i \(-0.520510\pi\)
−0.0643885 + 0.997925i \(0.520510\pi\)
\(278\) 0 0
\(279\) 24.6718 1.47706
\(280\) 0 0
\(281\) −28.2585 −1.68576 −0.842882 0.538099i \(-0.819143\pi\)
−0.842882 + 0.538099i \(0.819143\pi\)
\(282\) 0 0
\(283\) 1.06295 0.0631860 0.0315930 0.999501i \(-0.489942\pi\)
0.0315930 + 0.999501i \(0.489942\pi\)
\(284\) 0 0
\(285\) −41.5084 −2.45874
\(286\) 0 0
\(287\) 15.4043 0.909285
\(288\) 0 0
\(289\) 15.2081 0.894594
\(290\) 0 0
\(291\) 35.4139 2.07600
\(292\) 0 0
\(293\) −2.82846 −0.165241 −0.0826203 0.996581i \(-0.526329\pi\)
−0.0826203 + 0.996581i \(0.526329\pi\)
\(294\) 0 0
\(295\) 7.10147 0.413463
\(296\) 0 0
\(297\) 2.05508 0.119248
\(298\) 0 0
\(299\) −11.2945 −0.653176
\(300\) 0 0
\(301\) 15.2461 0.878770
\(302\) 0 0
\(303\) 19.6402 1.12830
\(304\) 0 0
\(305\) −60.4701 −3.46251
\(306\) 0 0
\(307\) 12.3863 0.706922 0.353461 0.935449i \(-0.385005\pi\)
0.353461 + 0.935449i \(0.385005\pi\)
\(308\) 0 0
\(309\) 1.39442 0.0793257
\(310\) 0 0
\(311\) 34.2618 1.94281 0.971403 0.237436i \(-0.0763071\pi\)
0.971403 + 0.237436i \(0.0763071\pi\)
\(312\) 0 0
\(313\) 12.0262 0.679759 0.339880 0.940469i \(-0.389614\pi\)
0.339880 + 0.940469i \(0.389614\pi\)
\(314\) 0 0
\(315\) −37.9279 −2.13700
\(316\) 0 0
\(317\) 15.6528 0.879148 0.439574 0.898206i \(-0.355129\pi\)
0.439574 + 0.898206i \(0.355129\pi\)
\(318\) 0 0
\(319\) 14.9989 0.839779
\(320\) 0 0
\(321\) 42.4096 2.36707
\(322\) 0 0
\(323\) 23.2132 1.29161
\(324\) 0 0
\(325\) 23.6117 1.30974
\(326\) 0 0
\(327\) −21.2652 −1.17597
\(328\) 0 0
\(329\) −19.6916 −1.08564
\(330\) 0 0
\(331\) −10.2599 −0.563937 −0.281968 0.959424i \(-0.590987\pi\)
−0.281968 + 0.959424i \(0.590987\pi\)
\(332\) 0 0
\(333\) −33.4121 −1.83097
\(334\) 0 0
\(335\) −50.2422 −2.74502
\(336\) 0 0
\(337\) −2.05514 −0.111951 −0.0559753 0.998432i \(-0.517827\pi\)
−0.0559753 + 0.998432i \(0.517827\pi\)
\(338\) 0 0
\(339\) −2.40641 −0.130699
\(340\) 0 0
\(341\) −36.0936 −1.95458
\(342\) 0 0
\(343\) −11.6486 −0.628963
\(344\) 0 0
\(345\) 62.0564 3.34101
\(346\) 0 0
\(347\) 19.6174 1.05312 0.526559 0.850138i \(-0.323482\pi\)
0.526559 + 0.850138i \(0.323482\pi\)
\(348\) 0 0
\(349\) −3.99826 −0.214022 −0.107011 0.994258i \(-0.534128\pi\)
−0.107011 + 0.994258i \(0.534128\pi\)
\(350\) 0 0
\(351\) −0.929666 −0.0496219
\(352\) 0 0
\(353\) 24.4500 1.30134 0.650671 0.759360i \(-0.274488\pi\)
0.650671 + 0.759360i \(0.274488\pi\)
\(354\) 0 0
\(355\) −35.6389 −1.89152
\(356\) 0 0
\(357\) 44.0114 2.32933
\(358\) 0 0
\(359\) −11.4392 −0.603737 −0.301869 0.953350i \(-0.597610\pi\)
−0.301869 + 0.953350i \(0.597610\pi\)
\(360\) 0 0
\(361\) −2.26971 −0.119458
\(362\) 0 0
\(363\) 13.6438 0.716113
\(364\) 0 0
\(365\) 26.5613 1.39028
\(366\) 0 0
\(367\) −4.06455 −0.212168 −0.106084 0.994357i \(-0.533831\pi\)
