Properties

Label 7225.2.a.r.1.2
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.311108 q^{2} -2.21432 q^{3} -1.90321 q^{4} +0.688892 q^{6} +1.59210 q^{7} +1.21432 q^{8} +1.90321 q^{9} +1.31111 q^{11} +4.21432 q^{12} -3.52543 q^{13} -0.495316 q^{14} +3.42864 q^{16} -0.592104 q^{18} +4.42864 q^{19} -3.52543 q^{21} -0.407896 q^{22} -4.96989 q^{23} -2.68889 q^{24} +1.09679 q^{26} +2.42864 q^{27} -3.03011 q^{28} -8.42864 q^{29} +7.73975 q^{31} -3.49532 q^{32} -2.90321 q^{33} -3.62222 q^{36} -7.05086 q^{37} -1.37778 q^{38} +7.80642 q^{39} +3.67307 q^{41} +1.09679 q^{42} +2.47457 q^{43} -2.49532 q^{44} +1.54617 q^{46} -3.33185 q^{47} -7.59210 q^{48} -4.46520 q^{49} +6.70964 q^{52} -9.18421 q^{53} -0.755569 q^{54} +1.93332 q^{56} -9.80642 q^{57} +2.62222 q^{58} -1.37778 q^{59} +15.4193 q^{61} -2.40790 q^{62} +3.03011 q^{63} -5.76986 q^{64} +0.903212 q^{66} +9.13828 q^{67} +11.0049 q^{69} -10.5970 q^{71} +2.31111 q^{72} -5.57136 q^{73} +2.19358 q^{74} -8.42864 q^{76} +2.08742 q^{77} -2.42864 q^{78} +7.87310 q^{79} -11.0874 q^{81} -1.14272 q^{82} +7.19850 q^{83} +6.70964 q^{84} -0.769859 q^{86} +18.6637 q^{87} +1.59210 q^{88} +11.6271 q^{89} -5.61285 q^{91} +9.45875 q^{92} -17.1383 q^{93} +1.03657 q^{94} +7.73975 q^{96} +15.4795 q^{97} +1.38916 q^{98} +2.49532 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + q^{4} + 2 q^{6} - 2 q^{7} - 3 q^{8} - q^{9} + 4 q^{11} + 6 q^{12} - 4 q^{13} + 12 q^{14} - 3 q^{16} + 5 q^{18} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 10 q^{26} - 6 q^{27} - 16 q^{28}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.311108 −0.219986 −0.109993 0.993932i \(-0.535083\pi\)
−0.109993 + 0.993932i \(0.535083\pi\)
\(3\) −2.21432 −1.27844 −0.639219 0.769025i \(-0.720742\pi\)
−0.639219 + 0.769025i \(0.720742\pi\)
\(4\) −1.90321 −0.951606
\(5\) 0 0
\(6\) 0.688892 0.281239
\(7\) 1.59210 0.601759 0.300879 0.953662i \(-0.402720\pi\)
0.300879 + 0.953662i \(0.402720\pi\)
\(8\) 1.21432 0.429327
\(9\) 1.90321 0.634404
\(10\) 0 0
\(11\) 1.31111 0.395314 0.197657 0.980271i \(-0.436667\pi\)
0.197657 + 0.980271i \(0.436667\pi\)
\(12\) 4.21432 1.21657
\(13\) −3.52543 −0.977778 −0.488889 0.872346i \(-0.662598\pi\)
−0.488889 + 0.872346i \(0.662598\pi\)
\(14\) −0.495316 −0.132379
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) 0 0
\(18\) −0.592104 −0.139560
\(19\) 4.42864 1.01600 0.508000 0.861357i \(-0.330385\pi\)
0.508000 + 0.861357i \(0.330385\pi\)
\(20\) 0 0
\(21\) −3.52543 −0.769311
\(22\) −0.407896 −0.0869637
\(23\) −4.96989 −1.03629 −0.518147 0.855292i \(-0.673378\pi\)
−0.518147 + 0.855292i \(0.673378\pi\)
\(24\) −2.68889 −0.548868
\(25\) 0 0
\(26\) 1.09679 0.215098
\(27\) 2.42864 0.467392
\(28\) −3.03011 −0.572637
\(29\) −8.42864 −1.56516 −0.782580 0.622551i \(-0.786096\pi\)
−0.782580 + 0.622551i \(0.786096\pi\)
\(30\) 0 0
\(31\) 7.73975 1.39010 0.695050 0.718962i \(-0.255382\pi\)
0.695050 + 0.718962i \(0.255382\pi\)
