Properties

Label 7232.2.a.bn.1.13
Level $7232$
Weight $2$
Character 7232.1
Self dual yes
Analytic conductor $57.748$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7232,2,Mod(1,7232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7232 = 2^{6} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,-10,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.7478107418\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 43 x^{16} + 760 x^{14} - 7095 x^{12} + 37240 x^{10} - 107142 x^{8} + 149152 x^{6} - 72200 x^{4} + \cdots - 800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{10}\cdot 5 \)
Twist minimal: no (minimal twist has level 3616)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(1.83905\) of defining polynomial
Character \(\chi\) \(=\) 7232.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83905 q^{3} +3.63208 q^{5} +2.00576 q^{7} +0.382087 q^{9} -0.615471 q^{11} +6.26971 q^{13} +6.67957 q^{15} +2.75179 q^{17} -0.214330 q^{19} +3.68868 q^{21} -4.90647 q^{23} +8.19203 q^{25} -4.81446 q^{27} +5.27427 q^{29} -9.69962 q^{31} -1.13188 q^{33} +7.28507 q^{35} -0.0565910 q^{37} +11.5303 q^{39} +1.14920 q^{41} +9.36491 q^{43} +1.38777 q^{45} +0.589828 q^{47} -2.97694 q^{49} +5.06068 q^{51} +2.44243 q^{53} -2.23544 q^{55} -0.394162 q^{57} +13.9532 q^{59} -6.55332 q^{61} +0.766373 q^{63} +22.7721 q^{65} -0.763726 q^{67} -9.02321 q^{69} +2.42663 q^{71} -3.33086 q^{73} +15.0655 q^{75} -1.23448 q^{77} -9.46737 q^{79} -10.0003 q^{81} -11.7285 q^{83} +9.99475 q^{85} +9.69962 q^{87} +17.8784 q^{89} +12.5755 q^{91} -17.8380 q^{93} -0.778464 q^{95} +2.74266 q^{97} -0.235163 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 10 q^{5} + 32 q^{9} + 12 q^{13} + 16 q^{17} - 14 q^{21} + 44 q^{25} - 22 q^{29} + 24 q^{33} + 4 q^{37} + 50 q^{41} - 32 q^{45} + 58 q^{49} - 2 q^{53} + 46 q^{57} - 10 q^{61} + 40 q^{65} - 22 q^{69}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.83905 1.06177 0.530887 0.847443i \(-0.321859\pi\)
0.530887 + 0.847443i \(0.321859\pi\)
\(4\) 0 0
\(5\) 3.63208 1.62432 0.812159 0.583437i \(-0.198292\pi\)
0.812159 + 0.583437i \(0.198292\pi\)
\(6\) 0 0
\(7\) 2.00576 0.758104 0.379052 0.925375i \(-0.376250\pi\)
0.379052 + 0.925375i \(0.376250\pi\)
\(8\) 0 0
\(9\) 0.382087 0.127362
\(10\) 0 0
\(11\) −0.615471 −0.185571 −0.0927857 0.995686i \(-0.529577\pi\)
−0.0927857 + 0.995686i \(0.529577\pi\)
\(12\) 0 0
\(13\) 6.26971 1.73890 0.869452 0.494018i \(-0.164472\pi\)
0.869452 + 0.494018i \(0.164472\pi\)
\(14\) 0 0
\(15\) 6.67957 1.72466
\(16\) 0 0
\(17\) 2.75179 0.667408 0.333704 0.942678i \(-0.391701\pi\)
0.333704 + 0.942678i \(0.391701\pi\)
\(18\) 0 0
\(19\) −0.214330 −0.0491706 −0.0245853 0.999698i \(-0.507827\pi\)
−0.0245853 + 0.999698i \(0.507827\pi\)
\(20\) 0 0
\(21\) 3.68868 0.804935
\(22\) 0 0
\(23\) −4.90647 −1.02307 −0.511534 0.859263i \(-0.670923\pi\)
−0.511534 + 0.859263i \(0.670923\pi\)
\(24\) 0 0
\(25\) 8.19203 1.63841
\(26\) 0 0
\(27\) −4.81446 −0.926543
\(28\) 0 0
\(29\) 5.27427 0.979408 0.489704 0.871889i \(-0.337105\pi\)
0.489704 + 0.871889i \(0.337105\pi\)
\(30\) 0 0
\(31\) −9.69962 −1.74210 −0.871052 0.491191i \(-0.836562\pi\)
−0.871052 + 0.491191i \(0.836562\pi\)
\(32\) 0 0
\(33\) −1.13188 −0.197035
\(34\) 0 0
\(35\) 7.28507 1.23140
\(36\) 0 0
\(37\) −0.0565910 −0.00930351 −0.00465176 0.999989i \(-0.501481\pi\)
−0.00465176 + 0.999989i \(0.501481\pi\)
\(38\) 0 0
\(39\) 11.5303 1.84632
\(40\) 0 0
\(41\) 1.14920 0.179476 0.0897378 0.995965i \(-0.471397\pi\)
0.0897378 + 0.995965i \(0.471397\pi\)
\(42\) 0 0
\(43\) 9.36491 1.42814 0.714068 0.700076i \(-0.246851\pi\)
0.714068 + 0.700076i \(0.246851\pi\)
\(44\) 0 0
\(45\) 1.38777 0.206877
\(46\) 0 0
\(47\) 0.589828 0.0860353 0.0430176 0.999074i \(-0.486303\pi\)
0.0430176 + 0.999074i \(0.486303\pi\)
\(48\) 0 0
\(49\) −2.97694 −0.425278
\(50\) 0 0
\(51\) 5.06068 0.708636
\(52\) 0 0
\(53\) 2.44243 0.335494 0.167747 0.985830i \(-0.446351\pi\)
0.167747 + 0.985830i \(0.446351\pi\)
\(54\) 0 0
\(55\) −2.23544 −0.301427
\(56\) 0 0
\(57\) −0.394162 −0.0522081
\(58\) 0 0
\(59\) 13.9532 1.81655 0.908277 0.418369i \(-0.137398\pi\)
0.908277 + 0.418369i \(0.137398\pi\)
\(60\) 0 0
\(61\) −6.55332 −0.839066 −0.419533 0.907740i \(-0.637806\pi\)