−0.106084 + 0.994357i \(0.533831\pi\)
\(368\) 0 0
\(369\) 13.3402 0.694464
\(370\) 0 0
\(371\) 2.89699 0.150404
\(372\) 0 0
\(373\) 30.0409 1.55546 0.777728 0.628601i \(-0.216372\pi\)
0.777728 + 0.628601i \(0.216372\pi\)
\(374\) 0 0
\(375\) −78.9918 −4.07912
\(376\) 0 0
\(377\) −6.78514 −0.349452
\(378\) 0 0
\(379\) −31.5651 −1.62139 −0.810695 0.585469i \(-0.800910\pi\)
−0.810695 + 0.585469i \(0.800910\pi\)
\(380\) 0 0
\(381\) 19.3974 0.993761
\(382\) 0 0
\(383\) 9.16822 0.468474 0.234237 0.972180i \(-0.424741\pi\)
0.234237 + 0.972180i \(0.424741\pi\)
\(384\) 0 0
\(385\) 55.4868 2.82787
\(386\) 0 0
\(387\) 13.2032 0.671158
\(388\) 0 0
\(389\) −2.52717 −0.128133 −0.0640664 0.997946i \(-0.520407\pi\)
−0.0640664 + 0.997946i \(0.520407\pi\)
\(390\) 0 0
\(391\) −34.7045 −1.75508
\(392\) 0 0
\(393\) −13.1595 −0.663811
\(394\) 0 0
\(395\) 19.9752 1.00506
\(396\) 0 0
\(397\) −11.4012 −0.572212 −0.286106 0.958198i \(-0.592361\pi\)
−0.286106 + 0.958198i \(0.592361\pi\)
\(398\) 0 0
\(399\) 31.7200 1.58799
\(400\) 0 0
\(401\) 37.2948 1.86241 0.931207 0.364491i \(-0.118757\pi\)
0.931207 + 0.364491i \(0.118757\pi\)
\(402\) 0 0
\(403\) 16.3279 0.813348
\(404\) 0 0
\(405\) 40.4156 2.00827
\(406\) 0 0
\(407\) 48.8804 2.42291
\(408\) 0 0
\(409\) 1.16461 0.0575863 0.0287932 0.999585i \(-0.490834\pi\)
0.0287932 + 0.999585i \(0.490834\pi\)
\(410\) 0 0
\(411\) −14.8832 −0.734134
\(412\) 0 0
\(413\) −5.42683 −0.267037
\(414\) 0 0
\(415\) −9.64804 −0.473603
\(416\) 0 0
\(417\) −16.7538 −0.820435
\(418\) 0 0
\(419\) −0.570557 −0.0278735 −0.0139368 0.999903i \(-0.504436\pi\)
−0.0139368 + 0.999903i \(0.504436\pi\)
\(420\) 0 0
\(421\) −38.6626 −1.88430 −0.942151 0.335189i \(-0.891200\pi\)
−0.942151 + 0.335189i \(0.891200\pi\)
\(422\) 0 0
\(423\) −17.0531 −0.829152
\(424\) 0 0
\(425\) 72.5515 3.51926
\(426\) 0 0
\(427\) 46.2103 2.23627
\(428\) 0 0
\(429\) −18.1467 −0.876132
\(430\) 0 0
\(431\) 9.66471 0.465532 0.232766 0.972533i \(-0.425222\pi\)
0.232766 + 0.972533i \(0.425222\pi\)
\(432\) 0 0
\(433\) −0.362198 −0.0174061 −0.00870307 0.999962i \(-0.502770\pi\)
−0.00870307 + 0.999962i \(0.502770\pi\)
\(434\) 0 0
\(435\) 37.2803 1.78746
\(436\) 0 0
\(437\) −25.0123 −1.19650
\(438\) 0 0
\(439\) 26.7847 1.27837 0.639183 0.769055i \(-0.279273\pi\)
0.639183 + 0.769055i \(0.279273\pi\)
\(440\) 0 0
\(441\) 9.44808 0.449909
\(442\) 0 0
\(443\) 9.61014 0.456591 0.228296 0.973592i \(-0.426685\pi\)
0.228296 + 0.973592i \(0.426685\pi\)
\(444\) 0 0
\(445\) 18.6930 0.886134
\(446\) 0 0
\(447\) 47.6364 2.25312
\(448\) 0 0
\(449\) 6.77080 0.319534 0.159767 0.987155i \(-0.448926\pi\)
0.159767 + 0.987155i \(0.448926\pi\)
\(450\) 0 0
\(451\) −19.5161 −0.918979
\(452\) 0 0
\(453\) 44.5236 2.09190
\(454\) 0 0
\(455\) −25.1008 −1.17675
\(456\) 0 0
\(457\) 7.34575 0.343620 0.171810 0.985130i \(-0.445039\pi\)