\(32\) −3.49532 −0.617890
\(33\) −2.90321 −0.505384
\(34\) 0 0
\(35\) 0 0
\(36\) −3.62222 −0.603703
\(37\) −7.05086 −1.15915 −0.579577 0.814918i \(-0.696782\pi\)
−0.579577 + 0.814918i \(0.696782\pi\)
\(38\) −1.37778 −0.223506
\(39\) 7.80642 1.25003
\(40\) 0 0
\(41\) 3.67307 0.573637 0.286819 0.957985i \(-0.407402\pi\)
0.286819 + 0.957985i \(0.407402\pi\)
\(42\) 1.09679 0.169238
\(43\) 2.47457 0.377369 0.188684 0.982038i \(-0.439578\pi\)
0.188684 + 0.982038i \(0.439578\pi\)
\(44\) −2.49532 −0.376183
\(45\) 0 0
\(46\) 1.54617 0.227970
\(47\) −3.33185 −0.486000 −0.243000 0.970026i \(-0.578132\pi\)
−0.243000 + 0.970026i \(0.578132\pi\)
\(48\) −7.59210 −1.09583
\(49\) −4.46520 −0.637886
\(50\) 0 0
\(51\) 0 0
\(52\) 6.70964 0.930459
\(53\) −9.18421 −1.26155 −0.630774 0.775967i \(-0.717263\pi\)
−0.630774 + 0.775967i \(0.717263\pi\)
\(54\) −0.755569 −0.102820
\(55\) 0 0
\(56\) 1.93332 0.258351
\(57\) −9.80642 −1.29889
\(58\) 2.62222 0.344314
\(59\) −1.37778 −0.179372 −0.0896861 0.995970i \(-0.528586\pi\)
−0.0896861 + 0.995970i \(0.528586\pi\)
\(60\) 0 0
\(61\) 15.4193 1.97424 0.987118 0.159996i \(-0.0511480\pi\)
0.987118 + 0.159996i \(0.0511480\pi\)
\(62\) −2.40790 −0.305803
\(63\) 3.03011 0.381758
\(64\) −5.76986 −0.721232
\(65\) 0 0
\(66\) 0.903212 0.111178
\(67\) 9.13828 1.11642 0.558209 0.829700i \(-0.311489\pi\)
0.558209 + 0.829700i \(0.311489\pi\)
\(68\) 0 0
\(69\) 11.0049 1.32484
\(70\) 0 0
\(71\) −10.5970 −1.25764 −0.628818 0.777553i \(-0.716461\pi\)
−0.628818 + 0.777553i \(0.716461\pi\)
\(72\) 2.31111 0.272367
\(73\) −5.57136 −0.652078 −0.326039 0.945356i \(-0.605714\pi\)
−0.326039 + 0.945356i \(0.605714\pi\)
\(74\) 2.19358 0.254998
\(75\) 0 0
\(76\) −8.42864 −0.966831
\(77\) 2.08742 0.237884
\(78\) −2.42864 −0.274989
\(79\) 7.87310 0.885793 0.442897 0.896573i \(-0.353951\pi\)
0.442897 + 0.896573i \(0.353951\pi\)
\(80\) 0 0
\(81\) −11.0874 −1.23194
\(82\) −1.14272 −0.126192
\(83\) 7.19850 0.790138 0.395069 0.918651i \(-0.370721\pi\)
0.395069 + 0.918651i \(0.370721\pi\)
\(84\) 6.70964 0.732081
\(85\) 0 0
\(86\) −0.769859 −0.0830160
\(87\) 18.6637 2.00096
\(88\) 1.59210 0.169719
\(89\) 11.6271 1.23247 0.616237 0.787561i \(-0.288656\pi\)
0.616237 + 0.787561i \(0.288656\pi\)
\(90\) 0 0
\(91\) −5.61285 −0.588386
\(92\) 9.45875 0.986143
\(93\) −17.1383 −1.77716
\(94\) 1.03657 0.106914
\(95\) 0 0
\(96\) 7.73975 0.789935
\(97\) 15.4795 1.57170 0.785852 0.618414i \(-0.212225\pi\)
0.785852 + 0.618414i \(0.212225\pi\)
\(98\) 1.38916 0.140326
\(99\) 2.49532 0.250789
\(100\) 0 0
\(101\) −14.3827 −1.43113 −0.715566 0.698545i \(-0.753831\pi\)
−0.715566 + 0.698545i \(0.753831\pi\)
\(102\) 0 0
\(103\) 9.39207 0.925429 0.462714 0.886507i \(-0.346876\pi\)
0.462714 + 0.886507i \(0.346876\pi\)
\(104\) −4.28100 −0.419786
\(105\) 0 0
\(106\) 2.85728 0.277523
\(107\) −6.77631 −0.655091 −0.327545 0.944835i \(-0.606221\pi\)
−0.327545 + 0.944835i \(0.606221\pi\)