−0.419533 + 0.907740i \(0.637806\pi\)
\(62\) 0 0
\(63\) 0.766373 0.0965539
\(64\) 0 0
\(65\) 22.7721 2.82453
\(66\) 0 0
\(67\) −0.763726 −0.0933040 −0.0466520 0.998911i \(-0.514855\pi\)
−0.0466520 + 0.998911i \(0.514855\pi\)
\(68\) 0 0
\(69\) −9.02321 −1.08627
\(70\) 0 0
\(71\) 2.42663 0.287988 0.143994 0.989579i \(-0.454005\pi\)
0.143994 + 0.989579i \(0.454005\pi\)
\(72\) 0 0
\(73\) −3.33086 −0.389848 −0.194924 0.980818i \(-0.562446\pi\)
−0.194924 + 0.980818i \(0.562446\pi\)
\(74\) 0 0
\(75\) 15.0655 1.73962
\(76\) 0 0
\(77\) −1.23448 −0.140682
\(78\) 0 0
\(79\) −9.46737 −1.06516 −0.532581 0.846379i \(-0.678778\pi\)
−0.532581 + 0.846379i \(0.678778\pi\)
\(80\) 0 0
\(81\) −10.0003 −1.11114
\(82\) 0 0
\(83\) −11.7285 −1.28737 −0.643683 0.765292i \(-0.722594\pi\)
−0.643683 + 0.765292i \(0.722594\pi\)
\(84\) 0 0
\(85\) 9.99475 1.08408
\(86\) 0 0
\(87\) 9.69962 1.03991
\(88\) 0 0
\(89\) 17.8784 1.89511 0.947555 0.319594i \(-0.103547\pi\)
0.947555 + 0.319594i \(0.103547\pi\)
\(90\) 0 0
\(91\) 12.5755 1.31827
\(92\) 0 0
\(93\) −17.8380 −1.84972
\(94\) 0 0
\(95\) −0.778464 −0.0798687
\(96\) 0 0
\(97\) 2.74266 0.278475 0.139238 0.990259i \(-0.455535\pi\)
0.139238 + 0.990259i \(0.455535\pi\)
\(98\) 0 0
\(99\) −0.235163 −0.0236348
\(100\) 0 0
\(101\) −13.0583 −1.29935 −0.649677 0.760211i \(-0.725096\pi\)
−0.649677 + 0.760211i \(0.725096\pi\)
\(102\) 0 0
\(103\) −0.974823 −0.0960521 −0.0480261 0.998846i \(-0.515293\pi\)
−0.0480261 + 0.998846i \(0.515293\pi\)
\(104\) 0 0
\(105\) 13.3976 1.30747
\(106\) 0 0
\(107\) 7.12237 0.688545 0.344273 0.938870i \(-0.388126\pi\)
0.344273 + 0.938870i \(0.388126\pi\)
\(108\) 0 0
\(109\) 4.91579 0.470847 0.235424 0.971893i \(-0.424352\pi\)
0.235424 + 0.971893i \(0.424352\pi\)
\(110\) 0 0
\(111\) −0.104073 −0.00987822
\(112\) 0 0
\(113\) −1.00000 −0.0940721
\(114\) 0 0
\(115\) −17.8207 −1.66179
\(116\) 0 0
\(117\) 2.39557 0.221471
\(118\) 0 0
\(119\) 5.51943 0.505965
\(120\) 0 0
\(121\) −10.6212 −0.965563
\(122\) 0 0
\(123\) 2.11344 0.190562
\(124\) 0 0
\(125\) 11.5937 1.03698
\(126\) 0 0
\(127\) 12.9296 1.14731 0.573657 0.819096i \(-0.305524\pi\)
0.573657 + 0.819096i \(0.305524\pi\)
\(128\) 0 0
\(129\) 17.2225 1.51636
\(130\) 0 0
\(131\) −7.12461 −0.622480 −0.311240 0.950331i \(-0.600744\pi\)
−0.311240 + 0.950331i \(0.600744\pi\)
\(132\) 0 0
\(133\) −0.429893 −0.0372765
\(134\) 0 0
\(135\) −17.4865 −1.50500
\(136\) 0 0
\(137\) −5.49173 −0.469190 −0.234595 0.972093i \(-0.575376\pi\)
−0.234595 + 0.972093i \(0.575376\pi\)
\(138\) 0 0
\(139\) −10.5690 −0.896451 −0.448226 0.893921i \(-0.647944\pi\)
−0.448226 + 0.893921i \(0.647944\pi\)
\(140\) 0 0
\(141\) 1.08472 0.0913499
\(142\) 0 0
\(143\) −3.85882 −0.322691
\(144\) 0 0
\(145\) 19.1566 1.59087
\(146\) 0 0
\(147\) −5.47474 −0.451549
\(148\) 0 0
\(149\) −6.83760 −0.560158 −0.280079 0.959977i \(-0.590361\pi\)
−0.280079 + 0.959977i \(0.590361\pi\)
\(150\) 0 0
\(151\) −17.1643 −1.39681 −0.698404 0.715704i \(-0.746106\pi\)
−0.698404 + 0.715704i \(0.746106\pi\)
\(152\) 0 0
\(153\) 1.05143 0.0850027
\(154\) 0 0
\(155\) −35.2299 −2.82973
\(156\) 0 0
\(157\) 2.32795 0.185791 0.0928953 0.995676i \(-0.470388\pi\)
0.0928953 + 0.995676i \(0.470388\pi\)
\(158\) 0 0
\(159\) 4.49174 0.356219
\(160\) 0 0
\(161\) −9.84117 −0.775593
\(162\) 0 0
\(163\) 21.5911 1.69114 0.845572 0.533862i \(-0.179260\pi\)
0.845572 + 0.533862i \(0.179260\pi\)
\(164\) 0 0
\(165\) −4.11108 −0.320047
\(166\) 0 0
\(167\) −1.25184 −0.0968702 −0.0484351 0.998826i \(-0.515423\pi\)
−0.0484351 + 0.998826i \(0.515423\pi\)
\(168\) 0 0
\(169\) 26.3092 2.02379
\(170\) 0 0
\(171\) −0.0818926 −0.00626249
\(172\) 0 0
\(173\) −11.0577 −0.840699 −0.420350 0.907362i \(-0.638093\pi\)
−0.420350 + 0.907362i \(0.638093\pi\)
\(174\) 0 0
\(175\) 16.4312 1.24208
\(176\) 0 0
\(177\) 25.6606 1.92877
\(178\) 0 0
\(179\) −7.75968 −0.579986 −0.289993 0.957029i \(-0.593653\pi\)
−0.289993 + 0.957029i \(0.593653\pi\)
\(180\) 0 0
\(181\) 9.64945 0.717238 0.358619 0.933484i \(-0.383248\pi\)
0.358619 + 0.933484i \(0.383248\pi\)
\(182\) 0 0
\(183\) −12.0518 −0.890898
\(184\) 0 0
\(185\) −0.205543 −0.0151119
\(186\) 0 0
\(187\) −1.69365 −0.123852
\(188\) 0 0
\(189\) −9.65663 −0.702417
\(190\) 0 0