0.171810 + 0.985130i \(0.445039\pi\)
\(458\) 0 0
\(459\) −2.85658 −0.133334
\(460\) 0 0
\(461\) 25.6056 1.19257 0.596287 0.802772i \(-0.296642\pi\)
0.596287 + 0.802772i \(0.296642\pi\)
\(462\) 0 0
\(463\) −1.82649 −0.0848840 −0.0424420 0.999099i \(-0.513514\pi\)
−0.0424420 + 0.999099i \(0.513514\pi\)
\(464\) 0 0
\(465\) −89.7120 −4.16029
\(466\) 0 0
\(467\) −12.1542 −0.562430 −0.281215 0.959645i \(-0.590737\pi\)
−0.281215 + 0.959645i \(0.590737\pi\)
\(468\) 0 0
\(469\) 38.3943 1.77288
\(470\) 0 0
\(471\) −5.74976 −0.264935
\(472\) 0 0
\(473\) −19.3157 −0.888139
\(474\) 0 0
\(475\) 52.2896 2.39921
\(476\) 0 0
\(477\) 2.50882 0.114871
\(478\) 0 0
\(479\) −24.8130 −1.13373 −0.566867 0.823809i \(-0.691845\pi\)
−0.566867 + 0.823809i \(0.691845\pi\)
\(480\) 0 0
\(481\) −22.1123 −1.00823
\(482\) 0 0
\(483\) −47.4225 −2.15780
\(484\) 0 0
\(485\) −62.0607 −2.81803
\(486\) 0 0
\(487\) −11.6570 −0.528228 −0.264114 0.964491i \(-0.585080\pi\)
−0.264114 + 0.964491i \(0.585080\pi\)
\(488\) 0 0
\(489\) 4.90445 0.221787
\(490\) 0 0
\(491\) −17.8948 −0.807581 −0.403790 0.914852i \(-0.632307\pi\)
−0.403790 + 0.914852i \(0.632307\pi\)
\(492\) 0 0
\(493\) −20.8487 −0.938977
\(494\) 0 0
\(495\) 48.0521 2.15978
\(496\) 0 0
\(497\) 27.2347 1.22164
\(498\) 0 0
\(499\) 24.9134 1.11528 0.557638 0.830084i \(-0.311708\pi\)
0.557638 + 0.830084i \(0.311708\pi\)
\(500\) 0 0
\(501\) 22.7126 1.01473
\(502\) 0 0
\(503\) −9.24362 −0.412153 −0.206076 0.978536i \(-0.566070\pi\)
−0.206076 + 0.978536i \(0.566070\pi\)
\(504\) 0 0
\(505\) −34.4183 −1.53160
\(506\) 0 0
\(507\) −23.0743 −1.02476
\(508\) 0 0
\(509\) −12.7041 −0.563100 −0.281550 0.959546i \(-0.590849\pi\)
−0.281550 + 0.959546i \(0.590849\pi\)
\(510\) 0 0
\(511\) −20.2977 −0.897917
\(512\) 0 0
\(513\) −2.05881 −0.0908985
\(514\) 0 0
\(515\) −2.44364 −0.107679
\(516\) 0 0
\(517\) 24.9480 1.09721
\(518\) 0 0
\(519\) 33.3730 1.46491
\(520\) 0 0
\(521\) 6.38394 0.279685 0.139843 0.990174i \(-0.455340\pi\)
0.139843 + 0.990174i \(0.455340\pi\)
\(522\) 0 0
\(523\) −29.8510 −1.30529 −0.652647 0.757662i \(-0.726342\pi\)
−0.652647 + 0.757662i \(0.726342\pi\)
\(524\) 0 0
\(525\) 99.1393 4.32679
\(526\) 0 0
\(527\) 50.1705 2.18546
\(528\) 0 0
\(529\) 14.3943 0.625839
\(530\) 0 0
\(531\) −4.69968 −0.203949
\(532\) 0 0
\(533\) 8.82861 0.382409
\(534\) 0 0
\(535\) −74.3203 −3.21315
\(536\) 0 0
\(537\) 13.6525 0.589150
\(538\) 0 0
\(539\) −13.8221 −0.595361
\(540\) 0 0
\(541\) −19.0989 −0.821125 −0.410563 0.911832i \(-0.634668\pi\)
−0.410563 + 0.911832i \(0.634668\pi\)
\(542\) 0 0
\(543\) 38.8753 1.66830
\(544\) 0 0
\(545\) 37.2660 1.59630
\(546\) 0 0
\(547\) −24.8167 −1.06109 −0.530543 0.847658i \(-0.678012\pi\)
−0.530543 + 0.847658i \(0.678012\pi\)
\(548\) 0 0
\(549\) 40.0185 1.70795