\(108\) −4.62222 −0.444773
\(109\) −2.85728 −0.273678 −0.136839 0.990593i \(-0.543694\pi\)
−0.136839 + 0.990593i \(0.543694\pi\)
\(110\) 0 0
\(111\) 15.6128 1.48191
\(112\) 5.45875 0.515803
\(113\) 5.86665 0.551888 0.275944 0.961174i \(-0.411010\pi\)
0.275944 + 0.961174i \(0.411010\pi\)
\(114\) 3.05086 0.285739
\(115\) 0 0
\(116\) 16.0415 1.48941
\(117\) −6.70964 −0.620306
\(118\) 0.428639 0.0394595
\(119\) 0 0
\(120\) 0 0
\(121\) −9.28100 −0.843727
\(122\) −4.79706 −0.434305
\(123\) −8.13335 −0.733360
\(124\) −14.7304 −1.32283
\(125\) 0 0
\(126\) −0.942691 −0.0839816
\(127\) 0.280996 0.0249344 0.0124672 0.999922i \(-0.496031\pi\)
0.0124672 + 0.999922i \(0.496031\pi\)
\(128\) 8.78568 0.776552
\(129\) −5.47949 −0.482443
\(130\) 0 0
\(131\) 13.4128 1.17188 0.585942 0.810353i \(-0.300725\pi\)
0.585942 + 0.810353i \(0.300725\pi\)
\(132\) 5.52543 0.480927
\(133\) 7.05086 0.611387
\(134\) −2.84299 −0.245597
\(135\) 0 0
\(136\) 0 0
\(137\) −10.2810 −0.878365 −0.439182 0.898398i \(-0.644732\pi\)
−0.439182 + 0.898398i \(0.644732\pi\)
\(138\) −3.42372 −0.291446
\(139\) 18.3017 1.55233 0.776167 0.630528i \(-0.217162\pi\)
0.776167 + 0.630528i \(0.217162\pi\)
\(140\) 0 0
\(141\) 7.37778 0.621322
\(142\) 3.29682 0.276663
\(143\) −4.62222 −0.386529
\(144\) 6.52543 0.543786
\(145\) 0 0
\(146\) 1.73329 0.143448
\(147\) 9.88739 0.815498
\(148\) 13.4193 1.10306
\(149\) −4.91750 −0.402857 −0.201429 0.979503i \(-0.564558\pi\)
−0.201429 + 0.979503i \(0.564558\pi\)
\(150\) 0 0
\(151\) −12.7239 −1.03546 −0.517729 0.855545i \(-0.673223\pi\)
−0.517729 + 0.855545i \(0.673223\pi\)
\(152\) 5.37778 0.436196
\(153\) 0 0
\(154\) −0.649413 −0.0523312
\(155\) 0 0
\(156\) −14.8573 −1.18953
\(157\) 9.18421 0.732980 0.366490 0.930422i \(-0.380559\pi\)
0.366490 + 0.930422i \(0.380559\pi\)
\(158\) −2.44938 −0.194862
\(159\) 20.3368 1.61281
\(160\) 0 0
\(161\) −7.91258 −0.623599
\(162\) 3.44938 0.271009
\(163\) 5.07160 0.397238 0.198619 0.980077i \(-0.436354\pi\)
0.198619 + 0.980077i \(0.436354\pi\)
\(164\) −6.99063 −0.545877
\(165\) 0 0
\(166\) −2.23951 −0.173820
\(167\) 19.8272 1.53427 0.767136 0.641484i \(-0.221681\pi\)
0.767136 + 0.641484i \(0.221681\pi\)
\(168\) −4.28100 −0.330286
\(169\) −0.571361 −0.0439508
\(170\) 0 0
\(171\) 8.42864 0.644554
\(172\) −4.70964 −0.359106
\(173\) 2.48886 0.189225 0.0946124 0.995514i \(-0.469839\pi\)
0.0946124 + 0.995514i \(0.469839\pi\)
\(174\) −5.80642 −0.440184
\(175\) 0 0
\(176\) 4.49532 0.338847
\(177\) 3.05086 0.229316
\(178\) −3.61729 −0.271128
\(179\) 11.6128 0.867985 0.433992 0.900916i \(-0.357104\pi\)
0.433992 + 0.900916i \(0.357104\pi\)
\(180\) 0 0
\(181\) −3.86665 −0.287406 −0.143703 0.989621i \(-0.545901\pi\)
−0.143703 + 0.989621i \(0.545901\pi\)
\(182\) 1.74620 0.129437
\(183\) −34.1432 −2.52394
\(184\) −6.03503 −0.444909
\(185\) 0 0
\(186\) 5.33185 0.390950
\(187\) 0 0
\(188\) 6.34122 0.462481
\(189\) 3.86665 0.281257
