Properties

Label 7225.2.a.r.1.3
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119 q^{2} +1.67513 q^{3} +0.193937 q^{4} +2.48119 q^{6} +1.28726 q^{7} -2.67513 q^{8} -0.193937 q^{9} -0.481194 q^{11} +0.324869 q^{12} +2.15633 q^{13} +1.90668 q^{14} -4.35026 q^{16} -0.287258 q^{18} -3.35026 q^{19} +2.15633 q^{21} -0.712742 q^{22} -8.24965 q^{23} -4.48119 q^{24} +3.19394 q^{26} -5.35026 q^{27} +0.249646 q^{28} -0.649738 q^{29} -1.83146 q^{31} -1.09332 q^{32} -0.806063 q^{33} -0.0376114 q^{36} +4.31265 q^{37} -4.96239 q^{38} +3.61213 q^{39} -11.2750 q^{41} +3.19394 q^{42} +8.15633 q^{43} -0.0933212 q^{44} -12.2193 q^{46} +6.54420 q^{47} -7.28726 q^{48} -5.34297 q^{49} +0.418190 q^{52} -8.57452 q^{53} -7.92478 q^{54} -3.44358 q^{56} -5.61213 q^{57} -0.962389 q^{58} -4.96239 q^{59} +2.83638 q^{61} -2.71274 q^{62} -0.249646 q^{63} +7.08110 q^{64} -1.19394 q^{66} -4.93207 q^{67} -13.8192 q^{69} +14.5320 q^{71} +0.518806 q^{72} -13.3503 q^{73} +6.38787 q^{74} -0.649738 q^{76} -0.619421 q^{77} +5.35026 q^{78} +9.05571 q^{79} -8.38058 q^{81} -16.7005 q^{82} -13.4314 q^{83} +0.418190 q^{84} +12.0811 q^{86} -1.08840 q^{87} +1.28726 q^{88} -16.7816 q^{89} +2.77575 q^{91} -1.59991 q^{92} -3.06793 q^{93} +9.69323 q^{94} -1.83146 q^{96} -3.66291 q^{97} -7.91397 q^{98} +0.0933212 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + q^{4} + 2 q^{6} - 2 q^{7} - 3 q^{8} - q^{9} + 4 q^{11} + 6 q^{12} - 4 q^{13} + 12 q^{14} - 3 q^{16} + 5 q^{18} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 10 q^{26} - 6 q^{27} - 16 q^{28}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119 1.04736 0.523681 0.851914i \(-0.324558\pi\)
0.523681 + 0.851914i \(0.324558\pi\)
\(3\) 1.67513 0.967137 0.483569 0.875306i \(-0.339340\pi\)
0.483569 + 0.875306i \(0.339340\pi\)
\(4\) 0.193937 0.0969683
\(5\) 0 0
\(6\) 2.48119 1.01294
\(7\) 1.28726 0.486538 0.243269 0.969959i \(-0.421780\pi\)
0.243269 + 0.969959i \(0.421780\pi\)
\(8\) −2.67513 −0.945802
\(9\) −0.193937 −0.0646455
\(10\) 0 0
\(11\) −0.481194 −0.145086 −0.0725428 0.997365i \(-0.523111\pi\)
−0.0725428 + 0.997365i \(0.523111\pi\)
\(12\) 0.324869 0.0937816
\(13\) 2.15633 0.598057 0.299028 0.954244i \(-0.403337\pi\)
0.299028 + 0.954244i \(0.403337\pi\)
\(14\) 1.90668 0.509581
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) 0 0
\(18\) −0.287258 −0.0677073
\(19\) −3.35026 −0.768603 −0.384301 0.923208i \(-0.625558\pi\)
−0.384301 + 0.923208i \(0.625558\pi\)
\(20\) 0 0
\(21\) 2.15633 0.470549
\(22\) −0.712742 −0.151957
\(23\) −8.24965 −1.72017 −0.860085 0.510151i \(-0.829590\pi\)
−0.860085 + 0.510151i \(0.829590\pi\)
\(24\) −4.48119 −0.914720
\(25\) 0 0
\(26\) 3.19394 0.626382
\(27\) −5.35026 −1.02966
\(28\) 0.249646 0.0471787
\(29\) −0.649738 −0.120653 −0.0603267 0.998179i \(-0.519214\pi\)
−0.0603267 + 0.998179i \(0.519214\pi\)
\(30\) 0 0
\(31\) −1.83146 −0.328939 −0.164470 0.986382i \(-0.552591\pi\)
−0.164470 + 0.986382i \(0.552591\pi\)
\(32\) −1.09332 −0.193274
\(33\) −0.806063 −0.140318
\(34\) 0 0
\(35\) 0 0
\(36\) −0.0376114 −0.00626857
\(37\) 4.31265 0.708995 0.354498 0.935057i \(-0.384652\pi\)
0.354498 + 0.935057i \(0.384652\pi\)
\(38\) −4.96239 −0.805006
\(39\) 3.61213 0.578403
\(40\) 0 0
\(41\) −11.2750 −1.76087 −0.880433 0.474171i \(-0.842748\pi\)
−0.880433 + 0.474171i \(0.842748\pi\)
\(42\) 3.19394 0.492835
\(43\) 8.15633 1.24383 0.621914 0.783086i \(-0.286355\pi\)
0.621914 + 0.783086i \(0.286355\pi\)
\(44\) −0.0933212 −0.0140687
\(45\) 0 0
\(46\) −12.2193 −1.80164
\(47\) 6.54420 0.954569 0.477285 0.878749i \(-0.341621\pi\)
0.477285 + 0.878749i \(0.341621\pi\)
\(48\) −7.28726 −1.05183
\(49\) −5.34297 −0.763281
\(50\) 0 0
\(51\) 0 0
\(52\) 0.418190 0.0579926
\(53\) −8.57452 −1.17780 −0.588900 0.808206i \(-0.700439\pi\)
−0.588900 + 0.808206i \(0.700439\pi\)
\(54\) −7.92478 −1.07843
\(55\) 0 0
\(56\) −3.44358 −0.460168
\(57\) −5.61213 −0.743344
\(58\) −0.962389 −0.126368
\(59\) −4.96239 −0.646048 −0.323024 0.946391i \(-0.604699\pi\)
−0.323024 + 0.946391i \(0.604699\pi\)
\(60\) 0 0
\(61\) 2.83638 0.363161 0.181581 0.983376i \(-0.441879\pi\)
0.181581 + 0.983376i \(0.441879\pi\)
\(62\) −2.71274 −0.344519
\(63\) −0.249646 −0.0314525
\(64\) 7.08110 0.885138
\(65\) 0 0
\(66\) −1.19394 −0.146963
\(67\) −4.93207 −0.602548 −0.301274 0.953538i \(-0.597412\pi\)
−0.301274 + 0.953538i \(0.597412\pi\)
\(68\) 0 0
\(69\) −13.8192 −1.66364
\(70\) 0 0
\(71\) 14.5320 1.72463 0.862314 0.506373i \(-0.169014\pi\)
0.862314 + 0.506373i \(0.169014\pi\)
\(72\) 0.518806 0.0611418
\(73\) −13.3503 −1.56253 −0.781265 0.624200i \(-0.785425\pi\)
−0.781265 + 0.624200i \(0.785425\pi\)
\(74\) 6.38787 0.742575
\(75\) 0 0
\(76\) −0.649738 −0.0745301
\(77\) −0.619421 −0.0705896
\(78\) 5.35026 0.605798
