Properties

Label 7232.2.a.be
Level $7232$
Weight $2$
Character orbit 7232.a
Self dual yes
Analytic conductor $57.748$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7232,2,Mod(1,7232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7232 = 2^{6} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.7478107418\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.54033678848.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 22x^{4} - 13x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3616)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} + ( - \beta_{5} + \beta_1) q^{5} - \beta_{7} q^{7} - \beta_{2} q^{9} + (\beta_{6} + \beta_{4} + \beta_{3}) q^{11} + (\beta_{2} - \beta_1 - 1) q^{13} + (\beta_{7} + \beta_{6} - \beta_{3}) q^{15}+ \cdots + (\beta_{7} - \beta_{6} + \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{5} - 2 q^{9} - 8 q^{13} - 20 q^{17} + 2 q^{21} + 6 q^{25} + 6 q^{29} - 28 q^{33} + 4 q^{37} - 26 q^{41} + 4 q^{45} + 26 q^{53} + 14 q^{57} - 38 q^{61} - 36 q^{65} + 10 q^{69} - 66 q^{73} + 2 q^{77}+ \cdots - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 9x^{6} + 22x^{4} - 13x^{2} + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{6} - 8\nu^{4} + 15\nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{7} - 9\nu^{5} + 21\nu^{3} - 8\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{7} - 9\nu^{5} + 22\nu^{3} - 12\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 9\nu^{4} + 21\nu^{2} - 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 2\nu^{7} - 17\nu^{5} + 36\nu^{3} - 10\nu \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -2\nu^{7} + 17\nu^{5} - 36\nu^{3} + 12\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} + 2\beta_{6} + \beta_{4} - \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{5} + \beta_{2} + 6\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{7} + 10\beta_{6} + 6\beta_{4} - 8\beta_{3} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -8\beta_{5} + 9\beta_{2} + 33\beta _1 + 29 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 43\beta_{7} + 52\beta_{6} + 33\beta_{4} - 50\beta_{3} \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.71353
−0.496801
−2.30128
0.721892
−0.721892
2.30128
0.496801
−1.71353
0 −2.36923 0 −0.446484 0 −3.82220 0 2.61326 0
1.2 0 −1.66437 0 1.59698 0 2.04697 0 −0.229876 0
1.3 0 −1.54999 0 3.96941 0 2.47616 0 −0.597538 0
1.4 0 −0.462764 0 −2.11992 0 1.75195 0 −2.78585 0
1.5 0 0.462764 0 −2.11992 0 −1.75195 0 −2.78585 0
1.6 0 1.54999 0 3.96941 0 −2.47616 0 −0.597538 0
1.7 0 1.66437 0 1.59698 0 −2.04697 0 −0.229876 0
1.8 0 2.36923 0 −0.446484 0 3.82220 0 2.61326 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(113\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7232.2.a.be 8
4.b odd 2 1 inner 7232.2.a.be 8
8.b even 2 1 3616.2.a.c 8
8.d odd 2 1 3616.2.a.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3616.2.a.c 8 8.b even 2 1
3616.2.a.c 8 8.d odd 2 1
7232.2.a.be 8 1.a even 1 1 trivial
7232.2.a.be 8 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7232))\):

\( T_{3}^{8} - 11T_{3}^{6} + 38T_{3}^{4} - 45T_{3}^{2} + 8 \) Copy content Toggle raw display
\( T_{5}^{4} - 3T_{5}^{3} - 7T_{5}^{2} + 11T_{5} + 6 \) Copy content Toggle raw display
\( T_{7}^{8} - 28T_{7}^{6} + 253T_{7}^{4} - 917T_{7}^{2} + 1152 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 11 T^{6} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( (T^{4} - 3 T^{3} - 7 T^{2} + \cdots + 6)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} - 28 T^{6} + \cdots + 1152 \) Copy content Toggle raw display
$11$ \( T^{8} - 52 T^{6} + \cdots + 2592 \) Copy content Toggle raw display
$13$ \( (T^{4} + 4 T^{3} - 15 T^{2} + \cdots + 54)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 10 T^{3} + \cdots + 58)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} - 92 T^{6} + \cdots + 648 \) Copy content Toggle raw display
$23$ \( T^{8} - 138 T^{6} + \cdots + 383688 \) Copy content Toggle raw display
$29$ \( (T^{4} - 3 T^{3} + \cdots + 942)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} - 119 T^{6} + \cdots + 119072 \) Copy content Toggle raw display
$37$ \( (T^{4} - 2 T^{3} - 43 T^{2} + \cdots - 2)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 13 T^{3} + 38 T^{2} + \cdots - 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} - 106 T^{6} + \cdots + 159048 \) Copy content Toggle raw display
$47$ \( T^{8} - 151 T^{6} + \cdots + 19208 \) Copy content Toggle raw display
$53$ \( (T^{4} - 13 T^{3} + \cdots - 9634)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} - 297 T^{6} + \cdots + 6013512 \) Copy content Toggle raw display
$61$ \( (T^{4} + 19 T^{3} + \cdots - 1362)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} - 105 T^{6} + \cdots + 137288 \) Copy content Toggle raw display
$71$ \( T^{8} - 436 T^{6} + \cdots + 86528 \) Copy content Toggle raw display
$73$ \( (T^{4} + 33 T^{3} + \cdots + 1718)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} - 455 T^{6} + \cdots + 100309448 \) Copy content Toggle raw display
$83$ \( T^{8} - 298 T^{6} + \cdots + 14536832 \) Copy content Toggle raw display
$89$ \( (T^{4} + 50 T^{3} + \cdots + 17098)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 26 T^{3} + \cdots - 1458)^{2} \) Copy content Toggle raw display
show more
show less