\(190\) 0 0
\(191\) −14.9175 −1.07939 −0.539696 0.841860i \(-0.681461\pi\)
−0.539696 + 0.841860i \(0.681461\pi\)
\(192\) 12.7763 0.922051
\(193\) 17.7462 1.27740 0.638700 0.769456i \(-0.279473\pi\)
0.638700 + 0.769456i \(0.279473\pi\)
\(194\) −4.81579 −0.345754
\(195\) 0 0
\(196\) 8.49823 0.607016
\(197\) 9.41927 0.671095 0.335548 0.942023i \(-0.391079\pi\)
0.335548 + 0.942023i \(0.391079\pi\)
\(198\) −0.776312 −0.0551701
\(199\) −7.21924 −0.511758 −0.255879 0.966709i \(-0.582365\pi\)
−0.255879 + 0.966709i \(0.582365\pi\)
\(200\) 0 0
\(201\) −20.2351 −1.42727
\(202\) 4.47457 0.314830
\(203\) −13.4193 −0.941848
\(204\) 0 0
\(205\) 0 0
\(206\) −2.92195 −0.203582
\(207\) −9.45875 −0.657429
\(208\) −12.0874 −0.838112
\(209\) 5.80642 0.401639
\(210\) 0 0
\(211\) 14.8825 1.02455 0.512276 0.858821i \(-0.328803\pi\)
0.512276 + 0.858821i \(0.328803\pi\)
\(212\) 17.4795 1.20050
\(213\) 23.4652 1.60781
\(214\) 2.10816 0.144111
\(215\) 0 0
\(216\) 2.94914 0.200664
\(217\) 12.3225 0.836505
\(218\) 0.888922 0.0602054
\(219\) 12.3368 0.833642
\(220\) 0 0
\(221\) 0 0
\(222\) −4.85728 −0.325999
\(223\) −23.4652 −1.57135 −0.785673 0.618642i \(-0.787683\pi\)
−0.785673 + 0.618642i \(0.787683\pi\)
\(224\) −5.56491 −0.371821
\(225\) 0 0
\(226\) −1.82516 −0.121408
\(227\) −4.34767 −0.288565 −0.144283 0.989537i \(-0.546087\pi\)
−0.144283 + 0.989537i \(0.546087\pi\)
\(228\) 18.6637 1.23603
\(229\) −6.47457 −0.427852 −0.213926 0.976850i \(-0.568625\pi\)
−0.213926 + 0.976850i \(0.568625\pi\)
\(230\) 0 0
\(231\) −4.62222 −0.304119
\(232\) −10.2351 −0.671965
\(233\) −18.5303 −1.21396 −0.606982 0.794716i \(-0.707620\pi\)
−0.606982 + 0.794716i \(0.707620\pi\)
\(234\) 2.08742 0.136459
\(235\) 0 0
\(236\) 2.62222 0.170692
\(237\) −17.4336 −1.13243
\(238\) 0 0
\(239\) −21.4193 −1.38550 −0.692749 0.721179i \(-0.743601\pi\)
−0.692749 + 0.721179i \(0.743601\pi\)
\(240\) 0 0
\(241\) 12.2351 0.788130 0.394065 0.919083i \(-0.371069\pi\)
0.394065 + 0.919083i \(0.371069\pi\)
\(242\) 2.88739 0.185608
\(243\) 17.2652 1.10756
\(244\) −29.3461 −1.87869
\(245\) 0 0
\(246\) 2.53035 0.161329
\(247\) −15.6128 −0.993422
\(248\) 9.39853 0.596807
\(249\) −15.9398 −1.01014
\(250\) 0 0
\(251\) −4.52051 −0.285332 −0.142666 0.989771i \(-0.545567\pi\)
−0.142666 + 0.989771i \(0.545567\pi\)
\(252\) −5.76694 −0.363283
\(253\) −6.51606 −0.409661
\(254\) −0.0874201 −0.00548523
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) −6.18913 −0.386067 −0.193034 0.981192i \(-0.561833\pi\)
−0.193034 + 0.981192i \(0.561833\pi\)
\(258\) 1.70471 0.106131
\(259\) −11.2257 −0.697531
\(260\) 0 0
\(261\) −16.0415 −0.992943
\(262\) −4.17283 −0.257798
\(263\) 8.18913 0.504963 0.252482 0.967602i \(-0.418753\pi\)
0.252482 + 0.967602i \(0.418753\pi\)
\(264\) −3.52543 −0.216975
\(265\) 0 0
\(266\) −2.19358 −0.134497
\(267\) −25.7462 −1.57564
\(268\) −17.3921 −1.06239
\(269\) −3.89829 −0.237683 −0.118841 0.992913i \(-0.537918\pi\)