\(79\) 9.05571 1.01885 0.509423 0.860516i \(-0.329859\pi\)
0.509423 + 0.860516i \(0.329859\pi\)
\(80\) 0 0
\(81\) −8.38058 −0.931175
\(82\) −16.7005 −1.84426
\(83\) −13.4314 −1.47428 −0.737142 0.675738i \(-0.763825\pi\)
−0.737142 + 0.675738i \(0.763825\pi\)
\(84\) 0.418190 0.0456283
\(85\) 0 0
\(86\) 12.0811 1.30274
\(87\) −1.08840 −0.116688
\(88\) 1.28726 0.137222
\(89\) −16.7816 −1.77885 −0.889424 0.457082i \(-0.848894\pi\)
−0.889424 + 0.457082i \(0.848894\pi\)
\(90\) 0 0
\(91\) 2.77575 0.290977
\(92\) −1.59991 −0.166802
\(93\) −3.06793 −0.318129
\(94\) 9.69323 0.999780
\(95\) 0 0
\(96\) −1.83146 −0.186922
\(97\) −3.66291 −0.371912 −0.185956 0.982558i \(-0.559538\pi\)
−0.185956 + 0.982558i \(0.559538\pi\)
\(98\) −7.91397 −0.799432
\(99\) 0.0933212 0.00937913
\(100\) 0 0
\(101\) 6.85685 0.682282 0.341141 0.940012i \(-0.389187\pi\)
0.341141 + 0.940012i \(0.389187\pi\)
\(102\) 0 0
\(103\) −7.04349 −0.694016 −0.347008 0.937862i \(-0.612802\pi\)
−0.347008 + 0.937862i \(0.612802\pi\)
\(104\) −5.76845 −0.565643
\(105\) 0 0
\(106\) −12.7005 −1.23358
\(107\) −5.86177 −0.566679 −0.283340 0.959020i \(-0.591442\pi\)
−0.283340 + 0.959020i \(0.591442\pi\)
\(108\) −1.03761 −0.0998442
\(109\) 12.7005 1.21649 0.608245 0.793750i \(-0.291874\pi\)
0.608245 + 0.793750i \(0.291874\pi\)
\(110\) 0 0
\(111\) 7.22425 0.685696
\(112\) −5.59991 −0.529142
\(113\) −4.88717 −0.459746 −0.229873 0.973221i \(-0.573831\pi\)
−0.229873 + 0.973221i \(0.573831\pi\)
\(114\) −8.31265 −0.778551
\(115\) 0 0
\(116\) −0.126008 −0.0116995
\(117\) −0.418190 −0.0386617
\(118\) −7.35026 −0.676646
\(119\) 0 0
\(120\) 0 0
\(121\) −10.7685 −0.978950
\(122\) 4.20123 0.380362
\(123\) −18.8872 −1.70300
\(124\) −0.355186 −0.0318967
\(125\) 0 0
\(126\) −0.369775 −0.0329422
\(127\) 1.76845 0.156925 0.0784624 0.996917i \(-0.474999\pi\)
0.0784624 + 0.996917i \(0.474999\pi\)
\(128\) 12.6751 1.12033
\(129\) 13.6629 1.20295
\(130\) 0 0
\(131\) −11.1065 −0.970379 −0.485189 0.874409i \(-0.661249\pi\)
−0.485189 + 0.874409i \(0.661249\pi\)
\(132\) −0.156325 −0.0136064
\(133\) −4.31265 −0.373954
\(134\) −7.30536 −0.631087
\(135\) 0 0
\(136\) 0 0
\(137\) −11.7685 −1.00545 −0.502723 0.864447i \(-0.667669\pi\)
−0.502723 + 0.864447i \(0.667669\pi\)
\(138\) −20.4690 −1.74243
\(139\) 11.7054 0.992843 0.496422 0.868082i \(-0.334647\pi\)
0.496422 + 0.868082i \(0.334647\pi\)
\(140\) 0 0
\(141\) 10.9624 0.923200
\(142\) 21.5247 1.80631
\(143\) −1.03761 −0.0867694
\(144\) 0.843675 0.0703062
\(145\) 0 0
\(146\) −19.7743 −1.63654
\(147\) −8.95017 −0.738198
\(148\) 0.836381 0.0687501
\(149\) 17.1998 1.40906 0.704532 0.709672i \(-0.251157\pi\)
0.704532 + 0.709672i \(0.251157\pi\)
\(150\) 0 0
\(151\) 13.5877 1.10575 0.552875 0.833264i \(-0.313531\pi\)
0.552875 + 0.833264i \(0.313531\pi\)
\(152\) 8.96239 0.726946
\(153\) 0 0
\(154\) −0.917483 −0.0739329
\(155\) 0 0
\(156\) 0.700523 0.0560868
\(157\) 8.57452 0.684321 0.342160 0.939642i \(-0.388841\pi\)
0.342160 + 0.939642i \(0.388841\pi\)
\(158\) 13.4133 1.06710
\(159\) −14.3634 −1.13909
\(160\) 0 0
\(161\) −10.6194 −0.836928
\(162\) −12.4133 −0.975278
\(163\) −14.3757 −1.12599 −0.562994 0.826461i \(-0.690351\pi\)
−0.562994 + 0.826461i \(0.690351\pi\)
\(164\) −2.18664 −0.170748
\(165\) 0 0
\(166\) −19.8945 −1.54411
\(167\) 7.54912 0.584169 0.292084 0.956393i \(-0.405651\pi\)
0.292084 + 0.956393i \(0.405651\pi\)
\(168\) −5.76845 −0.445046
\(169\) −8.35026 −0.642328
\(170\) 0 0
\(171\) 0.649738 0.0496867
\(172\) 1.58181 0.120612
\(173\) −11.8496 −0.900905 −0.450452 0.892800i \(-0.648737\pi\)
−0.450452 + 0.892800i \(0.648737\pi\)
\(174\) −1.61213 −0.122215
\(175\) 0 0
\(176\) 2.09332 0.157790
\(177\) −8.31265 −0.624817
\(178\) −24.8568 −1.86310
\(179\) 3.22425 0.240992 0.120496 0.992714i \(-0.461551\pi\)
0.120496 + 0.992714i \(0.461551\pi\)
\(180\) 0 0
\(181\) 6.88717 0.511919 0.255960 0.966688i \(-0.417609\pi\)
0.255960 + 0.966688i \(0.417609\pi\)
\(182\) 4.11142 0.304759
\(183\) 4.75131 0.351227
\(184\) 22.0689 1.62694
\(185\) 0 0
\(186\) −4.54420 −0.333197
\(187\) 0 0
\(188\) 1.26916 0.0925630
\(189\) −6.88717 −0.500968
\(190\) 0 0
\(191\) 7.19982 0.520960 0.260480 0.965479i \(-0.416119\pi\)
0.260480 + 0.965479i \(0.416119\pi\)
\(192\) 11.8618 0.856050
\(193\) 20.1114 1.44765 0.723826 0.689983i \(-0.242382\pi\)
0.723826 + 0.689983i \(0.242382\pi\)
\(194\) −5.42548 −0.389527
\(195\) 0 0
\(196\) −1.03620 −0.0740141
\(197\) −3.16362 −0.225399 −0.112699 0.993629i \(-0.535950\pi\)
−0.112699 + 0.993629i \(0.535950\pi\)
\(198\) 0.138227 0.00982335
\(199\) 21.4944 1.52370 0.761848 0.647756i \(-0.224292\pi\)
0.761848 + 0.647756i \(0.224292\pi\)
\(200\) 0 0
\(201\) −8.26187 −0.582747
\(202\) 10.1563 0.714597
\(203\) −0.836381 −0.0587024
\(204\) 0 0
\(205\) 0 0