\(191\) −13.1689 −0.952870 −0.476435 0.879210i \(-0.658071\pi\)
−0.476435 + 0.879210i \(0.658071\pi\)
\(192\) 0 0
\(193\) 19.4942 1.40322 0.701612 0.712559i \(-0.252464\pi\)
0.701612 + 0.712559i \(0.252464\pi\)
\(194\) 0 0
\(195\) 41.8789 2.99901
\(196\) 0 0
\(197\) −8.76754 −0.624662 −0.312331 0.949973i \(-0.601110\pi\)
−0.312331 + 0.949973i \(0.601110\pi\)
\(198\) 0 0
\(199\) 24.7557 1.75488 0.877441 0.479684i \(-0.159249\pi\)
0.877441 + 0.479684i \(0.159249\pi\)
\(200\) 0 0
\(201\) −1.40453 −0.0990677
\(202\) 0 0
\(203\) 10.5789 0.742493
\(204\) 0 0
\(205\) 4.17401 0.291525
\(206\) 0 0
\(207\) −1.87470 −0.130300
\(208\) 0 0
\(209\) 0.131914 0.00912466
\(210\) 0 0
\(211\) −20.1288 −1.38572 −0.692861 0.721071i \(-0.743650\pi\)
−0.692861 + 0.721071i \(0.743650\pi\)
\(212\) 0 0
\(213\) 4.46268 0.305778
\(214\) 0 0
\(215\) 34.0141 2.31975
\(216\) 0 0
\(217\) −19.4551 −1.32070
\(218\) 0 0
\(219\) −6.12561 −0.413930
\(220\) 0 0
\(221\) 17.2529 1.16056
\(222\) 0 0
\(223\) −10.6749 −0.714845 −0.357422 0.933943i \(-0.616344\pi\)
−0.357422 + 0.933943i \(0.616344\pi\)
\(224\) 0 0
\(225\) 3.13007 0.208671
\(226\) 0 0
\(227\) −4.43422 −0.294309 −0.147155 0.989113i \(-0.547012\pi\)
−0.147155 + 0.989113i \(0.547012\pi\)
\(228\) 0 0
\(229\) −4.75387 −0.314145 −0.157072 0.987587i \(-0.550206\pi\)
−0.157072 + 0.987587i \(0.550206\pi\)
\(230\) 0 0
\(231\) −2.27027 −0.149373
\(232\) 0 0
\(233\) −12.3974 −0.812178 −0.406089 0.913833i \(-0.633108\pi\)
−0.406089 + 0.913833i \(0.633108\pi\)
\(234\) 0 0
\(235\) 2.14231 0.139749
\(236\) 0 0
\(237\) −17.4109 −1.13096
\(238\) 0 0
\(239\) 1.43869 0.0930614 0.0465307 0.998917i \(-0.485183\pi\)
0.0465307 + 0.998917i \(0.485183\pi\)
\(240\) 0 0
\(241\) 27.3237 1.76008 0.880038 0.474904i \(-0.157517\pi\)
0.880038 + 0.474904i \(0.157517\pi\)
\(242\) 0 0
\(243\) −3.94757 −0.253237
\(244\) 0 0
\(245\) −10.8125 −0.690786
\(246\) 0 0
\(247\) −1.34379 −0.0855030
\(248\) 0 0
\(249\) −21.5692 −1.36689
\(250\) 0 0
\(251\) −7.89513 −0.498336 −0.249168 0.968460i \(-0.580157\pi\)
−0.249168 + 0.968460i \(0.580157\pi\)
\(252\) 0 0
\(253\) 3.01979 0.189852
\(254\) 0 0
\(255\) 18.3808 1.15105
\(256\) 0 0
\(257\) 20.1250 1.25536 0.627682 0.778470i \(-0.284004\pi\)
0.627682 + 0.778470i \(0.284004\pi\)
\(258\) 0 0
\(259\) −0.113508 −0.00705303
\(260\) 0 0
\(261\) 2.01523 0.124740
\(262\) 0 0
\(263\) 6.34551 0.391281 0.195641 0.980676i \(-0.437321\pi\)
0.195641 + 0.980676i \(0.437321\pi\)
\(264\) 0 0
\(265\) 8.87112 0.544949
\(266\) 0 0
\(267\) 32.8792 2.01218
\(268\) 0 0
\(269\) −29.7248 −1.81235 −0.906175 0.422902i \(-0.861011\pi\)
−0.906175 + 0.422902i \(0.861011\pi\)
\(270\) 0 0
\(271\) 19.8818 1.20773 0.603867 0.797085i \(-0.293626\pi\)
0.603867 + 0.797085i \(0.293626\pi\)
\(272\) 0 0
\(273\) 23.1269 1.39970
\(274\) 0 0
\(275\) −5.04196 −0.304041
\(276\) 0 0
\(277\) −17.0909 −1.02689 −0.513446 0.858122i \(-0.671631\pi\)
−0.513446 + 0.858122i \(0.671631\pi\)
\(278\) 0 0
\(279\) −3.70610 −0.221878
\(280\) 0 0
\(281\) 23.7803 1.41862 0.709308 0.704899i \(-0.249008\pi\)
0.709308 + 0.704899i \(0.249008\pi\)
\(282\) 0 0
\(283\) 18.0362 1.07214 0.536070 0.844173i \(-0.319908\pi\)
0.536070 + 0.844173i \(0.319908\pi\)
\(284\) 0 0
\(285\) −1.43163 −0.0848025
\(286\) 0 0
\(287\) 2.30502 0.136061
\(288\) 0 0
\(289\) −9.42762 −0.554566
\(290\) 0 0
\(291\) 5.04388 0.295678
\(292\) 0 0
\(293\) −0.00534046 −0.000311993 0 −0.000155997 1.00000i \(-0.500050\pi\)
−0.000155997 1.00000i \(0.500050\pi\)
\(294\) 0 0
\(295\) 50.6793 2.95066
\(296\) 0 0
\(297\) 2.96316 0.171940
\(298\) 0 0
\(299\) −30.7621 −1.77902
\(300\) 0 0
\(301\) 18.7837 1.08268
\(302\) 0 0
\(303\) −24.0149 −1.37962
\(304\) 0 0
\(305\) −23.8022 −1.36291
\(306\) 0 0
\(307\) −28.9922 −1.65467 −0.827335 0.561708i \(-0.810144\pi\)
−0.827335 + 0.561708i \(0.810144\pi\)
\(308\) 0 0
\(309\) −1.79274 −0.101986
\(310\) 0 0
\(311\) −9.06808 −0.514203 −0.257102 0.966384i \(-0.582768\pi\)
−0.257102 + 0.966384i \(0.582768\pi\)
\(312\) 0 0
\(313\) −34.3485 −1.94149 −0.970746 0.240110i \(-0.922816\pi\)
−0.970746 + 0.240110i \(0.922816\pi\)
\(314\) 0 0
\(315\) 2.78353 0.156834
\(316\) 0 0
\(317\) 16.6587 0.935647 0.467824 0.883822i \(-0.345038\pi\)
0.467824 + 0.883822i \(0.345038\pi\)