−0.118841 + 0.992913i \(0.537918\pi\)
\(270\) 0 0
\(271\) 8.85728 0.538041 0.269021 0.963134i \(-0.413300\pi\)
0.269021 + 0.963134i \(0.413300\pi\)
\(272\) 0 0
\(273\) 12.4286 0.752215
\(274\) 3.19850 0.193228
\(275\) 0 0
\(276\) −20.9447 −1.26072
\(277\) −1.14272 −0.0686595 −0.0343297 0.999411i \(-0.510930\pi\)
−0.0343297 + 0.999411i \(0.510930\pi\)
\(278\) −5.69381 −0.341492
\(279\) 14.7304 0.881885
\(280\) 0 0
\(281\) 14.6953 0.876651 0.438325 0.898816i \(-0.355572\pi\)
0.438325 + 0.898816i \(0.355572\pi\)
\(282\) −2.29529 −0.136682
\(283\) −1.97926 −0.117655 −0.0588273 0.998268i \(-0.518736\pi\)
−0.0588273 + 0.998268i \(0.518736\pi\)
\(284\) 20.1684 1.19677
\(285\) 0 0
\(286\) 1.43801 0.0850312
\(287\) 5.84791 0.345191
\(288\) −6.65233 −0.391992
\(289\) 0 0
\(290\) 0 0
\(291\) −34.2766 −2.00933
\(292\) 10.6035 0.620522
\(293\) −2.94914 −0.172291 −0.0861454 0.996283i \(-0.527455\pi\)
−0.0861454 + 0.996283i \(0.527455\pi\)
\(294\) −3.07604 −0.179399
\(295\) 0 0
\(296\) −8.56199 −0.497656
\(297\) 3.18421 0.184767
\(298\) 1.52987 0.0886232
\(299\) 17.5210 1.01326
\(300\) 0 0
\(301\) 3.93978 0.227085
\(302\) 3.95851 0.227787
\(303\) 31.8479 1.82961
\(304\) 15.1842 0.870874
\(305\) 0 0
\(306\) 0 0
\(307\) 5.68736 0.324595 0.162297 0.986742i \(-0.448110\pi\)
0.162297 + 0.986742i \(0.448110\pi\)
\(308\) −3.97280 −0.226371
\(309\) −20.7971 −1.18310
\(310\) 0 0
\(311\) −23.7210 −1.34510 −0.672548 0.740054i \(-0.734800\pi\)
−0.672548 + 0.740054i \(0.734800\pi\)
\(312\) 9.47949 0.536671
\(313\) −30.8988 −1.74650 −0.873251 0.487271i \(-0.837992\pi\)
−0.873251 + 0.487271i \(0.837992\pi\)
\(314\) −2.85728 −0.161246
\(315\) 0 0
\(316\) −14.9842 −0.842926
\(317\) 13.7047 0.769733 0.384867 0.922972i \(-0.374247\pi\)
0.384867 + 0.922972i \(0.374247\pi\)
\(318\) −6.32693 −0.354797
\(319\) −11.0509 −0.618729
\(320\) 0 0
\(321\) 15.0049 0.837493
\(322\) 2.46167 0.137183
\(323\) 0 0
\(324\) 21.1017 1.17232
\(325\) 0 0
\(326\) −1.57781 −0.0873870
\(327\) 6.32693 0.349880
\(328\) 4.46028 0.246278
\(329\) −5.30465 −0.292455
\(330\) 0 0
\(331\) −24.8988 −1.36856 −0.684280 0.729219i \(-0.739883\pi\)
−0.684280 + 0.729219i \(0.739883\pi\)
\(332\) −13.7003 −0.751900
\(333\) −13.4193 −0.735372
\(334\) −6.16839 −0.337519
\(335\) 0 0
\(336\) −12.0874 −0.659423
\(337\) −5.28592 −0.287942 −0.143971 0.989582i \(-0.545987\pi\)
−0.143971 + 0.989582i \(0.545987\pi\)
\(338\) 0.177755 0.00966858
\(339\) −12.9906 −0.705554
\(340\) 0 0
\(341\) 10.1476 0.549526
\(342\) −2.62222 −0.141793
\(343\) −18.2538 −0.985613
\(344\) 3.00492 0.162015
\(345\) 0 0
\(346\) −0.774305 −0.0416269
\(347\) −31.6019 −1.69648 −0.848241 0.529611i \(-0.822338\pi\)
−0.848241 + 0.529611i \(0.822338\pi\)
\(348\) −35.5210 −1.90412
\(349\) −26.5116 −1.41913 −0.709567 0.704638i \(-0.751109\pi\)
−0.709567 + 0.704638i \(0.751109\pi\)
\(350\) 0 0
\(351\) −8.56199 −0.457005
\(352\) −4.58274 −0.244261