\(206\) −10.4328 −0.726886
\(207\) 1.59991 0.111201
\(208\) −9.38058 −0.650426
\(209\) 1.61213 0.111513
\(210\) 0 0
\(211\) 20.8691 1.43669 0.718343 0.695689i \(-0.244901\pi\)
0.718343 + 0.695689i \(0.244901\pi\)
\(212\) −1.66291 −0.114209
\(213\) 24.3430 1.66795
\(214\) −8.68243 −0.593518
\(215\) 0 0
\(216\) 14.3127 0.973853
\(217\) −2.35756 −0.160041
\(218\) 18.8119 1.27411
\(219\) −22.3634 −1.51118
\(220\) 0 0
\(221\) 0 0
\(222\) 10.7005 0.718172
\(223\) −24.3430 −1.63013 −0.815063 0.579373i \(-0.803298\pi\)
−0.815063 + 0.579373i \(0.803298\pi\)
\(224\) −1.40739 −0.0940349
\(225\) 0 0
\(226\) −7.23884 −0.481521
\(227\) −11.2120 −0.744169 −0.372084 0.928199i \(-0.621357\pi\)
−0.372084 + 0.928199i \(0.621357\pi\)
\(228\) −1.08840 −0.0720808
\(229\) −12.1563 −0.803313 −0.401656 0.915790i \(-0.631565\pi\)
−0.401656 + 0.915790i \(0.631565\pi\)
\(230\) 0 0
\(231\) −1.03761 −0.0682698
\(232\) 1.73813 0.114114
\(233\) 11.9756 0.784545 0.392273 0.919849i \(-0.371689\pi\)
0.392273 + 0.919849i \(0.371689\pi\)
\(234\) −0.619421 −0.0404928
\(235\) 0 0
\(236\) −0.962389 −0.0626462
\(237\) 15.1695 0.985365
\(238\) 0 0
\(239\) −8.83638 −0.571578 −0.285789 0.958293i \(-0.592256\pi\)
−0.285789 + 0.958293i \(0.592256\pi\)
\(240\) 0 0
\(241\) 0.261865 0.0168682 0.00843411 0.999964i \(-0.497315\pi\)
0.00843411 + 0.999964i \(0.497315\pi\)
\(242\) −15.9502 −1.02532
\(243\) 2.01222 0.129084
\(244\) 0.550078 0.0352151
\(245\) 0 0
\(246\) −27.9756 −1.78366
\(247\) −7.22425 −0.459668
\(248\) 4.89938 0.311111
\(249\) −22.4993 −1.42583
\(250\) 0 0
\(251\) −23.6629 −1.49359 −0.746795 0.665054i \(-0.768408\pi\)
−0.746795 + 0.665054i \(0.768408\pi\)
\(252\) −0.0484156 −0.00304989
\(253\) 3.96968 0.249572
\(254\) 2.61942 0.164357
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 19.2447 1.20045 0.600226 0.799830i \(-0.295077\pi\)
0.600226 + 0.799830i \(0.295077\pi\)
\(258\) 20.2374 1.25993
\(259\) 5.55149 0.344953
\(260\) 0 0
\(261\) 0.126008 0.00779970
\(262\) −16.4509 −1.01634
\(263\) −17.2447 −1.06336 −0.531678 0.846947i \(-0.678438\pi\)
−0.531678 + 0.846947i \(0.678438\pi\)
\(264\) 2.15633 0.132713
\(265\) 0 0
\(266\) −6.38787 −0.391666
\(267\) −28.1114 −1.72039
\(268\) −0.956509 −0.0584281
\(269\) −26.6253 −1.62337 −0.811687 0.584093i \(-0.801450\pi\)
−0.811687 + 0.584093i \(0.801450\pi\)
\(270\) 0 0
\(271\) −6.70052 −0.407028 −0.203514 0.979072i \(-0.565236\pi\)
−0.203514 + 0.979072i \(0.565236\pi\)
\(272\) 0 0
\(273\) 4.64974 0.281415
\(274\) −17.4314 −1.05307
\(275\) 0 0
\(276\) −2.68006 −0.161320
\(277\) −16.7005 −1.00344 −0.501719 0.865031i \(-0.667299\pi\)
−0.501719 + 0.865031i \(0.667299\pi\)
\(278\) 17.3380 1.03987
\(279\) 0.355186 0.0212644
\(280\) 0 0
\(281\) 28.4241 1.69564 0.847819 0.530286i \(-0.177915\pi\)
0.847819 + 0.530286i \(0.177915\pi\)
\(282\) 16.2374 0.966925
\(283\) −10.0630 −0.598183 −0.299092 0.954224i \(-0.596684\pi\)
−0.299092 + 0.954224i \(0.596684\pi\)
\(284\) 2.81828 0.167234
\(285\) 0 0
\(286\) −1.53690 −0.0908790
\(287\) −14.5139 −0.856727
\(288\) 0.212035 0.0124943
\(289\) 0 0
\(290\) 0 0
\(291\) −6.13586 −0.359690
\(292\) −2.58910 −0.151516
\(293\) −14.3127 −0.836154 −0.418077 0.908412i \(-0.637296\pi\)
−0.418077 + 0.908412i \(0.637296\pi\)
\(294\) −13.2569 −0.773160
\(295\) 0 0
\(296\) −11.5369 −0.670569
\(297\) 2.57452 0.149389
\(298\) 25.4763 1.47580
\(299\) −17.7889 −1.02876
\(300\) 0 0
\(301\) 10.4993 0.605169
\(302\) 20.1260 1.15812
\(303\) 11.4861 0.659860
\(304\) 14.5745 0.835906
\(305\) 0 0
\(306\) 0 0
\(307\) −29.2809 −1.67115 −0.835575 0.549376i \(-0.814865\pi\)
−0.835575 + 0.549376i \(0.814865\pi\)
\(308\) −0.120128 −0.00684495
\(309\) −11.7988 −0.671209
\(310\) 0 0
\(311\) −4.54183 −0.257543 −0.128772 0.991674i \(-0.541103\pi\)
−0.128772 + 0.991674i \(0.541103\pi\)
\(312\) −9.66291 −0.547055
\(313\) 0.826531 0.0467183 0.0233592 0.999727i \(-0.492564\pi\)
0.0233592 + 0.999727i \(0.492564\pi\)
\(314\) 12.7005 0.716732
\(315\) 0 0
\(316\) 1.75623 0.0987958
\(317\) 32.2374 1.81063 0.905317 0.424736i \(-0.139633\pi\)
0.905317 + 0.424736i \(0.139633\pi\)
\(318\) −21.2750 −1.19304
\(319\) 0.312650 0.0175051
\(320\) 0 0
\(321\) −9.81924 −0.548056
\(322\) −15.7294 −0.876567
\(323\) 0 0
\(324\) −1.62530 −0.0902945
\(325\) 0 0
\(326\) −21.2931 −1.17932
\(327\) 21.2750 1.17651
\(328\) 30.1622 1.66543
\(329\) 8.42407 0.464434
\(330\) 0 0
\(331\) 6.82653 0.375220 0.187610 0.982244i \(-0.439926\pi\)
0.187610 + 0.982244i \(0.439926\pi\)
\(332\) −2.60483 −0.142959
\(333\) −0.836381 −0.0458334
\(334\) 11.1817 0.611836
\(335\) 0 0
\(336\) −9.38058 −0.511753
\(337\) 18.0508 0.983289 0.491644 0.870796i \(-0.336396\pi\)
0.491644 + 0.870796i \(0.336396\pi\)
\(338\) −12.3684 −0.672750
\(339\) −8.18664 −0.444637