\(318\) 0 0
\(319\) −3.24616 −0.181750
\(320\) 0 0
\(321\) 13.0984 0.731079
\(322\) 0 0
\(323\) −0.589792 −0.0328169
\(324\) 0 0
\(325\) 51.3616 2.84903
\(326\) 0 0
\(327\) 9.04036 0.499933
\(328\) 0 0
\(329\) 1.18305 0.0652237
\(330\) 0 0
\(331\) 3.16595 0.174016 0.0870082 0.996208i \(-0.472269\pi\)
0.0870082 + 0.996208i \(0.472269\pi\)
\(332\) 0 0
\(333\) −0.0216227 −0.00118492
\(334\) 0 0
\(335\) −2.77392 −0.151555
\(336\) 0 0
\(337\) −15.1682 −0.826263 −0.413131 0.910671i \(-0.635565\pi\)
−0.413131 + 0.910671i \(0.635565\pi\)
\(338\) 0 0
\(339\) −1.83905 −0.0998832
\(340\) 0 0
\(341\) 5.96983 0.323285
\(342\) 0 0
\(343\) −20.0113 −1.08051
\(344\) 0 0
\(345\) −32.7731 −1.76444
\(346\) 0 0
\(347\) −24.1063 −1.29410 −0.647048 0.762450i \(-0.723996\pi\)
−0.647048 + 0.762450i \(0.723996\pi\)
\(348\) 0 0
\(349\) −14.6137 −0.782253 −0.391126 0.920337i \(-0.627914\pi\)
−0.391126 + 0.920337i \(0.627914\pi\)
\(350\) 0 0
\(351\) −30.1853 −1.61117
\(352\) 0 0
\(353\) 2.89176 0.153913 0.0769564 0.997034i \(-0.475480\pi\)
0.0769564 + 0.997034i \(0.475480\pi\)
\(354\) 0 0
\(355\) 8.81372 0.467784
\(356\) 0 0
\(357\) 10.1505 0.537220
\(358\) 0 0
\(359\) −1.49402 −0.0788513 −0.0394257 0.999223i \(-0.512553\pi\)
−0.0394257 + 0.999223i \(0.512553\pi\)
\(360\) 0 0
\(361\) −18.9541 −0.997582
\(362\) 0 0
\(363\) −19.5329 −1.02521
\(364\) 0 0
\(365\) −12.0980 −0.633237
\(366\) 0 0
\(367\) 6.10176 0.318509 0.159255 0.987238i \(-0.449091\pi\)
0.159255 + 0.987238i \(0.449091\pi\)
\(368\) 0 0
\(369\) 0.439096 0.0228584
\(370\) 0 0
\(371\) 4.89892 0.254339
\(372\) 0 0
\(373\) 21.2606 1.10083 0.550417 0.834890i \(-0.314469\pi\)
0.550417 + 0.834890i \(0.314469\pi\)
\(374\) 0 0
\(375\) 21.3214 1.10103
\(376\) 0 0
\(377\) 33.0681 1.70310
\(378\) 0 0
\(379\) 7.92412 0.407035 0.203517 0.979071i \(-0.434763\pi\)
0.203517 + 0.979071i \(0.434763\pi\)
\(380\) 0 0
\(381\) 23.7781 1.21819
\(382\) 0 0
\(383\) −10.8179 −0.552768 −0.276384 0.961047i \(-0.589136\pi\)
−0.276384 + 0.961047i \(0.589136\pi\)
\(384\) 0 0
\(385\) −4.48375 −0.228513
\(386\) 0 0
\(387\) 3.57821 0.181891
\(388\) 0 0
\(389\) 1.71313 0.0868593 0.0434296 0.999056i \(-0.486172\pi\)
0.0434296 + 0.999056i \(0.486172\pi\)
\(390\) 0 0
\(391\) −13.5016 −0.682805
\(392\) 0 0
\(393\) −13.1025 −0.660933
\(394\) 0 0
\(395\) −34.3863 −1.73016
\(396\) 0 0
\(397\) 10.6575 0.534884 0.267442 0.963574i \(-0.413822\pi\)
0.267442 + 0.963574i \(0.413822\pi\)
\(398\) 0 0
\(399\) −0.790593 −0.0395792
\(400\) 0 0
\(401\) 39.2440 1.95975 0.979875 0.199611i \(-0.0639680\pi\)
0.979875 + 0.199611i \(0.0639680\pi\)
\(402\) 0 0
\(403\) −60.8138 −3.02935
\(404\) 0 0
\(405\) −36.3218 −1.80485
\(406\) 0 0
\(407\) 0.0348301 0.00172647
\(408\) 0 0
\(409\) −24.5923 −1.21601 −0.608006 0.793933i \(-0.708030\pi\)
−0.608006 + 0.793933i \(0.708030\pi\)
\(410\) 0 0
\(411\) −10.0995 −0.498174
\(412\) 0 0
\(413\) 27.9868 1.37714
\(414\) 0 0
\(415\) −42.5987 −2.09109
\(416\) 0 0
\(417\) −19.4369 −0.951828
\(418\) 0 0
\(419\) 8.68346 0.424215 0.212107 0.977246i \(-0.431967\pi\)
0.212107 + 0.977246i \(0.431967\pi\)
\(420\) 0 0
\(421\) −5.93496 −0.289252 −0.144626 0.989486i \(-0.546198\pi\)
−0.144626 + 0.989486i \(0.546198\pi\)
\(422\) 0 0
\(423\) 0.225366 0.0109577
\(424\) 0 0
\(425\) 22.5428 1.09349
\(426\) 0 0
\(427\) −13.1444 −0.636100
\(428\) 0 0
\(429\) −7.09654 −0.342624
\(430\) 0 0
\(431\) −21.8054 −1.05033 −0.525165 0.851000i \(-0.675997\pi\)
−0.525165 + 0.851000i \(0.675997\pi\)
\(432\) 0 0
\(433\) 13.6960 0.658190 0.329095 0.944297i \(-0.393256\pi\)
0.329095 + 0.944297i \(0.393256\pi\)
\(434\) 0 0
\(435\) 35.2299 1.68914
\(436\) 0 0
\(437\) 1.05160 0.0503049
\(438\) 0 0
\(439\) 25.5350 1.21872 0.609358 0.792895i \(-0.291427\pi\)
0.609358 + 0.792895i \(0.291427\pi\)
\(440\) 0 0
\(441\) −1.13745 −0.0541644
\(442\) 0 0
\(443\) −24.5003 −1.16405 −0.582023 0.813172i \(-0.697739\pi\)
−0.582023 + 0.813172i \(0.697739\pi\)
\(444\) 0 0
\(445\) 64.9359 3.07826
\(446\) 0 0
\(447\) −12.5747 −0.594761
\(448\) 0 0
\(449\) −5.95389 −0.280981 −0.140491 0.990082i \(-0.544868\pi\)
−0.140491 + 0.990082i \(0.544868\pi\)
\(450\) 0 0
\(451\) −0.707302 −0.0333055
\(452\) 0 0
\(453\) −31.5659 −1.48309
\(454\) 0 0