\(353\) 3.71456 0.197706 0.0988530 0.995102i \(-0.468483\pi\)
0.0988530 + 0.995102i \(0.468483\pi\)
\(354\) −0.949145 −0.0504465
\(355\) 0 0
\(356\) −22.1289 −1.17283
\(357\) 0 0
\(358\) −3.61285 −0.190945
\(359\) −10.6637 −0.562809 −0.281404 0.959589i \(-0.590800\pi\)
−0.281404 + 0.959589i \(0.590800\pi\)
\(360\) 0 0
\(361\) 0.612848 0.0322551
\(362\) 1.20294 0.0632253
\(363\) 20.5511 1.07865
\(364\) 10.6824 0.559912
\(365\) 0 0
\(366\) 10.6222 0.555232
\(367\) −10.8780 −0.567828 −0.283914 0.958850i \(-0.591633\pi\)
−0.283914 + 0.958850i \(0.591633\pi\)
\(368\) −17.0400 −0.888269
\(369\) 6.99063 0.363918
\(370\) 0 0
\(371\) −14.6222 −0.759148
\(372\) 32.6178 1.69115
\(373\) 16.5575 0.857317 0.428659 0.903467i \(-0.358986\pi\)
0.428659 + 0.903467i \(0.358986\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.04593 −0.208653
\(377\) 29.7146 1.53038
\(378\) −1.20294 −0.0618728
\(379\) 8.16839 0.419582 0.209791 0.977746i \(-0.432722\pi\)
0.209791 + 0.977746i \(0.432722\pi\)
\(380\) 0 0
\(381\) −0.622216 −0.0318771
\(382\) 4.64095 0.237452
\(383\) 36.7926 1.88001 0.940007 0.341154i \(-0.110818\pi\)
0.940007 + 0.341154i \(0.110818\pi\)
\(384\) −19.4543 −0.992773
\(385\) 0 0
\(386\) −5.52098 −0.281011
\(387\) 4.70964 0.239404
\(388\) −29.4608 −1.49564
\(389\) −12.5348 −0.635539 −0.317770 0.948168i \(-0.602934\pi\)
−0.317770 + 0.948168i \(0.602934\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −5.42219 −0.273862
\(393\) −29.7003 −1.49818
\(394\) −2.93041 −0.147632
\(395\) 0 0
\(396\) −4.74912 −0.238652
\(397\) 32.1017 1.61114 0.805569 0.592502i \(-0.201860\pi\)
0.805569 + 0.592502i \(0.201860\pi\)
\(398\) 2.24596 0.112580
\(399\) −15.6128 −0.781620
\(400\) 0 0
\(401\) −13.0321 −0.650793 −0.325396 0.945578i \(-0.605498\pi\)
−0.325396 + 0.945578i \(0.605498\pi\)
\(402\) 6.29529 0.313980
\(403\) −27.2859 −1.35921
\(404\) 27.3733 1.36187
\(405\) 0 0
\(406\) 4.17484 0.207194
\(407\) −9.24443 −0.458229
\(408\) 0 0
\(409\) 3.12399 0.154471 0.0772356 0.997013i \(-0.475391\pi\)
0.0772356 + 0.997013i \(0.475391\pi\)
\(410\) 0 0
\(411\) 22.7654 1.12294
\(412\) −17.8751 −0.880643
\(413\) −2.19358 −0.107939
\(414\) 2.94269 0.144625
\(415\) 0 0
\(416\) 12.3225 0.604159
\(417\) −40.5259 −1.98456
\(418\) −1.80642 −0.0883551
\(419\) 13.1590 0.642860 0.321430 0.946933i \(-0.395836\pi\)
0.321430 + 0.946933i \(0.395836\pi\)
\(420\) 0 0
\(421\) −27.6686 −1.34849 −0.674243 0.738509i \(-0.735530\pi\)
−0.674243 + 0.738509i \(0.735530\pi\)
\(422\) −4.63005 −0.225387
\(423\) −6.34122 −0.308321
\(424\) −11.1526 −0.541616
\(425\) 0 0
\(426\) −7.30021 −0.353696
\(427\) 24.5491 1.18801
\(428\) 12.8968 0.623388
\(429\) 10.2351 0.494154
\(430\) 0 0
\(431\) 17.6795 0.851593 0.425796 0.904819i \(-0.359994\pi\)
0.425796 + 0.904819i \(0.359994\pi\)
\(432\) 8.32693 0.400630
\(433\) −24.9447 −1.19877 −0.599383 0.800462i \(-0.704587\pi\)
−0.599383 + 0.800462i \(0.704587\pi\)