\(340\) 0 0
\(341\) 0.881286 0.0477243
\(342\) 0.962389 0.0520400
\(343\) −15.8886 −0.857903
\(344\) −21.8192 −1.17641
\(345\) 0 0
\(346\) −17.5515 −0.943574
\(347\) 18.3512 0.985145 0.492572 0.870271i \(-0.336057\pi\)
0.492572 + 0.870271i \(0.336057\pi\)
\(348\) −0.211080 −0.0113151
\(349\) 13.6023 0.728113 0.364057 0.931377i \(-0.381391\pi\)
0.364057 + 0.931377i \(0.381391\pi\)
\(350\) 0 0
\(351\) −11.5369 −0.615794
\(352\) 0.526100 0.0280412
\(353\) −27.4010 −1.45841 −0.729205 0.684295i \(-0.760110\pi\)
−0.729205 + 0.684295i \(0.760110\pi\)
\(354\) −12.3127 −0.654410
\(355\) 0 0
\(356\) −3.25457 −0.172492
\(357\) 0 0
\(358\) 4.77575 0.252406
\(359\) 9.08840 0.479667 0.239834 0.970814i \(-0.422907\pi\)
0.239834 + 0.970814i \(0.422907\pi\)
\(360\) 0 0
\(361\) −7.77575 −0.409250
\(362\) 10.2012 0.536165
\(363\) −18.0386 −0.946779
\(364\) 0.538319 0.0282156
\(365\) 0 0
\(366\) 7.03761 0.367862
\(367\) 12.7635 0.666251 0.333125 0.942883i \(-0.391897\pi\)
0.333125 + 0.942883i \(0.391897\pi\)
\(368\) 35.8881 1.87080
\(369\) 2.18664 0.113832
\(370\) 0 0
\(371\) −11.0376 −0.573044
\(372\) −0.594984 −0.0308485
\(373\) −10.0957 −0.522735 −0.261368 0.965239i \(-0.584173\pi\)
−0.261368 + 0.965239i \(0.584173\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −17.5066 −0.902833
\(377\) −1.40105 −0.0721576
\(378\) −10.2012 −0.524695
\(379\) −9.18172 −0.471633 −0.235817 0.971798i \(-0.575776\pi\)
−0.235817 + 0.971798i \(0.575776\pi\)
\(380\) 0 0
\(381\) 2.96239 0.151768
\(382\) 10.6643 0.545634
\(383\) −1.83383 −0.0937041 −0.0468521 0.998902i \(-0.514919\pi\)
−0.0468521 + 0.998902i \(0.514919\pi\)
\(384\) 21.2325 1.08352
\(385\) 0 0
\(386\) 29.7889 1.51622
\(387\) −1.58181 −0.0804079
\(388\) −0.710373 −0.0360637
\(389\) −11.6570 −0.591035 −0.295518 0.955337i \(-0.595492\pi\)
−0.295518 + 0.955337i \(0.595492\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 14.2931 0.721912
\(393\) −18.6048 −0.938490
\(394\) −4.68594 −0.236074
\(395\) 0 0
\(396\) 0.0180984 0.000909478 0
\(397\) 9.37470 0.470503 0.235251 0.971935i \(-0.424409\pi\)
0.235251 + 0.971935i \(0.424409\pi\)
\(398\) 31.8373 1.59586
\(399\) −7.22425 −0.361665
\(400\) 0 0
\(401\) 7.93937 0.396473 0.198237 0.980154i \(-0.436479\pi\)
0.198237 + 0.980154i \(0.436479\pi\)
\(402\) −12.2374 −0.610347
\(403\) −3.94921 −0.196724
\(404\) 1.32979 0.0661597
\(405\) 0 0
\(406\) −1.23884 −0.0614827
\(407\) −2.07522 −0.102865
\(408\) 0 0
\(409\) 9.07381 0.448671 0.224335 0.974512i \(-0.427979\pi\)
0.224335 + 0.974512i \(0.427979\pi\)
\(410\) 0 0
\(411\) −19.7137 −0.972405
\(412\) −1.36599 −0.0672975
\(413\) −6.38787 −0.314327
\(414\) 2.36977 0.116468
\(415\) 0 0
\(416\) −2.35756 −0.115589
\(417\) 19.6082 0.960216
\(418\) 2.38787 0.116795
\(419\) −8.99508 −0.439438 −0.219719 0.975563i \(-0.570514\pi\)
−0.219719 + 0.975563i \(0.570514\pi\)
\(420\) 0 0
\(421\) 16.9076 0.824028 0.412014 0.911178i \(-0.364826\pi\)
0.412014 + 0.911178i \(0.364826\pi\)
\(422\) 30.9111 1.50473
\(423\) −1.26916 −0.0617086
\(424\) 22.9380 1.11397
\(425\) 0 0
\(426\) 36.0567 1.74695
\(427\) 3.65115 0.176692
\(428\) −1.13681 −0.0549499
\(429\) −1.73813 −0.0839179
\(430\) 0 0
\(431\) 14.6678 0.706525 0.353262 0.935524i \(-0.385072\pi\)
0.353262 + 0.935524i \(0.385072\pi\)
\(432\) 23.2750 1.11982
\(433\) −6.68006 −0.321023 −0.160511 0.987034i \(-0.551314\pi\)
−0.160511 + 0.987034i \(0.551314\pi\)
\(434\) −3.49200 −0.167621
\(435\) 0 0
\(436\) 2.46310 0.117961
\(437\) 27.6385 1.32213
\(438\) −33.1246 −1.58275
\(439\) −9.56959 −0.456732 −0.228366 0.973575i \(-0.573338\pi\)
−0.228366 + 0.973575i \(0.573338\pi\)
\(440\) 0 0
\(441\) 1.03620 0.0493427
\(442\) 0 0
\(443\) 14.7915 0.702764 0.351382 0.936232i \(-0.385712\pi\)
0.351382 + 0.936232i \(0.385712\pi\)
\(444\) 1.40105 0.0664907
\(445\) 0 0
\(446\) −36.0567 −1.70733
\(447\) 28.8119 1.36276
\(448\) 9.11520 0.430653
\(449\) 10.9018 0.514486 0.257243 0.966347i \(-0.417186\pi\)
0.257243 + 0.966347i \(0.417186\pi\)
\(450\) 0 0
\(451\) 5.42548 0.255476
\(452\) −0.947800 −0.0445808
\(453\) 22.7612 1.06941
\(454\) −16.6072 −0.779415
\(455\) 0 0
\(456\) 15.0132 0.703056
\(457\) 7.61801 0.356355 0.178178 0.983998i \(-0.442980\pi\)
0.178178 + 0.983998i \(0.442980\pi\)
\(458\) −18.0059 −0.841360
\(459\) 0 0
\(460\) 0 0
\(461\) −4.57452 −0.213056 −0.106528 0.994310i \(-0.533973\pi\)
−0.106528 + 0.994310i \(0.533973\pi\)
\(462\) −1.53690 −0.0715032
\(463\) −2.56864 −0.119375 −0.0596873 0.998217i \(-0.519010\pi\)
−0.0596873 + 0.998217i \(0.519010\pi\)
\(464\) 2.82653 0.131218
\(465\) 0 0
\(466\) 17.7381 0.821703
\(467\) 1.55737 0.0720666 0.0360333 0.999351i \(-0.488528\pi\)
0.0360333 + 0.999351i \(0.488528\pi\)
\(468\) −0.0811024 −0.00374896
\(469\) −6.34885 −0.293163