\(550\) 0 0
\(551\) −15.0261 −0.640135
\(552\) 0 0
\(553\) −15.2647 −0.649122
\(554\) 0 0
\(555\) 121.494 5.15713
\(556\) 0 0
\(557\) −42.1720 −1.78688 −0.893442 0.449179i \(-0.851717\pi\)
−0.893442 + 0.449179i \(0.851717\pi\)
\(558\) 0 0
\(559\) 8.73795 0.369576
\(560\) 0 0
\(561\) −55.7594 −2.35416
\(562\) 0 0
\(563\) 21.7866 0.918197 0.459098 0.888385i \(-0.348173\pi\)
0.459098 + 0.888385i \(0.348173\pi\)
\(564\) 0 0
\(565\) 4.21710 0.177415
\(566\) 0 0
\(567\) −30.8850 −1.29705
\(568\) 0 0
\(569\) −14.8381 −0.622047 −0.311024 0.950402i \(-0.600672\pi\)
−0.311024 + 0.950402i \(0.600672\pi\)
\(570\) 0 0
\(571\) −3.32147 −0.138999 −0.0694996 0.997582i \(-0.522140\pi\)
−0.0694996 + 0.997582i \(0.522140\pi\)
\(572\) 0 0
\(573\) 2.86625 0.119739
\(574\) 0 0
\(575\) −78.1747 −3.26011
\(576\) 0 0
\(577\) −20.9502 −0.872168 −0.436084 0.899906i \(-0.643635\pi\)
−0.436084 + 0.899906i \(0.643635\pi\)
\(578\) 0 0
\(579\) 46.8724 1.94795
\(580\) 0 0
\(581\) 7.37288 0.305878
\(582\) 0 0
\(583\) −3.67029 −0.152008
\(584\) 0 0
\(585\) −21.7375 −0.898737
\(586\) 0 0
\(587\) −40.5165 −1.67229 −0.836147 0.548506i \(-0.815197\pi\)
−0.836147 + 0.548506i \(0.815197\pi\)
\(588\) 0 0
\(589\) 36.1591 1.48991
\(590\) 0 0
\(591\) 55.1677 2.26930
\(592\) 0 0
\(593\) −12.4878 −0.512814 −0.256407 0.966569i \(-0.582539\pi\)
−0.256407 + 0.966569i \(0.582539\pi\)
\(594\) 0 0
\(595\) −77.1272 −3.16191
\(596\) 0 0
\(597\) 42.0471 1.72087
\(598\) 0 0
\(599\) 3.52440 0.144003 0.0720016 0.997405i \(-0.477061\pi\)
0.0720016 + 0.997405i \(0.477061\pi\)
\(600\) 0 0
\(601\) −9.14227 −0.372921 −0.186461 0.982462i \(-0.559702\pi\)
−0.186461 + 0.982462i \(0.559702\pi\)
\(602\) 0 0
\(603\) 33.2498 1.35403
\(604\) 0 0
\(605\) −23.9099 −0.972076
\(606\) 0 0
\(607\) −14.6463 −0.594473 −0.297237 0.954804i \(-0.596065\pi\)
−0.297237 + 0.954804i \(0.596065\pi\)
\(608\) 0 0
\(609\) −28.4890 −1.15443
\(610\) 0 0
\(611\) −11.2858 −0.456576
\(612\) 0 0
\(613\) 5.53656 0.223619 0.111810 0.993730i \(-0.464335\pi\)
0.111810 + 0.993730i \(0.464335\pi\)
\(614\) 0 0
\(615\) −48.5080 −1.95603
\(616\) 0 0
\(617\) −2.78797 −0.112239 −0.0561197 0.998424i \(-0.517873\pi\)
−0.0561197 + 0.998424i \(0.517873\pi\)
\(618\) 0 0
\(619\) 27.9864 1.12487 0.562434 0.826842i \(-0.309865\pi\)
0.562434 + 0.826842i \(0.309865\pi\)
\(620\) 0 0
\(621\) 3.07799 0.123515
\(622\) 0 0
\(623\) −14.2849 −0.572312
\(624\) 0 0
\(625\) 74.5088 2.98035
\(626\) 0 0
\(627\) −40.1871 −1.60492
\(628\) 0 0
\(629\) −67.9443 −2.70912
\(630\) 0 0
\(631\) 17.6827 0.703937 0.351968 0.936012i \(-0.385512\pi\)
0.351968 + 0.936012i \(0.385512\pi\)
\(632\) 0 0
\(633\) −7.79714 −0.309908
\(634\) 0 0
\(635\) −33.9929 −1.34897
\(636\) 0 0
\(637\) 6.25277 0.247744
\(638\) 0 0
\(639\) 23.5855 0.933027
\(640\) 0 0