\(455\) 45.6753 2.14129
\(456\) 0 0
\(457\) −10.7028 −0.500657 −0.250328 0.968161i \(-0.580539\pi\)
−0.250328 + 0.968161i \(0.580539\pi\)
\(458\) 0 0
\(459\) −13.2484 −0.618383
\(460\) 0 0
\(461\) 11.9029 0.554374 0.277187 0.960816i \(-0.410598\pi\)
0.277187 + 0.960816i \(0.410598\pi\)
\(462\) 0 0
\(463\) −34.3933 −1.59839 −0.799195 0.601072i \(-0.794741\pi\)
−0.799195 + 0.601072i \(0.794741\pi\)
\(464\) 0 0
\(465\) −64.7893 −3.00453
\(466\) 0 0
\(467\) 33.1760 1.53520 0.767601 0.640928i \(-0.221450\pi\)
0.767601 + 0.640928i \(0.221450\pi\)
\(468\) 0 0
\(469\) −1.53185 −0.0707342
\(470\) 0 0
\(471\) 4.28120 0.197267
\(472\) 0 0
\(473\) −5.76383 −0.265021
\(474\) 0 0
\(475\) −1.75580 −0.0805615
\(476\) 0 0
\(477\) 0.933222 0.0427293
\(478\) 0 0
\(479\) −39.2357 −1.79273 −0.896363 0.443321i \(-0.853800\pi\)
−0.896363 + 0.443321i \(0.853800\pi\)
\(480\) 0 0
\(481\) −0.354809 −0.0161779
\(482\) 0 0
\(483\) −18.0984 −0.823504
\(484\) 0 0
\(485\) 9.96158 0.452332
\(486\) 0 0
\(487\) −38.7135 −1.75428 −0.877139 0.480237i \(-0.840551\pi\)
−0.877139 + 0.480237i \(0.840551\pi\)
\(488\) 0 0
\(489\) 39.7070 1.79561
\(490\) 0 0
\(491\) 23.2910 1.05111 0.525553 0.850761i \(-0.323858\pi\)
0.525553 + 0.850761i \(0.323858\pi\)
\(492\) 0 0
\(493\) 14.5137 0.653665
\(494\) 0 0
\(495\) −0.854133 −0.0383904
\(496\) 0 0
\(497\) 4.86723 0.218325
\(498\) 0 0
\(499\) 15.3428 0.686839 0.343419 0.939182i \(-0.388415\pi\)
0.343419 + 0.939182i \(0.388415\pi\)
\(500\) 0 0
\(501\) −2.30219 −0.102854
\(502\) 0 0
\(503\) −9.78313 −0.436208 −0.218104 0.975926i \(-0.569987\pi\)
−0.218104 + 0.975926i \(0.569987\pi\)
\(504\) 0 0
\(505\) −47.4290 −2.11056
\(506\) 0 0
\(507\) 48.3838 2.14880
\(508\) 0 0
\(509\) −17.2667 −0.765333 −0.382666 0.923887i \(-0.624994\pi\)
−0.382666 + 0.923887i \(0.624994\pi\)
\(510\) 0 0
\(511\) −6.68090 −0.295546
\(512\) 0 0
\(513\) 1.03188 0.0455587
\(514\) 0 0
\(515\) −3.54064 −0.156019
\(516\) 0 0
\(517\) −0.363022 −0.0159657
\(518\) 0 0
\(519\) −20.3356 −0.892632
\(520\) 0 0
\(521\) 22.0112 0.964329 0.482165 0.876081i \(-0.339851\pi\)
0.482165 + 0.876081i \(0.339851\pi\)
\(522\) 0 0
\(523\) 43.8921 1.91927 0.959633 0.281256i \(-0.0907509\pi\)
0.959633 + 0.281256i \(0.0907509\pi\)
\(524\) 0 0
\(525\) 30.2178 1.31881
\(526\) 0 0
\(527\) −26.6914 −1.16269
\(528\) 0 0
\(529\) 1.07341 0.0466698
\(530\) 0 0
\(531\) 5.33134 0.231361
\(532\) 0 0
\(533\) 7.20518 0.312091
\(534\) 0 0
\(535\) 25.8690 1.11842
\(536\) 0 0
\(537\) −14.2704 −0.615813
\(538\) 0 0
\(539\) 1.83222 0.0789194
\(540\) 0 0
\(541\) −9.76862 −0.419986 −0.209993 0.977703i \(-0.567344\pi\)
−0.209993 + 0.977703i \(0.567344\pi\)
\(542\) 0 0
\(543\) 17.7458 0.761544
\(544\) 0 0
\(545\) 17.8546 0.764805
\(546\) 0 0
\(547\) −16.2117 −0.693162 −0.346581 0.938020i \(-0.612657\pi\)
−0.346581 + 0.938020i \(0.612657\pi\)
\(548\) 0 0
\(549\) −2.50394 −0.106865
\(550\) 0 0
\(551\) −1.13043 −0.0481581
\(552\) 0 0
\(553\) −18.9892 −0.807504
\(554\) 0 0
\(555\) −0.378004 −0.0160454
\(556\) 0 0
\(557\) 13.7696 0.583436 0.291718 0.956504i \(-0.405773\pi\)
0.291718 + 0.956504i \(0.405773\pi\)
\(558\) 0 0
\(559\) 58.7153 2.48339
\(560\) 0 0
\(561\) −3.11470 −0.131503
\(562\) 0 0
\(563\) −23.2868 −0.981421 −0.490711 0.871323i \(-0.663263\pi\)
−0.490711 + 0.871323i \(0.663263\pi\)
\(564\) 0 0
\(565\) −3.63208 −0.152803
\(566\) 0 0
\(567\) −20.0581 −0.842361
\(568\) 0 0
\(569\) 14.8249 0.621494 0.310747 0.950493i \(-0.399421\pi\)
0.310747 + 0.950493i \(0.399421\pi\)
\(570\) 0 0
\(571\) 15.8111 0.661674 0.330837 0.943688i \(-0.392669\pi\)
0.330837 + 0.943688i \(0.392669\pi\)
\(572\) 0 0
\(573\) −24.2183 −1.01173
\(574\) 0 0
\(575\) −40.1939 −1.67620
\(576\) 0 0
\(577\) 38.3816 1.59785 0.798923 0.601433i \(-0.205403\pi\)
0.798923 + 0.601433i \(0.205403\pi\)
\(578\) 0 0
\(579\) 35.8507 1.48991
\(580\) 0 0
\(581\) −23.5244 −0.975957
\(582\) 0 0
\(583\) −1.50325 −0.0622581
\(584\) 0 0
\(585\) 8.70092 0.359739
\(586\) 0 0
\(587\) 26.7495 1.10407 0.552036 0.833820i \(-0.313851\pi\)
0.552036 + 0.833820i \(0.313851\pi\)
\(588\) 0 0
\(589\) 2.07892 0.0856604
\(590\) 0 0
\(591\) −16.1239 −0.663249
\(592\) 0 0
\(593\) 26.8844 1.10401 0.552005 0.833841i \(-0.313863\pi\)