\(470\) 0 0
\(471\) 14.3634 0.661832
\(472\) 13.2750 0.611033
\(473\) −3.92478 −0.180461
\(474\) 22.4690 1.03203
\(475\) 0 0
\(476\) 0 0
\(477\) 1.66291 0.0761395
\(478\) −13.0884 −0.598649
\(479\) 20.4060 0.932373 0.466186 0.884687i \(-0.345628\pi\)
0.466186 + 0.884687i \(0.345628\pi\)
\(480\) 0 0
\(481\) 9.29948 0.424020
\(482\) 0.387873 0.0176671
\(483\) −17.7889 −0.809424
\(484\) −2.08840 −0.0949271
\(485\) 0 0
\(486\) 2.98049 0.135198
\(487\) −0.162664 −0.00737103 −0.00368551 0.999993i \(-0.501173\pi\)
−0.00368551 + 0.999993i \(0.501173\pi\)
\(488\) −7.58769 −0.343479
\(489\) −24.0811 −1.08899
\(490\) 0 0
\(491\) −12.8364 −0.579298 −0.289649 0.957133i \(-0.593539\pi\)
−0.289649 + 0.957133i \(0.593539\pi\)
\(492\) −3.66291 −0.165137
\(493\) 0 0
\(494\) −10.7005 −0.481439
\(495\) 0 0
\(496\) 7.96731 0.357743
\(497\) 18.7064 0.839097
\(498\) −33.3258 −1.49337
\(499\) −17.7416 −0.794225 −0.397113 0.917770i \(-0.629988\pi\)
−0.397113 + 0.917770i \(0.629988\pi\)
\(500\) 0 0
\(501\) 12.6458 0.564971
\(502\) −35.0494 −1.56433
\(503\) 11.2120 0.499920 0.249960 0.968256i \(-0.419583\pi\)
0.249960 + 0.968256i \(0.419583\pi\)
\(504\) 0.667837 0.0297478
\(505\) 0 0
\(506\) 5.87987 0.261392
\(507\) −13.9878 −0.621219
\(508\) 0.342968 0.0152167
\(509\) −6.37328 −0.282491 −0.141245 0.989975i \(-0.545111\pi\)
−0.141245 + 0.989975i \(0.545111\pi\)
\(510\) 0 0
\(511\) −17.1852 −0.760230
\(512\) −18.5188 −0.818423
\(513\) 17.9248 0.791398
\(514\) 28.5052 1.25731
\(515\) 0 0
\(516\) 2.64974 0.116648
\(517\) −3.14903 −0.138494
\(518\) 8.22284 0.361291
\(519\) −19.8496 −0.871299
\(520\) 0 0
\(521\) −0.986826 −0.0432336 −0.0216168 0.999766i \(-0.506881\pi\)
−0.0216168 + 0.999766i \(0.506881\pi\)
\(522\) 0.186642 0.00816911
\(523\) −8.99271 −0.393224 −0.196612 0.980481i \(-0.562994\pi\)
−0.196612 + 0.980481i \(0.562994\pi\)
\(524\) −2.15396 −0.0940960
\(525\) 0 0
\(526\) −25.5428 −1.11372
\(527\) 0 0
\(528\) 3.50659 0.152605
\(529\) 45.0567 1.95899
\(530\) 0 0
\(531\) 0.962389 0.0417641
\(532\) −0.836381 −0.0362617
\(533\) −24.3127 −1.05310
\(534\) −41.6385 −1.80187
\(535\) 0 0
\(536\) 13.1939 0.569891
\(537\) 5.40105 0.233072
\(538\) −39.4372 −1.70026
\(539\) 2.57101 0.110741
\(540\) 0 0
\(541\) 37.3766 1.60695 0.803473 0.595341i \(-0.202983\pi\)
0.803473 + 0.595341i \(0.202983\pi\)
\(542\) −9.92478 −0.426306
\(543\) 11.5369 0.495096
\(544\) 0 0
\(545\) 0 0
\(546\) 6.88717 0.294743
\(547\) −22.1744 −0.948110 −0.474055 0.880495i \(-0.657210\pi\)
−0.474055 + 0.880495i \(0.657210\pi\)
\(548\) −2.28233 −0.0974964
\(549\) −0.550078 −0.0234768
\(550\) 0 0
\(551\) 2.17679 0.0927345
\(552\) 36.9683 1.57347
\(553\) 11.6570 0.495707
\(554\) −24.7367 −1.05096
\(555\) 0 0
\(556\) 2.27011 0.0962743
\(557\) −1.16950 −0.0495533 −0.0247766 0.999693i \(-0.507887\pi\)
−0.0247766 + 0.999693i \(0.507887\pi\)
\(558\) 0.526100 0.0222716
\(559\) 17.5877 0.743880
\(560\) 0 0
\(561\) 0 0
\(562\) 42.1016 1.77595
\(563\) −11.1333 −0.469213 −0.234606 0.972090i \(-0.575380\pi\)
−0.234606 + 0.972090i \(0.575380\pi\)
\(564\) 2.12601 0.0895211
\(565\) 0 0
\(566\) −14.9053 −0.626515
\(567\) −10.7880 −0.453052
\(568\) −38.8749 −1.63116
\(569\) −16.7005 −0.700122 −0.350061 0.936727i \(-0.613839\pi\)
−0.350061 + 0.936727i \(0.613839\pi\)
\(570\) 0 0
\(571\) 37.2833 1.56026 0.780129 0.625619i \(-0.215154\pi\)
0.780129 + 0.625619i \(0.215154\pi\)
\(572\) −0.201231 −0.00841388
\(573\) 12.0606 0.503840
\(574\) −21.4979 −0.897304
\(575\) 0 0
\(576\) −1.37328 −0.0572202
\(577\) 1.63259 0.0679658 0.0339829 0.999422i \(-0.489181\pi\)
0.0339829 + 0.999422i \(0.489181\pi\)
\(578\) 0 0
\(579\) 33.6893 1.40008
\(580\) 0 0
\(581\) −17.2896 −0.717295
\(582\) −9.08840 −0.376726
\(583\) 4.12601 0.170882
\(584\) 35.7137 1.47784
\(585\) 0 0
\(586\) −21.1998 −0.875756
\(587\) 23.0435 0.951107 0.475553 0.879687i \(-0.342248\pi\)
0.475553 + 0.879687i \(0.342248\pi\)
\(588\) −1.73577 −0.0715818
\(589\) 6.13586 0.252824
\(590\) 0 0
\(591\) −5.29948 −0.217991
\(592\) −18.7612 −0.771079
\(593\) 44.2130 1.81561 0.907805 0.419393i \(-0.137757\pi\)
0.907805 + 0.419393i \(0.137757\pi\)
\(594\) 3.81336 0.156464
\(595\) 0 0
\(596\) 3.33567 0.136635
\(597\) 36.0059 1.47362
\(598\) −26.3488 −1.07748
\(599\) 15.4518 0.631345 0.315672 0.948868i \(-0.397770\pi\)
0.315672 + 0.948868i \(0.397770\pi\)
\(600\) 0 0
\(601\) −43.0640 −1.75662 −0.878308 0.478096i \(-0.841327\pi\)
−0.878308 + 0.478096i \(0.841327\pi\)
\(602\) 15.5515 0.633832
\(603\) 0.956509 0.0389521
\(604\) 2.63515 0.107223
\(605\) 0 0
\(606\) 17.0132 0.691113
\(607\) 41.5002 1.68444 0.842222 0.539132i \(-0.181247\pi\)
0.842222 + 0.539132i \(0.181247\pi\)
\(608\) 3.66291 0.148551
\(609\) −1.40105 −0.0567733
\(610\) 0 0
\(611\) 14.1114 0.570887