\(641\) 2.69744 0.106542 0.0532711 0.998580i \(-0.483035\pi\)
0.0532711 + 0.998580i \(0.483035\pi\)
\(642\) 0 0
\(643\) 14.9538 0.589721 0.294860 0.955540i \(-0.404727\pi\)
0.294860 + 0.955540i \(0.404727\pi\)
\(644\) 0 0
\(645\) −48.0099 −1.89039
\(646\) 0 0
\(647\) −23.1195 −0.908921 −0.454461 0.890767i \(-0.650168\pi\)
−0.454461 + 0.890767i \(0.650168\pi\)
\(648\) 0 0
\(649\) 6.87542 0.269884
\(650\) 0 0
\(651\) 68.5564 2.68694
\(652\) 0 0
\(653\) 16.4346 0.643136 0.321568 0.946886i \(-0.395790\pi\)
0.321568 + 0.946886i \(0.395790\pi\)
\(654\) 0 0
\(655\) 23.0613 0.901079
\(656\) 0 0
\(657\) −17.5780 −0.685782
\(658\) 0 0
\(659\) 31.2449 1.21713 0.608565 0.793504i \(-0.291746\pi\)
0.608565 + 0.793504i \(0.291746\pi\)
\(660\) 0 0
\(661\) −35.2963 −1.37287 −0.686434 0.727193i \(-0.740825\pi\)
−0.686434 + 0.727193i \(0.740825\pi\)
\(662\) 0 0
\(663\) 25.2241 0.979624
\(664\) 0 0
\(665\) −55.5875 −2.15559
\(666\) 0 0
\(667\) 22.4646 0.869832
\(668\) 0 0
\(669\) −65.8662 −2.54653
\(670\) 0 0
\(671\) −58.5452 −2.26011
\(672\) 0 0
\(673\) −44.7092 −1.72341 −0.861707 0.507407i \(-0.830604\pi\)
−0.861707 + 0.507407i \(0.830604\pi\)
\(674\) 0 0
\(675\) −6.43469 −0.247671
\(676\) 0 0
\(677\) −11.5552 −0.444101 −0.222051 0.975035i \(-0.571275\pi\)
−0.222051 + 0.975035i \(0.571275\pi\)
\(678\) 0 0
\(679\) 47.4258 1.82003
\(680\) 0 0
\(681\) −34.8918 −1.33705
\(682\) 0 0
\(683\) −25.8795 −0.990253 −0.495127 0.868821i \(-0.664878\pi\)
−0.495127 + 0.868821i \(0.664878\pi\)
\(684\) 0 0
\(685\) 26.0819 0.996539
\(686\) 0 0
\(687\) −22.9050 −0.873880
\(688\) 0 0
\(689\) 1.66034 0.0632541
\(690\) 0 0
\(691\) −10.9614 −0.416991 −0.208496 0.978023i \(-0.566857\pi\)
−0.208496 + 0.978023i \(0.566857\pi\)
\(692\) 0 0
\(693\) −36.7206 −1.39490
\(694\) 0 0
\(695\) 29.3600 1.11369
\(696\) 0 0
\(697\) 27.1276 1.02753
\(698\) 0 0
\(699\) 30.8186 1.16566
\(700\) 0 0
\(701\) −23.5186 −0.888285 −0.444142 0.895956i \(-0.646492\pi\)
−0.444142 + 0.895956i \(0.646492\pi\)
\(702\) 0 0
\(703\) −48.9691 −1.84690
\(704\) 0 0
\(705\) 62.0090 2.33539
\(706\) 0 0
\(707\) 26.3020 0.989187
\(708\) 0 0
\(709\) 18.3779 0.690198 0.345099 0.938566i \(-0.387845\pi\)
0.345099 + 0.938566i \(0.387845\pi\)
\(710\) 0 0
\(711\) −13.2194 −0.495765
\(712\) 0 0
\(713\) −54.0591 −2.02453
\(714\) 0 0
\(715\) 31.8010 1.18929
\(716\) 0 0
\(717\) 31.8264 1.18858
\(718\) 0 0
\(719\) 0.0257786 0.000961380 0 0.000480690 1.00000i \(-0.499847\pi\)
0.000480690 1.00000i \(0.499847\pi\)
\(720\) 0 0
\(721\) 1.86739 0.0695451
\(722\) 0 0
\(723\) −14.9896 −0.557468
\(724\) 0 0
\(725\) −46.9634 −1.74418
\(726\) 0 0
\(727\) −50.2243 −1.86272 −0.931359 0.364103i \(-0.881375\pi\)
−0.931359 + 0.364103i \(0.881375\pi\)
\(728\) 0 0
\(729\) −23.1129 −0.856033
\(730\) 0 0
\(731\) 26.8491 0.993049
\(732\) 0 0