0.552005 + 0.833841i \(0.313863\pi\)
\(594\) 0 0
\(595\) 20.0470 0.821848
\(596\) 0 0
\(597\) 45.5268 1.86329
\(598\) 0 0
\(599\) 0.374571 0.0153046 0.00765228 0.999971i \(-0.497564\pi\)
0.00765228 + 0.999971i \(0.497564\pi\)
\(600\) 0 0
\(601\) −25.2617 −1.03045 −0.515223 0.857056i \(-0.672291\pi\)
−0.515223 + 0.857056i \(0.672291\pi\)
\(602\) 0 0
\(603\) −0.291810 −0.0118834
\(604\) 0 0
\(605\) −38.5771 −1.56838
\(606\) 0 0
\(607\) 35.1534 1.42683 0.713417 0.700740i \(-0.247147\pi\)
0.713417 + 0.700740i \(0.247147\pi\)
\(608\) 0 0
\(609\) 19.4551 0.788359
\(610\) 0 0
\(611\) 3.69805 0.149607
\(612\) 0 0
\(613\) 2.42638 0.0980006 0.0490003 0.998799i \(-0.484396\pi\)
0.0490003 + 0.998799i \(0.484396\pi\)
\(614\) 0 0
\(615\) 7.67619 0.309534
\(616\) 0 0
\(617\) 9.50523 0.382666 0.191333 0.981525i \(-0.438719\pi\)
0.191333 + 0.981525i \(0.438719\pi\)
\(618\) 0 0
\(619\) 28.1754 1.13247 0.566233 0.824245i \(-0.308400\pi\)
0.566233 + 0.824245i \(0.308400\pi\)
\(620\) 0 0
\(621\) 23.6220 0.947918
\(622\) 0 0
\(623\) 35.8597 1.43669
\(624\) 0 0
\(625\) 1.14925 0.0459700
\(626\) 0 0
\(627\) 0.242595 0.00968832
\(628\) 0 0
\(629\) −0.155727 −0.00620924
\(630\) 0 0
\(631\) 13.6784 0.544530 0.272265 0.962222i \(-0.412227\pi\)
0.272265 + 0.962222i \(0.412227\pi\)
\(632\) 0 0
\(633\) −37.0177 −1.47132
\(634\) 0 0
\(635\) 46.9613 1.86360
\(636\) 0 0
\(637\) −18.6646 −0.739517
\(638\) 0 0
\(639\) 0.927184 0.0366788
\(640\) 0 0
\(641\) 29.1539 1.15151 0.575754 0.817623i \(-0.304708\pi\)
0.575754 + 0.817623i \(0.304708\pi\)
\(642\) 0 0
\(643\) −47.0346 −1.85486 −0.927432 0.373993i \(-0.877988\pi\)
−0.927432 + 0.373993i \(0.877988\pi\)
\(644\) 0 0
\(645\) 62.5536 2.46304
\(646\) 0 0
\(647\) −40.1235 −1.57742 −0.788710 0.614766i \(-0.789251\pi\)
−0.788710 + 0.614766i \(0.789251\pi\)
\(648\) 0 0
\(649\) −8.58780 −0.337101
\(650\) 0 0
\(651\) −35.7788 −1.40228
\(652\) 0 0
\(653\) −34.7319 −1.35917 −0.679583 0.733599i \(-0.737839\pi\)
−0.679583 + 0.733599i \(0.737839\pi\)
\(654\) 0 0
\(655\) −25.8772 −1.01111
\(656\) 0 0
\(657\) −1.27268 −0.0496520
\(658\) 0 0
\(659\) −9.29415 −0.362049 −0.181024 0.983479i \(-0.557941\pi\)
−0.181024 + 0.983479i \(0.557941\pi\)
\(660\) 0 0
\(661\) −3.07255 −0.119508 −0.0597542 0.998213i \(-0.519032\pi\)
−0.0597542 + 0.998213i \(0.519032\pi\)
\(662\) 0 0
\(663\) 31.7289 1.23225
\(664\) 0 0
\(665\) −1.56141 −0.0605488
\(666\) 0 0
\(667\) −25.8780 −1.00200
\(668\) 0 0
\(669\) −19.6316 −0.759003
\(670\) 0 0
\(671\) 4.03337 0.155707
\(672\) 0 0
\(673\) 16.7063 0.643981 0.321991 0.946743i \(-0.395648\pi\)
0.321991 + 0.946743i \(0.395648\pi\)
\(674\) 0 0
\(675\) −39.4402 −1.51805
\(676\) 0 0
\(677\) −13.6036 −0.522829 −0.261415 0.965227i \(-0.584189\pi\)
−0.261415 + 0.965227i \(0.584189\pi\)
\(678\) 0 0
\(679\) 5.50111 0.211113
\(680\) 0 0
\(681\) −8.15473 −0.312490
\(682\) 0 0
\(683\) −23.1106 −0.884302 −0.442151 0.896941i \(-0.645785\pi\)
−0.442151 + 0.896941i \(0.645785\pi\)
\(684\) 0 0
\(685\) −19.9464 −0.762114
\(686\) 0 0
\(687\) −8.74259 −0.333551
\(688\) 0 0
\(689\) 15.3133 0.583392
\(690\) 0 0
\(691\) 16.2173 0.616933 0.308467 0.951235i \(-0.400184\pi\)
0.308467 + 0.951235i \(0.400184\pi\)
\(692\) 0 0
\(693\) −0.471680 −0.0179176
\(694\) 0 0
\(695\) −38.3875 −1.45612
\(696\) 0 0
\(697\) 3.16238 0.119784
\(698\) 0 0
\(699\) −22.7993 −0.862349
\(700\) 0 0
\(701\) −48.1277 −1.81776 −0.908878 0.417061i \(-0.863060\pi\)
−0.908878 + 0.417061i \(0.863060\pi\)
\(702\) 0 0
\(703\) 0.0121291 0.000457460 0
\(704\) 0 0
\(705\) 3.93980 0.148381
\(706\) 0 0
\(707\) −26.1918 −0.985046
\(708\) 0 0
\(709\) 19.6844 0.739262 0.369631 0.929179i \(-0.379484\pi\)
0.369631 + 0.929179i \(0.379484\pi\)
\(710\) 0 0
\(711\) −3.61736 −0.135662
\(712\) 0 0
\(713\) 47.5909 1.78229
\(714\) 0 0
\(715\) −14.0156 −0.524152
\(716\) 0 0
\(717\) 2.64582 0.0988101
\(718\) 0 0
\(719\) 16.7596 0.625026 0.312513 0.949913i \(-0.398829\pi\)
0.312513 + 0.949913i \(0.398829\pi\)
\(720\) 0 0
\(721\) −1.95526 −0.0728175
\(722\) 0 0
\(723\) 50.2496 1.86880
\(724\) 0 0
\(725\) 43.2070 1.60467
\(726\) 0 0
\(727\) −9.86131 −0.365736 −0.182868 0.983138i \(-0.558538\pi\)
−0.182868 + 0.983138i \(0.558538\pi\)
\(728\) 0 0
\(729\) 22.7411 0.842261
\(730\) 0 0