\(612\) 0 0
\(613\) 27.7137 1.11935 0.559673 0.828714i \(-0.310927\pi\)
0.559673 + 0.828714i \(0.310927\pi\)
\(614\) −43.3707 −1.75030
\(615\) 0 0
\(616\) 1.65703 0.0667637
\(617\) −29.6629 −1.19418 −0.597092 0.802173i \(-0.703677\pi\)
−0.597092 + 0.802173i \(0.703677\pi\)
\(618\) −17.4763 −0.702999
\(619\) 26.4422 1.06280 0.531400 0.847121i \(-0.321666\pi\)
0.531400 + 0.847121i \(0.321666\pi\)
\(620\) 0 0
\(621\) 44.1378 1.77119
\(622\) −6.72733 −0.269741
\(623\) −21.6023 −0.865477
\(624\) −15.7137 −0.629051
\(625\) 0 0
\(626\) 1.22425 0.0489310
\(627\) 2.70052 0.107849
\(628\) 1.66291 0.0663574
\(629\) 0 0
\(630\) 0 0
\(631\) −37.7499 −1.50280 −0.751400 0.659847i \(-0.770621\pi\)
−0.751400 + 0.659847i \(0.770621\pi\)
\(632\) −24.2252 −0.963627
\(633\) 34.9584 1.38947
\(634\) 47.7499 1.89639
\(635\) 0 0
\(636\) −2.78560 −0.110456
\(637\) −11.5212 −0.456486
\(638\) 0.463096 0.0183341
\(639\) −2.81828 −0.111490
\(640\) 0 0
\(641\) −46.3488 −1.83067 −0.915335 0.402694i \(-0.868074\pi\)
−0.915335 + 0.402694i \(0.868074\pi\)
\(642\) −14.5442 −0.574014
\(643\) −34.9502 −1.37830 −0.689150 0.724619i \(-0.742016\pi\)
−0.689150 + 0.724619i \(0.742016\pi\)
\(644\) −2.05949 −0.0811554
\(645\) 0 0
\(646\) 0 0
\(647\) −36.5296 −1.43613 −0.718064 0.695978i \(-0.754971\pi\)
−0.718064 + 0.695978i \(0.754971\pi\)
\(648\) 22.4191 0.880707
\(649\) 2.38787 0.0937322
\(650\) 0 0
\(651\) −3.94921 −0.154782
\(652\) −2.78797 −0.109185
\(653\) 0.926192 0.0362447 0.0181223 0.999836i \(-0.494231\pi\)
0.0181223 + 0.999836i \(0.494231\pi\)
\(654\) 31.5125 1.23223
\(655\) 0 0
\(656\) 49.0494 1.91506
\(657\) 2.58910 0.101011
\(658\) 12.4777 0.486431
\(659\) −24.0118 −0.935365 −0.467683 0.883896i \(-0.654911\pi\)
−0.467683 + 0.883896i \(0.654911\pi\)
\(660\) 0 0
\(661\) 20.9478 0.814775 0.407387 0.913255i \(-0.366440\pi\)
0.407387 + 0.913255i \(0.366440\pi\)
\(662\) 10.1114 0.392991
\(663\) 0 0
\(664\) 35.9307 1.39438
\(665\) 0 0
\(666\) −1.23884 −0.0480042
\(667\) 5.36011 0.207544
\(668\) 1.46405 0.0566458
\(669\) −40.7777 −1.57656
\(670\) 0 0
\(671\) −1.36485 −0.0526895
\(672\) −2.35756 −0.0909447
\(673\) −0.513881 −0.0198087 −0.00990433 0.999951i \(-0.503153\pi\)
−0.00990433 + 0.999951i \(0.503153\pi\)
\(674\) 26.7367 1.02986
\(675\) 0 0
\(676\) −1.61942 −0.0622854
\(677\) −3.67276 −0.141156 −0.0705778 0.997506i \(-0.522484\pi\)
−0.0705778 + 0.997506i \(0.522484\pi\)
\(678\) −12.1260 −0.465697
\(679\) −4.71511 −0.180949
\(680\) 0 0
\(681\) −18.7816 −0.719713
\(682\) 1.30536 0.0499847
\(683\) 10.5115 0.402212 0.201106 0.979570i \(-0.435546\pi\)
0.201106 + 0.979570i \(0.435546\pi\)
\(684\) 0.126008 0.00481804
\(685\) 0 0
\(686\) −23.5341 −0.898535
\(687\) −20.3634 −0.776914
\(688\) −35.4821 −1.35274
\(689\) −18.4894 −0.704392
\(690\) 0 0
\(691\) 25.5940 0.973643 0.486821 0.873502i \(-0.338156\pi\)
0.486821 + 0.873502i \(0.338156\pi\)
\(692\) −2.29806 −0.0873592
\(693\) 0.120128 0.00456330
\(694\) 27.1817 1.03180
\(695\) 0 0
\(696\) 2.91160 0.110364
\(697\) 0 0
\(698\) 20.1476 0.762599
\(699\) 20.0606 0.758763
\(700\) 0 0
\(701\) 30.8324 1.16452 0.582262 0.813001i \(-0.302168\pi\)
0.582262 + 0.813001i \(0.302168\pi\)
\(702\) −17.0884 −0.644960
\(703\) −14.4485 −0.544936
\(704\) −3.40739 −0.128421
\(705\) 0 0
\(706\) −40.5863 −1.52748
\(707\) 8.82653 0.331956
\(708\) −1.61213 −0.0605874
\(709\) −28.1866 −1.05857 −0.529286 0.848444i \(-0.677540\pi\)
−0.529286 + 0.848444i \(0.677540\pi\)
\(710\) 0 0
\(711\) −1.75623 −0.0658639
\(712\) 44.8930 1.68244
\(713\) 15.1089 0.565831
\(714\) 0 0
\(715\) 0 0
\(716\) 0.625301 0.0233686
\(717\) −14.8021 −0.552794
\(718\) 13.4617 0.502385
\(719\) −17.7200 −0.660846 −0.330423 0.943833i \(-0.607191\pi\)
−0.330423 + 0.943833i \(0.607191\pi\)
\(720\) 0 0
\(721\) −9.06679 −0.337665
\(722\) −11.5174 −0.428633
\(723\) 0.438658 0.0163139
\(724\) 1.33567 0.0496399
\(725\) 0 0
\(726\) −26.7186 −0.991621
\(727\) 9.68338 0.359137 0.179568 0.983746i \(-0.442530\pi\)
0.179568 + 0.983746i \(0.442530\pi\)
\(728\) −7.42548 −0.275207
\(729\) 28.5125 1.05602
\(730\) 0 0
\(731\) 0 0
\(732\) 0.921452 0.0340579
\(733\) 32.7123 1.20826 0.604128 0.796887i \(-0.293522\pi\)
0.604128 + 0.796887i \(0.293522\pi\)
\(734\) 18.9053 0.697806
\(735\) 0 0
\(736\) 9.01951 0.332464
\(737\) 2.37328 0.0874211
\(738\) 3.23884 0.119223
\(739\) −1.42548 −0.0524373 −0.0262186 0.999656i \(-0.508347\pi\)
−0.0262186 + 0.999656i \(0.508347\pi\)
\(740\) 0 0
\(741\) −12.1016 −0.444562
\(742\) −16.3488 −0.600185
\(743\) 16.8143 0.616857 0.308429 0.951247i \(-0.400197\pi\)
0.308429 + 0.951247i \(0.400197\pi\)
\(744\) 8.20711 0.300887
\(745\) 0 0
\(746\) −14.9537 −0.547493
\(747\) 2.60483 0.0953058
\(748\) 0 0
\(749\) −7.54561 −0.275711
\(750\) 0 0