\(733\) 8.67622 0.320464 0.160232 0.987079i \(-0.448776\pi\)
0.160232 + 0.987079i \(0.448776\pi\)
\(734\) 0 0
\(735\) −34.3553 −1.26722
\(736\) 0 0
\(737\) −48.6429 −1.79178
\(738\) 0 0
\(739\) 44.7510 1.64619 0.823096 0.567903i \(-0.192245\pi\)
0.823096 + 0.567903i \(0.192245\pi\)
\(740\) 0 0
\(741\) 18.1796 0.667846
\(742\) 0 0
\(743\) −28.0886 −1.03047 −0.515236 0.857048i \(-0.672296\pi\)
−0.515236 + 0.857048i \(0.672296\pi\)
\(744\) 0 0
\(745\) −83.4799 −3.05847
\(746\) 0 0
\(747\) 6.38497 0.233614
\(748\) 0 0
\(749\) 56.7944 2.07522
\(750\) 0 0
\(751\) −49.5578 −1.80839 −0.904194 0.427121i \(-0.859528\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(752\) 0 0
\(753\) 36.1359 1.31687
\(754\) 0 0
\(755\) −78.0249 −2.83962
\(756\) 0 0
\(757\) 23.2082 0.843515 0.421757 0.906709i \(-0.361413\pi\)
0.421757 + 0.906709i \(0.361413\pi\)
\(758\) 0 0
\(759\) 60.0811 2.18081
\(760\) 0 0
\(761\) 4.84815 0.175745 0.0878726 0.996132i \(-0.471993\pi\)
0.0878726 + 0.996132i \(0.471993\pi\)
\(762\) 0 0
\(763\) −28.4781 −1.03098
\(764\) 0 0
\(765\) −66.7929 −2.41490
\(766\) 0 0
\(767\) −3.11027 −0.112305
\(768\) 0 0
\(769\) −0.566722 −0.0204365 −0.0102183 0.999948i \(-0.503253\pi\)
−0.0102183 + 0.999948i \(0.503253\pi\)
\(770\) 0 0
\(771\) −43.9283 −1.58204
\(772\) 0 0
\(773\) −6.14638 −0.221070 −0.110535 0.993872i \(-0.535256\pi\)
−0.110535 + 0.993872i \(0.535256\pi\)
\(774\) 0 0
\(775\) 113.013 4.05956
\(776\) 0 0
\(777\) −92.8437 −3.33075
\(778\) 0 0
\(779\) 19.5515 0.700507
\(780\) 0 0
\(781\) −34.5045 −1.23467
\(782\) 0 0
\(783\) 1.84910 0.0660813
\(784\) 0 0
\(785\) 10.0761 0.359632
\(786\) 0 0
\(787\) −8.53758 −0.304332 −0.152166 0.988355i \(-0.548625\pi\)
−0.152166 + 0.988355i \(0.548625\pi\)
\(788\) 0 0
\(789\) 70.2158 2.49975
\(790\) 0 0
\(791\) −3.22264 −0.114584
\(792\) 0 0
\(793\) 26.4844 0.940488
\(794\) 0 0
\(795\) −9.12262 −0.323546
\(796\) 0 0
\(797\) 14.1869 0.502527 0.251263 0.967919i \(-0.419154\pi\)
0.251263 + 0.967919i \(0.419154\pi\)
\(798\) 0 0
\(799\) −34.6779 −1.22682
\(800\) 0 0
\(801\) −12.3708 −0.437102
\(802\) 0 0
\(803\) 25.7158 0.907490
\(804\) 0 0
\(805\) 83.1051 2.92907
\(806\) 0 0
\(807\) −22.1411 −0.779403
\(808\) 0 0
\(809\) −33.8689 −1.19077 −0.595384 0.803441i \(-0.703000\pi\)
−0.595384 + 0.803441i \(0.703000\pi\)
\(810\) 0 0
\(811\) −31.7865 −1.11618 −0.558088 0.829782i \(-0.688465\pi\)
−0.558088 + 0.829782i \(0.688465\pi\)
\(812\) 0 0
\(813\) −44.5311 −1.56178
\(814\) 0 0
\(815\) −8.59476 −0.301061
\(816\) 0 0
\(817\) 19.3508 0.676998
\(818\) 0 0
\(819\) 16.6115 0.580452
\(820\) 0 0
\(821\) 40.1354 1.40073 0.700367 0.713783i \(-0.253020\pi\)
0.700367 + 0.713783i \(0.253020\pi\)
\(822\) 0 0
\(823\) −52.6075 −1.83378 −0.916892 0.399136i \(-0.869310\pi\)
−0.916892 + 0.399136i \(0.869310\pi\)