\(434\) −3.83362 −0.184020
\(435\) 0 0
\(436\) 5.43801 0.260433
\(437\) −22.0098 −1.05287
\(438\) −3.83807 −0.183390
\(439\) 11.9748 0.571527 0.285763 0.958300i \(-0.407753\pi\)
0.285763 + 0.958300i \(0.407753\pi\)
\(440\) 0 0
\(441\) −8.49823 −0.404678
\(442\) 0 0
\(443\) 30.6909 1.45817 0.729084 0.684424i \(-0.239946\pi\)
0.729084 + 0.684424i \(0.239946\pi\)
\(444\) −29.7146 −1.41019
\(445\) 0 0
\(446\) 7.30021 0.345675
\(447\) 10.8889 0.515028
\(448\) −9.18622 −0.434008
\(449\) −13.6543 −0.644388 −0.322194 0.946674i \(-0.604420\pi\)
−0.322194 + 0.946674i \(0.604420\pi\)
\(450\) 0 0
\(451\) 4.81579 0.226767
\(452\) −11.1655 −0.525180
\(453\) 28.1748 1.32377
\(454\) 1.35260 0.0634804
\(455\) 0 0
\(456\) −11.9081 −0.557649
\(457\) −8.20787 −0.383948 −0.191974 0.981400i \(-0.561489\pi\)
−0.191974 + 0.981400i \(0.561489\pi\)
\(458\) 2.01429 0.0941216
\(459\) 0 0
\(460\) 0 0
\(461\) −5.18421 −0.241453 −0.120726 0.992686i \(-0.538522\pi\)
−0.120726 + 0.992686i \(0.538522\pi\)
\(462\) 1.43801 0.0669022
\(463\) −23.1985 −1.07813 −0.539063 0.842266i \(-0.681221\pi\)
−0.539063 + 0.842266i \(0.681221\pi\)
\(464\) −28.8988 −1.34159
\(465\) 0 0
\(466\) 5.76494 0.267056
\(467\) −35.2400 −1.63071 −0.815356 0.578960i \(-0.803459\pi\)
−0.815356 + 0.578960i \(0.803459\pi\)
\(468\) 12.7699 0.590287
\(469\) 14.5491 0.671814
\(470\) 0 0
\(471\) −20.3368 −0.937069
\(472\) −1.67307 −0.0770093
\(473\) 3.24443 0.149179
\(474\) 5.42372 0.249120
\(475\) 0 0
\(476\) 0 0
\(477\) −17.4795 −0.800331
\(478\) 6.66370 0.304791
\(479\) 11.4445 0.522911 0.261455 0.965216i \(-0.415798\pi\)
0.261455 + 0.965216i \(0.415798\pi\)
\(480\) 0 0
\(481\) 24.8573 1.13339
\(482\) −3.80642 −0.173378
\(483\) 17.5210 0.797232
\(484\) 17.6637 0.802896
\(485\) 0 0
\(486\) −5.37133 −0.243649
\(487\) −29.7540 −1.34828 −0.674142 0.738602i \(-0.735486\pi\)
−0.674142 + 0.738602i \(0.735486\pi\)
\(488\) 18.7239 0.847592
\(489\) −11.2301 −0.507845
\(490\) 0 0
\(491\) −25.4193 −1.14716 −0.573578 0.819151i \(-0.694445\pi\)
−0.573578 + 0.819151i \(0.694445\pi\)
\(492\) 15.4795 0.697870
\(493\) 0 0
\(494\) 4.85728 0.218539
\(495\) 0 0
\(496\) 26.5368 1.19154
\(497\) −16.8716 −0.756793
\(498\) 4.95899 0.222218
\(499\) −14.8035 −0.662696 −0.331348 0.943509i \(-0.607503\pi\)
−0.331348 + 0.943509i \(0.607503\pi\)
\(500\) 0 0
\(501\) −43.9037 −1.96147
\(502\) 1.40636 0.0627691
\(503\) 4.34767 0.193853 0.0969266 0.995292i \(-0.469099\pi\)
0.0969266 + 0.995292i \(0.469099\pi\)
\(504\) 3.67952 0.163899
\(505\) 0 0
\(506\) 2.02720 0.0901199
\(507\) 1.26517 0.0561884
\(508\) −0.534795 −0.0237277
\(509\) −15.9813 −0.708357 −0.354179 0.935178i \(-0.615239\pi\)
−0.354179 + 0.935178i \(0.615239\pi\)
\(510\) 0 0
\(511\) −8.87019 −0.392394
\(512\) −20.3111 −0.897633
\(513\) 10.7556 0.474870
\(514\) 1.92549 0.0849296
\(515\) 0 0
\(516\) 10.4286 0.459095
\(517\) −4.36842 −0.192123
\(518\) 3.49240 0.153447
\(519\) −5.51114 −0.241912