\(751\) 44.0835 1.60863 0.804314 0.594204i \(-0.202533\pi\)
0.804314 + 0.594204i \(0.202533\pi\)
\(752\) −28.4690 −1.03816
\(753\) −39.6385 −1.44451
\(754\) −2.07522 −0.0755752
\(755\) 0 0
\(756\) −1.33567 −0.0485780
\(757\) −39.8094 −1.44690 −0.723448 0.690378i \(-0.757444\pi\)
−0.723448 + 0.690378i \(0.757444\pi\)
\(758\) −13.5999 −0.493971
\(759\) 6.64974 0.241370
\(760\) 0 0
\(761\) 2.81591 0.102077 0.0510384 0.998697i \(-0.483747\pi\)
0.0510384 + 0.998697i \(0.483747\pi\)
\(762\) 4.38787 0.158956
\(763\) 16.3488 0.591868
\(764\) 1.39631 0.0505166
\(765\) 0 0
\(766\) −2.71625 −0.0981422
\(767\) −10.7005 −0.386374
\(768\) 7.72592 0.278785
\(769\) 36.0665 1.30059 0.650296 0.759681i \(-0.274645\pi\)
0.650296 + 0.759681i \(0.274645\pi\)
\(770\) 0 0
\(771\) 32.2374 1.16100
\(772\) 3.90034 0.140376
\(773\) 11.6180 0.417871 0.208935 0.977929i \(-0.433000\pi\)
0.208935 + 0.977929i \(0.433000\pi\)
\(774\) −2.34297 −0.0842162
\(775\) 0 0
\(776\) 9.79877 0.351755
\(777\) 9.29948 0.333617
\(778\) −17.2663 −0.619028
\(779\) 37.7743 1.35341
\(780\) 0 0
\(781\) −6.99271 −0.250219
\(782\) 0 0
\(783\) 3.47627 0.124232
\(784\) 23.2433 0.830118
\(785\) 0 0
\(786\) −27.5574 −0.982939
\(787\) 28.4626 1.01458 0.507292 0.861774i \(-0.330647\pi\)
0.507292 + 0.861774i \(0.330647\pi\)
\(788\) −0.613541 −0.0218565
\(789\) −28.8872 −1.02841
\(790\) 0 0
\(791\) −6.29104 −0.223684
\(792\) −0.249646 −0.00887080
\(793\) 6.11616 0.217191
\(794\) 13.8858 0.492787
\(795\) 0 0
\(796\) 4.16854 0.147750
\(797\) −50.5355 −1.79006 −0.895029 0.446007i \(-0.852846\pi\)
−0.895029 + 0.446007i \(0.852846\pi\)
\(798\) −10.7005 −0.378794
\(799\) 0 0
\(800\) 0 0
\(801\) 3.25457 0.114995
\(802\) 11.7597 0.415251
\(803\) 6.42407 0.226701
\(804\) −1.60228 −0.0565080
\(805\) 0 0
\(806\) −5.84955 −0.206042
\(807\) −44.6009 −1.57002
\(808\) −18.3430 −0.645303
\(809\) 2.50914 0.0882167 0.0441084 0.999027i \(-0.485955\pi\)
0.0441084 + 0.999027i \(0.485955\pi\)
\(810\) 0 0
\(811\) 18.0933 0.635342 0.317671 0.948201i \(-0.397099\pi\)
0.317671 + 0.948201i \(0.397099\pi\)
\(812\) −0.162205 −0.00569227
\(813\) −11.2243 −0.393652
\(814\) −3.07381 −0.107737
\(815\) 0 0
\(816\) 0 0
\(817\) −27.3258 −0.956010
\(818\) 13.4401 0.469921
\(819\) −0.538319 −0.0188104
\(820\) 0 0
\(821\) −7.02776 −0.245271 −0.122635 0.992452i \(-0.539135\pi\)
−0.122635 + 0.992452i \(0.539135\pi\)
\(822\) −29.1998 −1.01846
\(823\) 28.5379 0.994767 0.497384 0.867531i \(-0.334294\pi\)
0.497384 + 0.867531i \(0.334294\pi\)
\(824\) 18.8423 0.656401
\(825\) 0 0
\(826\) −9.46168 −0.329214
\(827\) −26.3004 −0.914556 −0.457278 0.889324i \(-0.651175\pi\)
−0.457278 + 0.889324i \(0.651175\pi\)
\(828\) 0.310281 0.0107830
\(829\) −27.2506 −0.946453 −0.473226 0.880941i \(-0.656911\pi\)
−0.473226 + 0.880941i \(0.656911\pi\)
\(830\) 0 0
\(831\) −27.9756 −0.970462
\(832\) 15.2692 0.529363
\(833\) 0 0
\(834\) 29.0435 1.00569
\(835\) 0 0
\(836\) 0.312650 0.0108132
\(837\) 9.79877 0.338695
\(838\) −13.3235 −0.460251
\(839\) 38.6580 1.33462 0.667311 0.744779i \(-0.267445\pi\)
0.667311 + 0.744779i \(0.267445\pi\)
\(840\) 0 0
\(841\) −28.5778 −0.985443
\(842\) 25.0435 0.863056
\(843\) 47.6140 1.63991
\(844\) 4.04728 0.139313
\(845\) 0 0
\(846\) −1.87987 −0.0646313
\(847\) −13.8618 −0.476296
\(848\) 37.3014 1.28093
\(849\) −16.8568 −0.578526
\(850\) 0 0
\(851\) −35.5778 −1.21959
\(852\) 4.72099 0.161739
\(853\) −5.46168 −0.187004 −0.0935022 0.995619i \(-0.529806\pi\)
−0.0935022 + 0.995619i \(0.529806\pi\)
\(854\) 5.40807 0.185060
\(855\) 0 0
\(856\) 15.6810 0.535966
\(857\) −8.30280 −0.283618 −0.141809 0.989894i \(-0.545292\pi\)
−0.141809 + 0.989894i \(0.545292\pi\)
\(858\) −2.57452 −0.0878925
\(859\) −10.7612 −0.367166 −0.183583 0.983004i \(-0.558770\pi\)
−0.183583 + 0.983004i \(0.558770\pi\)
\(860\) 0 0
\(861\) −24.3127 −0.828573
\(862\) 21.7259 0.739988
\(863\) −43.7342 −1.48873 −0.744364 0.667774i \(-0.767247\pi\)
−0.744364 + 0.667774i \(0.767247\pi\)
\(864\) 5.84955 0.199006
\(865\) 0 0
\(866\) −9.89446 −0.336227
\(867\) 0 0
\(868\) −0.457216 −0.0155189
\(869\) −4.35756 −0.147820
\(870\) 0 0
\(871\) −10.6351 −0.360358
\(872\) −33.9756 −1.15056
\(873\) 0.710373 0.0240425
\(874\) 40.9380 1.38475
\(875\) 0 0
\(876\) −4.33709 −0.146537
\(877\) −43.5633 −1.47103 −0.735513 0.677510i \(-0.763059\pi\)
−0.735513 + 0.677510i \(0.763059\pi\)
\(878\) −14.1744 −0.478364
\(879\) −23.9756 −0.808676
\(880\) 0 0
\(881\) 43.4372 1.46344 0.731719 0.681606i \(-0.238718\pi\)
0.731719 + 0.681606i \(0.238718\pi\)
\(882\) 1.53481 0.0516797
\(883\) 6.56864 0.221052 0.110526 0.993873i \(-0.464746\pi\)
0.110526 + 0.993873i \(0.464746\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 21.9090 0.736049
\(887\) 21.4396 0.719872 0.359936 0.932977i \(-0.382799\pi\)