\(731\) 25.7703 0.953150
\(732\) 0 0
\(733\) 38.7802 1.43238 0.716190 0.697906i \(-0.245885\pi\)
0.716190 + 0.697906i \(0.245885\pi\)
\(734\) 0 0
\(735\) −19.8847 −0.733458
\(736\) 0 0
\(737\) 0.470051 0.0173146
\(738\) 0 0
\(739\) −35.9799 −1.32354 −0.661772 0.749705i \(-0.730195\pi\)
−0.661772 + 0.749705i \(0.730195\pi\)
\(740\) 0 0
\(741\) −2.47128 −0.0907848
\(742\) 0 0
\(743\) 45.7849 1.67968 0.839842 0.542830i \(-0.182647\pi\)
0.839842 + 0.542830i \(0.182647\pi\)
\(744\) 0 0
\(745\) −24.8347 −0.909874
\(746\) 0 0
\(747\) −4.48129 −0.163962
\(748\) 0 0
\(749\) 14.2857 0.521989
\(750\) 0 0
\(751\) 46.8047 1.70793 0.853963 0.520333i \(-0.174192\pi\)
0.853963 + 0.520333i \(0.174192\pi\)
\(752\) 0 0
\(753\) −14.5195 −0.529120
\(754\) 0 0
\(755\) −62.3420 −2.26886
\(756\) 0 0
\(757\) 24.2150 0.880109 0.440055 0.897971i \(-0.354959\pi\)
0.440055 + 0.897971i \(0.354959\pi\)
\(758\) 0 0
\(759\) 5.55352 0.201580
\(760\) 0 0
\(761\) 21.5962 0.782862 0.391431 0.920207i \(-0.371980\pi\)
0.391431 + 0.920207i \(0.371980\pi\)
\(762\) 0 0
\(763\) 9.85987 0.356951
\(764\) 0 0
\(765\) 3.81886 0.138071
\(766\) 0 0
\(767\) 87.4826 3.15881
\(768\) 0 0
\(769\) 24.9845 0.900963 0.450482 0.892786i \(-0.351252\pi\)
0.450482 + 0.892786i \(0.351252\pi\)
\(770\) 0 0
\(771\) 37.0108 1.33291
\(772\) 0 0
\(773\) 25.7255 0.925280 0.462640 0.886546i \(-0.346902\pi\)
0.462640 + 0.886546i \(0.346902\pi\)
\(774\) 0 0
\(775\) −79.4597 −2.85428
\(776\) 0 0
\(777\) −0.208746 −0.00748872
\(778\) 0 0
\(779\) −0.246309 −0.00882493
\(780\) 0 0
\(781\) −1.49352 −0.0534423
\(782\) 0 0
\(783\) −25.3928 −0.907464
\(784\) 0 0
\(785\) 8.45531 0.301783
\(786\) 0 0
\(787\) −16.4695 −0.587074 −0.293537 0.955948i \(-0.594832\pi\)
−0.293537 + 0.955948i \(0.594832\pi\)
\(788\) 0 0
\(789\) 11.6697 0.415452
\(790\) 0 0
\(791\) −2.00576 −0.0713165
\(792\) 0 0
\(793\) −41.0874 −1.45906
\(794\) 0 0
\(795\) 16.3144 0.578612
\(796\) 0 0
\(797\) −28.7592 −1.01870 −0.509351 0.860559i \(-0.670115\pi\)
−0.509351 + 0.860559i \(0.670115\pi\)
\(798\) 0 0
\(799\) 1.62309 0.0574207
\(800\) 0 0
\(801\) 6.83111 0.241366
\(802\) 0 0
\(803\) 2.05005 0.0723446
\(804\) 0 0
\(805\) −35.7440 −1.25981
\(806\) 0 0
\(807\) −54.6652 −1.92431
\(808\) 0 0
\(809\) −32.9165 −1.15728 −0.578641 0.815582i \(-0.696417\pi\)
−0.578641 + 0.815582i \(0.696417\pi\)
\(810\) 0 0
\(811\) 52.8067 1.85430 0.927148 0.374696i \(-0.122253\pi\)
0.927148 + 0.374696i \(0.122253\pi\)
\(812\) 0 0
\(813\) 36.5635 1.28234
\(814\) 0 0
\(815\) 78.4206 2.74695
\(816\) 0 0
\(817\) −2.00718 −0.0702223
\(818\) 0 0
\(819\) 4.80493 0.167898
\(820\) 0 0
\(821\) 26.9972 0.942210 0.471105 0.882077i \(-0.343855\pi\)
0.471105 + 0.882077i \(0.343855\pi\)
\(822\) 0 0
\(823\) −52.5234 −1.83085 −0.915425 0.402488i \(-0.868146\pi\)
−0.915425 + 0.402488i \(0.868146\pi\)
\(824\) 0 0
\(825\) −9.27239 −0.322823
\(826\) 0 0
\(827\) 9.30750 0.323653 0.161827 0.986819i \(-0.448261\pi\)
0.161827 + 0.986819i \(0.448261\pi\)
\(828\) 0 0
\(829\) 28.0309 0.973554 0.486777 0.873526i \(-0.338172\pi\)
0.486777 + 0.873526i \(0.338172\pi\)
\(830\) 0 0
\(831\) −31.4309 −1.09033
\(832\) 0 0
\(833\) −8.19194 −0.283834
\(834\) 0 0
\(835\) −4.54678 −0.157348
\(836\) 0 0
\(837\) 46.6985 1.61413
\(838\) 0 0
\(839\) 17.1213 0.591092 0.295546 0.955328i \(-0.404498\pi\)
0.295546 + 0.955328i \(0.404498\pi\)
\(840\) 0 0
\(841\) −1.18205 −0.0407604
\(842\) 0 0
\(843\) 43.7331 1.50625
\(844\) 0 0
\(845\) 95.5573 3.28727
\(846\) 0 0
\(847\) −21.3035 −0.731998
\(848\) 0 0
\(849\) 33.1694 1.13837
\(850\) 0 0
\(851\) 0.277662 0.00951813
\(852\) 0 0
\(853\) −18.3512 −0.628332 −0.314166 0.949368i \(-0.601725\pi\)
−0.314166 + 0.949368i \(0.601725\pi\)
\(854\) 0 0
\(855\) −0.297441 −0.0101723
\(856\) 0 0
\(857\) −11.1645 −0.381374 −0.190687 0.981651i \(-0.561071\pi\)
−0.190687 + 0.981651i \(0.561071\pi\)
\(858\) 0 0
\(859\) 46.8419 1.59822 0.799112 0.601182i \(-0.205303\pi\)
0.799112 + 0.601182i \(0.205303\pi\)
\(860\) 0 0
\(861\) 4.23904 0.144466
\(862\) 0 0
\(863\) −22.8801 −0.778847 −0.389424 0.921059i \(-0.627326\pi\)
−0.389424 + 0.921059i \(0.627326\pi\)
\(864\) 0 0
\(865\) −40.1624 −1.36556
\(866\) 0 0
\(867\) −17.3378 −0.588823
\(868\) 0 0