\(824\) 0 0
\(825\) −125.603 −4.37292
\(826\) 0 0
\(827\) −0.342687 −0.0119164 −0.00595819 0.999982i \(-0.501897\pi\)
−0.00595819 + 0.999982i \(0.501897\pi\)
\(828\) 0 0
\(829\) 46.6832 1.62137 0.810687 0.585480i \(-0.199094\pi\)
0.810687 + 0.585480i \(0.199094\pi\)
\(830\) 0 0
\(831\) −5.15761 −0.178916
\(832\) 0 0
\(833\) 19.2129 0.665687
\(834\) 0 0
\(835\) −39.8025 −1.37742
\(836\) 0 0
\(837\) −4.44969 −0.153804
\(838\) 0 0
\(839\) 32.3054 1.11531 0.557654 0.830074i \(-0.311702\pi\)
0.557654 + 0.830074i \(0.311702\pi\)
\(840\) 0 0
\(841\) −15.5044 −0.534635
\(842\) 0 0
\(843\) −68.0018 −2.34211
\(844\) 0 0
\(845\) 40.4363 1.39105
\(846\) 0 0
\(847\) 18.2716 0.627819
\(848\) 0 0
\(849\) 2.55791 0.0877872
\(850\) 0 0
\(851\) 73.2105 2.50962
\(852\) 0 0
\(853\) 6.50867 0.222853 0.111426 0.993773i \(-0.464458\pi\)
0.111426 + 0.993773i \(0.464458\pi\)
\(854\) 0 0
\(855\) −48.1392 −1.64633
\(856\) 0 0
\(857\) −7.30729 −0.249612 −0.124806 0.992181i \(-0.539831\pi\)
−0.124806 + 0.992181i \(0.539831\pi\)
\(858\) 0 0
\(859\) −37.3444 −1.27417 −0.637087 0.770792i \(-0.719861\pi\)
−0.637087 + 0.770792i \(0.719861\pi\)
\(860\) 0 0
\(861\) 37.0690 1.26331
\(862\) 0 0
\(863\) −1.32465 −0.0450915 −0.0225457 0.999746i \(-0.507177\pi\)
−0.0225457 + 0.999746i \(0.507177\pi\)
\(864\) 0 0
\(865\) −58.4841 −1.98852
\(866\) 0 0
\(867\) 36.5970 1.24290
\(868\) 0 0
\(869\) 19.3393 0.656042
\(870\) 0 0
\(871\) 22.0048 0.745604
\(872\) 0 0
\(873\) 41.0711 1.39005
\(874\) 0 0
\(875\) −105.785 −3.57618
\(876\) 0 0
\(877\) 36.9740 1.24852 0.624262 0.781215i \(-0.285400\pi\)
0.624262 + 0.781215i \(0.285400\pi\)
\(878\) 0 0
\(879\) −6.80646 −0.229576
\(880\) 0 0
\(881\) 41.1447 1.38620 0.693100 0.720842i \(-0.256245\pi\)
0.693100 + 0.720842i \(0.256245\pi\)
\(882\) 0 0
\(883\) −0.110300 −0.00371191 −0.00185595 0.999998i \(-0.500591\pi\)
−0.00185595 + 0.999998i \(0.500591\pi\)
\(884\) 0 0
\(885\) 17.0891 0.574443
\(886\) 0 0
\(887\) 3.60289 0.120973 0.0604866 0.998169i \(-0.480735\pi\)
0.0604866 + 0.998169i \(0.480735\pi\)
\(888\) 0 0
\(889\) 25.9768 0.871234
\(890\) 0 0
\(891\) 39.1291 1.31087
\(892\) 0 0
\(893\) −24.9932 −0.836366
\(894\) 0 0
\(895\) −23.9252 −0.799733
\(896\) 0 0
\(897\) −27.1792 −0.907486
\(898\) 0 0
\(899\) −32.4759 −1.08313
\(900\) 0 0
\(901\) 5.10173 0.169963
\(902\) 0 0
\(903\) 36.6884 1.22091
\(904\) 0 0
\(905\) −68.1267 −2.26461
\(906\) 0 0
\(907\) −1.99421 −0.0662165 −0.0331083 0.999452i \(-0.510541\pi\)
−0.0331083 + 0.999452i \(0.510541\pi\)
\(908\) 0 0
\(909\) 22.7777 0.755489
\(910\) 0 0
\(911\) 18.7165 0.620105 0.310053 0.950719i \(-0.399653\pi\)
0.310053 + 0.950719i \(0.399653\pi\)
\(912\) 0 0
\(913\) −9.34092 −0.309139
\(914\) 0 0
\(915\) −145.516 −4.81061
\(916\) 0 0
\(917\) −17.6231 −0.581965
\(918\) 0 0