0.359936 + 0.932977i \(0.382799\pi\)
\(888\) −19.3258 −0.648532
\(889\) 2.27645 0.0763498
\(890\) 0 0
\(891\) 4.03269 0.135100
\(892\) −4.72099 −0.158070
\(893\) −21.9248 −0.733685
\(894\) 42.6761 1.42730
\(895\) 0 0
\(896\) 16.3162 0.545085
\(897\) −29.7988 −0.994952
\(898\) 16.1476 0.538853
\(899\) 1.18997 0.0396876
\(900\) 0 0
\(901\) 0 0
\(902\) 8.03620 0.267576
\(903\) 17.5877 0.585282
\(904\) 13.0738 0.434828
\(905\) 0 0
\(906\) 33.7137 1.12006
\(907\) 21.2628 0.706020 0.353010 0.935619i \(-0.385158\pi\)
0.353010 + 0.935619i \(0.385158\pi\)
\(908\) −2.17442 −0.0721608
\(909\) −1.32979 −0.0441065
\(910\) 0 0
\(911\) −48.6678 −1.61244 −0.806219 0.591618i \(-0.798490\pi\)
−0.806219 + 0.591618i \(0.798490\pi\)
\(912\) 24.4142 0.808436
\(913\) 6.46310 0.213897
\(914\) 11.2837 0.373233
\(915\) 0 0
\(916\) −2.35756 −0.0778958
\(917\) −14.2969 −0.472126
\(918\) 0 0
\(919\) 4.55993 0.150418 0.0752091 0.997168i \(-0.476038\pi\)
0.0752091 + 0.997168i \(0.476038\pi\)
\(920\) 0 0
\(921\) −49.0494 −1.61623
\(922\) −6.77575 −0.223147
\(923\) 31.3357 1.03143
\(924\) −0.201231 −0.00662001
\(925\) 0 0
\(926\) −3.80465 −0.125029
\(927\) 1.36599 0.0448650
\(928\) 0.710373 0.0233191
\(929\) −23.3963 −0.767608 −0.383804 0.923415i \(-0.625386\pi\)
−0.383804 + 0.923415i \(0.625386\pi\)
\(930\) 0 0
\(931\) 17.9003 0.586660
\(932\) 2.32250 0.0760760
\(933\) −7.60816 −0.249080
\(934\) 2.30677 0.0754798
\(935\) 0 0
\(936\) 1.11871 0.0365663
\(937\) −30.3898 −0.992791 −0.496395 0.868097i \(-0.665343\pi\)
−0.496395 + 0.868097i \(0.665343\pi\)
\(938\) −9.40388 −0.307047
\(939\) 1.38455 0.0451830
\(940\) 0 0
\(941\) 25.9610 0.846304 0.423152 0.906059i \(-0.360924\pi\)
0.423152 + 0.906059i \(0.360924\pi\)
\(942\) 21.2750 0.693178
\(943\) 93.0151 3.02899
\(944\) 21.5877 0.702619
\(945\) 0 0
\(946\) −5.81336 −0.189009
\(947\) −16.8289 −0.546866 −0.273433 0.961891i \(-0.588159\pi\)
−0.273433 + 0.961891i \(0.588159\pi\)
\(948\) 2.94192 0.0955491
\(949\) −28.7875 −0.934482
\(950\) 0 0
\(951\) 54.0019 1.75113
\(952\) 0 0
\(953\) 12.7553 0.413184 0.206592 0.978427i \(-0.433763\pi\)
0.206592 + 0.978427i \(0.433763\pi\)
\(954\) 2.46310 0.0797457
\(955\) 0 0
\(956\) −1.71370 −0.0554249
\(957\) 0.523730 0.0169298
\(958\) 30.2252 0.976532
\(959\) −15.1490 −0.489188
\(960\) 0 0
\(961\) −27.6458 −0.891799
\(962\) 13.7743 0.444102
\(963\) 1.13681 0.0366333
\(964\) 0.0507852 0.00163568
\(965\) 0 0
\(966\) −26.3488 −0.847760
\(967\) 42.5560 1.36851 0.684254 0.729244i \(-0.260128\pi\)
0.684254 + 0.729244i \(0.260128\pi\)
\(968\) 28.8070 0.925893
\(969\) 0 0
\(970\) 0 0
\(971\) 18.4485 0.592041 0.296020 0.955182i \(-0.404340\pi\)
0.296020 + 0.955182i \(0.404340\pi\)
\(972\) 0.390243 0.0125170
\(973\) 15.0679 0.483056
\(974\) −0.240938 −0.00772014
\(975\) 0 0
\(976\) −12.3390 −0.394962
\(977\) 24.8383 0.794647 0.397324 0.917679i \(-0.369939\pi\)
0.397324 + 0.917679i \(0.369939\pi\)
\(978\) −35.6688 −1.14056
\(979\) 8.07522 0.258085
\(980\) 0 0
\(981\) −2.46310 −0.0786406
\(982\) −19.0132 −0.606735
\(983\) 4.32487 0.137942 0.0689710 0.997619i \(-0.478028\pi\)
0.0689710 + 0.997619i \(0.478028\pi\)
\(984\) 50.5256 1.61070
\(985\) 0 0
\(986\) 0 0
\(987\) 14.1114 0.449171
\(988\) −1.40105 −0.0445732
\(989\) −67.2868 −2.13960
\(990\) 0 0
\(991\) 31.8432 1.01153 0.505767 0.862670i \(-0.331210\pi\)
0.505767 + 0.862670i \(0.331210\pi\)
\(992\) 2.00237 0.0635753
\(993\) 11.4353 0.362889
\(994\) 27.7078 0.878839
\(995\) 0 0
\(996\) −4.36344 −0.138261
\(997\) −29.0278 −0.919318 −0.459659 0.888095i \(-0.652028\pi\)
−0.459659 + 0.888095i \(0.652028\pi\)
\(998\) −26.2788 −0.831842
\(999\) −23.0738 −0.730023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.r.1.3 3
5.4 even 2 1445.2.a.k.1.1 3
17.4 even 4 425.2.d.c.101.1 6
17.13 even 4 425.2.d.c.101.2 6
17.16 even 2 7225.2.a.q.1.3 3
85.4 even 4 85.2.d.a.16.6 yes 6
85.13 odd 4 425.2.c.b.424.5 6
85.38 odd 4 425.2.c.a.424.5 6
85.47 odd 4 425.2.c.a.424.2 6
85.64 even 4 85.2.d.a.16.5 6
85.72 odd 4 425.2.c.b.424.2 6
85.84 even 2 1445.2.a.j.1.1 3
255.89 odd 4 765.2.g.b.271.2 6
255.149 odd 4 765.2.g.b.271.1 6
340.259 odd 4 1360.2.c.f.1121.2 6
340.319 odd 4 1360.2.c.f.1121.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.5 6 85.64 even 4
85.2.d.a.16.6 yes 6 85.4 even 4
425.2.c.a.424.2 6 85.47 odd 4
425.2.c.a.424.5 6 85.38 odd 4
425.2.c.b.424.2 6 85.72 odd 4
425.2.c.b.424.5 6 85.13 odd 4
425.2.d.c.101.1 6 17.4 even 4
425.2.d.c.101.2 6 17.13 even 4
765.2.g.b.271.1 6 255.149 odd 4
765.2.g.b.271.2 6 255.89 odd 4
1360.2.c.f.1121.2 6 340.259 odd 4
1360.2.c.f.1121.5 6 340.319 odd 4
1445.2.a.j.1.1 3 85.84 even 2
1445.2.a.k.1.1 3 5.4 even 2
7225.2.a.q.1.3 3 17.16 even 2
7225.2.a.r.1.3 3 1.1 even 1 trivial