\(869\) 5.82689 0.197664
\(870\) 0 0
\(871\) −4.78834 −0.162247
\(872\) 0 0
\(873\) 1.04794 0.0354673
\(874\) 0 0
\(875\) 23.2542 0.786135
\(876\) 0 0
\(877\) 34.9776 1.18111 0.590555 0.806998i \(-0.298909\pi\)
0.590555 + 0.806998i \(0.298909\pi\)
\(878\) 0 0
\(879\) −0.00982135 −0.000331266 0
\(880\) 0 0
\(881\) −3.81577 −0.128557 −0.0642783 0.997932i \(-0.520475\pi\)
−0.0642783 + 0.997932i \(0.520475\pi\)
\(882\) 0 0
\(883\) 10.0990 0.339859 0.169930 0.985456i \(-0.445646\pi\)
0.169930 + 0.985456i \(0.445646\pi\)
\(884\) 0 0
\(885\) 93.2015 3.13293
\(886\) 0 0
\(887\) −40.9816 −1.37603 −0.688014 0.725697i \(-0.741517\pi\)
−0.688014 + 0.725697i \(0.741517\pi\)
\(888\) 0 0
\(889\) 25.9336 0.869784
\(890\) 0 0
\(891\) 6.15487 0.206196
\(892\) 0 0
\(893\) −0.126418 −0.00423041
\(894\) 0 0
\(895\) −28.1838 −0.942081
\(896\) 0 0
\(897\) −56.5729 −1.88891
\(898\) 0 0
\(899\) −51.1585 −1.70623
\(900\) 0 0
\(901\) 6.72107 0.223911
\(902\) 0 0
\(903\) 34.5441 1.14956
\(904\) 0 0
\(905\) 35.0476 1.16502
\(906\) 0 0
\(907\) −38.7156 −1.28553 −0.642765 0.766064i \(-0.722213\pi\)
−0.642765 + 0.766064i \(0.722213\pi\)
\(908\) 0 0
\(909\) −4.98942 −0.165489
\(910\) 0 0
\(911\) 19.3561 0.641296 0.320648 0.947198i \(-0.396099\pi\)
0.320648 + 0.947198i \(0.396099\pi\)
\(912\) 0 0
\(913\) 7.21852 0.238898
\(914\) 0 0
\(915\) −43.7733 −1.44710
\(916\) 0 0
\(917\) −14.2902 −0.471905
\(918\) 0 0
\(919\) 46.6129 1.53762 0.768809 0.639478i \(-0.220850\pi\)
0.768809 + 0.639478i \(0.220850\pi\)
\(920\) 0 0
\(921\) −53.3179 −1.75689
\(922\) 0 0
\(923\) 15.2143 0.500783
\(924\) 0 0
\(925\) −0.463596 −0.0152429
\(926\) 0 0
\(927\) −0.372467 −0.0122334
\(928\) 0 0
\(929\) −16.8552 −0.553003 −0.276501 0.961014i \(-0.589175\pi\)
−0.276501 + 0.961014i \(0.589175\pi\)
\(930\) 0 0
\(931\) 0.638048 0.0209112
\(932\) 0 0
\(933\) −16.6766 −0.545967
\(934\) 0 0
\(935\) −6.15148 −0.201175
\(936\) 0 0
\(937\) 6.54747 0.213897 0.106948 0.994265i \(-0.465892\pi\)
0.106948 + 0.994265i \(0.465892\pi\)
\(938\) 0 0
\(939\) −63.1684 −2.06142
\(940\) 0 0
\(941\) −41.3776 −1.34887 −0.674436 0.738333i \(-0.735613\pi\)
−0.674436 + 0.738333i \(0.735613\pi\)
\(942\) 0 0
\(943\) −5.63853 −0.183616
\(944\) 0 0
\(945\) −35.0737 −1.14095
\(946\) 0 0
\(947\) 25.1244 0.816432 0.408216 0.912885i \(-0.366151\pi\)
0.408216 + 0.912885i \(0.366151\pi\)
\(948\) 0 0
\(949\) −20.8835 −0.677908
\(950\) 0 0
\(951\) 30.6361 0.993445
\(952\) 0 0
\(953\) −8.65605 −0.280397 −0.140198 0.990123i \(-0.544774\pi\)
−0.140198 + 0.990123i \(0.544774\pi\)
\(954\) 0 0
\(955\) −47.8306 −1.54776
\(956\) 0 0
\(957\) −5.96983 −0.192977
\(958\) 0 0
\(959\) −11.0151 −0.355695
\(960\) 0 0
\(961\) 63.0827 2.03493
\(962\) 0 0
\(963\) 2.72136 0.0876947
\(964\) 0 0
\(965\) 70.8046 2.27928
\(966\) 0 0
\(967\) −12.7235 −0.409160 −0.204580 0.978850i \(-0.565583\pi\)
−0.204580 + 0.978850i \(0.565583\pi\)
\(968\) 0 0
\(969\) −1.08465 −0.0348441
\(970\) 0 0
\(971\) 12.1496 0.389899 0.194950 0.980813i \(-0.437546\pi\)
0.194950 + 0.980813i \(0.437546\pi\)
\(972\) 0 0
\(973\) −21.1988 −0.679603
\(974\) 0 0
\(975\) 94.4564 3.02503
\(976\) 0 0
\(977\) −51.5461 −1.64911 −0.824554 0.565784i \(-0.808574\pi\)
−0.824554 + 0.565784i \(0.808574\pi\)
\(978\) 0 0
\(979\) −11.0036 −0.351678
\(980\) 0 0
\(981\) 1.87826 0.0599682
\(982\) 0 0
\(983\) −10.6683 −0.340265 −0.170132 0.985421i \(-0.554420\pi\)
−0.170132 + 0.985421i \(0.554420\pi\)
\(984\) 0 0
\(985\) −31.8445 −1.01465
\(986\) 0 0
\(987\) 2.17568 0.0692528
\(988\) 0 0
\(989\) −45.9486 −1.46108
\(990\) 0 0
\(991\) 48.1671 1.53008 0.765039 0.643984i \(-0.222720\pi\)
0.765039 + 0.643984i \(0.222720\pi\)
\(992\) 0 0
\(993\) 5.82233 0.184766
\(994\) 0 0
\(995\) 89.9147 2.85049
\(996\) 0 0
\(997\) 21.6045 0.684222 0.342111 0.939660i \(-0.388858\pi\)
0.342111 + 0.939660i \(0.388858\pi\)
\(998\) 0 0
\(999\) 0.272455 0.00862011
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7232.2.a.bn.1.13 18
4.3 odd 2 inner 7232.2.a.bn.1.6 18
8.3 odd 2 3616.2.a.j.1.13 yes 18
8.5 even 2 3616.2.a.j.1.6 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3616.2.a.j.1.6 18 8.5 even 2
3616.2.a.j.1.13 yes 18 8.3 odd 2
7232.2.a.bn.1.6 18 4.3 odd 2 inner
7232.2.a.bn.1.13 18 1.1 even 1 trivial