\(919\) −25.7155 −0.848276 −0.424138 0.905597i \(-0.639423\pi\)
−0.424138 + 0.905597i \(0.639423\pi\)
\(920\) 0 0
\(921\) 29.8065 0.982158
\(922\) 0 0
\(923\) 15.6089 0.513775
\(924\) 0 0
\(925\) −153.050 −5.03226
\(926\) 0 0
\(927\) 1.61717 0.0531150
\(928\) 0 0
\(929\) 32.1464 1.05469 0.527345 0.849651i \(-0.323188\pi\)
0.527345 + 0.849651i \(0.323188\pi\)
\(930\) 0 0
\(931\) 13.8472 0.453823
\(932\) 0 0
\(933\) 82.4480 2.69923
\(934\) 0 0
\(935\) 97.7149 3.19562
\(936\) 0 0
\(937\) −20.6830 −0.675683 −0.337841 0.941203i \(-0.609697\pi\)
−0.337841 + 0.941203i \(0.609697\pi\)
\(938\) 0 0
\(939\) 28.9400 0.944420
\(940\) 0 0
\(941\) −21.8443 −0.712105 −0.356052 0.934466i \(-0.615877\pi\)
−0.356052 + 0.934466i \(0.615877\pi\)
\(942\) 0 0
\(943\) −29.2302 −0.951867
\(944\) 0 0
\(945\) 6.84052 0.222522
\(946\) 0 0
\(947\) −29.6038 −0.961995 −0.480997 0.876722i \(-0.659725\pi\)
−0.480997 + 0.876722i \(0.659725\pi\)
\(948\) 0 0
\(949\) −11.6332 −0.377629
\(950\) 0 0
\(951\) 37.6671 1.22144
\(952\) 0 0
\(953\) −26.0399 −0.843516 −0.421758 0.906708i \(-0.638587\pi\)
−0.421758 + 0.906708i \(0.638587\pi\)
\(954\) 0 0
\(955\) −5.02293 −0.162538
\(956\) 0 0
\(957\) 36.0936 1.16674
\(958\) 0 0
\(959\) −19.9314 −0.643618
\(960\) 0 0
\(961\) 47.1506 1.52099
\(962\) 0 0
\(963\) 49.1844 1.58495
\(964\) 0 0
\(965\) −82.1410 −2.64421
\(966\) 0 0
\(967\) 24.2513 0.779870 0.389935 0.920842i \(-0.372497\pi\)
0.389935 + 0.920842i \(0.372497\pi\)
\(968\) 0 0
\(969\) 55.8605 1.79450
\(970\) 0 0
\(971\) 32.2887 1.03619 0.518096 0.855322i \(-0.326641\pi\)
0.518096 + 0.855322i \(0.326641\pi\)
\(972\) 0 0
\(973\) −22.4364 −0.719278
\(974\) 0 0
\(975\) 56.8195 1.81968
\(976\) 0 0
\(977\) 47.1989 1.51003 0.755014 0.655709i \(-0.227630\pi\)
0.755014 + 0.655709i \(0.227630\pi\)
\(978\) 0 0
\(979\) 18.0980 0.578414
\(980\) 0 0
\(981\) −24.6623 −0.787406
\(982\) 0 0
\(983\) −25.7368 −0.820878 −0.410439 0.911888i \(-0.634624\pi\)
−0.410439 + 0.911888i \(0.634624\pi\)
\(984\) 0 0
\(985\) −96.6781 −3.08042
\(986\) 0 0
\(987\) −47.3863 −1.50832
\(988\) 0 0
\(989\) −28.9301 −0.919922
\(990\) 0 0
\(991\) 21.2202 0.674082 0.337041 0.941490i \(-0.390574\pi\)
0.337041 + 0.941490i \(0.390574\pi\)
\(992\) 0 0
\(993\) −24.6897 −0.783502
\(994\) 0 0
\(995\) −73.6850 −2.33597
\(996\) 0 0
\(997\) 3.15458 0.0999065 0.0499532 0.998752i \(-0.484093\pi\)
0.0499532 + 0.998752i \(0.484093\pi\)
\(998\) 0 0
\(999\) 6.02607 0.190656
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7232.2.a.bn.1.14 18
4.3 odd 2 inner 7232.2.a.bn.1.5 18
8.3 odd 2 3616.2.a.j.1.14 yes 18
8.5 even 2 3616.2.a.j.1.5 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3616.2.a.j.1.5 18 8.5 even 2
3616.2.a.j.1.14 yes 18 8.3 odd 2
7232.2.a.bn.1.5 18 4.3 odd 2 inner
7232.2.a.bn.1.14 18 1.1 even 1 trivial