\(520\) 0 0
\(521\) −27.9081 −1.22268 −0.611339 0.791369i \(-0.709369\pi\)
−0.611339 + 0.791369i \(0.709369\pi\)
\(522\) 4.99063 0.218434
\(523\) −15.8938 −0.694989 −0.347495 0.937682i \(-0.612968\pi\)
−0.347495 + 0.937682i \(0.612968\pi\)
\(524\) −25.5274 −1.11517
\(525\) 0 0
\(526\) −2.54770 −0.111085
\(527\) 0 0
\(528\) −9.95407 −0.433195
\(529\) 1.69979 0.0739040
\(530\) 0 0
\(531\) −2.62222 −0.113794
\(532\) −13.4193 −0.581799
\(533\) −12.9491 −0.560890
\(534\) 8.00984 0.346620
\(535\) 0 0
\(536\) 11.0968 0.479308
\(537\) −25.7146 −1.10967
\(538\) 1.21279 0.0522870
\(539\) −5.85436 −0.252165
\(540\) 0 0
\(541\) −24.2449 −1.04237 −0.521185 0.853444i \(-0.674510\pi\)
−0.521185 + 0.853444i \(0.674510\pi\)
\(542\) −2.75557 −0.118362
\(543\) 8.56199 0.367430
\(544\) 0 0
\(545\) 0 0
\(546\) −3.86665 −0.165477
\(547\) −11.7255 −0.501344 −0.250672 0.968072i \(-0.580652\pi\)
−0.250672 + 0.968072i \(0.580652\pi\)
\(548\) 19.5669 0.835857
\(549\) 29.3461 1.25246
\(550\) 0 0
\(551\) −37.3274 −1.59020
\(552\) 13.3635 0.568788
\(553\) 12.5348 0.533034
\(554\) 0.355509 0.0151041
\(555\) 0 0
\(556\) −34.8321 −1.47721
\(557\) 31.4336 1.33188 0.665941 0.746004i \(-0.268030\pi\)
0.665941 + 0.746004i \(0.268030\pi\)
\(558\) −4.58274 −0.194003
\(559\) −8.72393 −0.368983
\(560\) 0 0
\(561\) 0 0
\(562\) −4.57184 −0.192851
\(563\) 11.9353 0.503014 0.251507 0.967855i \(-0.419074\pi\)
0.251507 + 0.967855i \(0.419074\pi\)
\(564\) −14.0415 −0.591253
\(565\) 0 0
\(566\) 0.615762 0.0258824
\(567\) −17.6523 −0.741328
\(568\) −12.8682 −0.539937
\(569\) −1.14272 −0.0479054 −0.0239527 0.999713i \(-0.507625\pi\)
−0.0239527 + 0.999713i \(0.507625\pi\)
\(570\) 0 0
\(571\) −26.7402 −1.11904 −0.559522 0.828816i \(-0.689015\pi\)
−0.559522 + 0.828816i \(0.689015\pi\)
\(572\) 8.79706 0.367823
\(573\) 33.0321 1.37994
\(574\) −1.81933 −0.0759374
\(575\) 0 0
\(576\) −10.9813 −0.457553
\(577\) −27.9956 −1.16547 −0.582735 0.812662i \(-0.698017\pi\)
−0.582735 + 0.812662i \(0.698017\pi\)
\(578\) 0 0
\(579\) −39.2958 −1.63308
\(580\) 0 0
\(581\) 11.4608 0.475472
\(582\) 10.6637 0.442025
\(583\) −12.0415 −0.498707
\(584\) −6.76541 −0.279955
\(585\) 0 0
\(586\) 0.917502 0.0379017
\(587\) 6.60793 0.272738 0.136369 0.990658i \(-0.456457\pi\)
0.136369 + 0.990658i \(0.456457\pi\)
\(588\) −18.8178 −0.776033
\(589\) 34.2766 1.41234
\(590\) 0 0
\(591\) −20.8573 −0.857954
\(592\) −24.1748 −0.993580
\(593\) −4.82564 −0.198165 −0.0990826 0.995079i \(-0.531591\pi\)
−0.0990826 + 0.995079i \(0.531591\pi\)
\(594\) −0.990632 −0.0406461
\(595\) 0 0
\(596\) 9.35905 0.383362
\(597\) 15.9857 0.654252
\(598\) −5.45091 −0.222904
\(599\) −39.0005 −1.59352 −0.796758 0.604298i \(-0.793454\pi\)
−0.796758 + 0.604298i \(0.793454\pi\)
\(600\) 0 0
\(601\) 7.19405 0.293452 0.146726 0.989177i \(-0.453127\pi\)
0.146726 + 0.989177i \(0.453127\pi\)
\(602\) −1.22570 −0.0499556
\(603\) 17.3921 0.708260
\(604\) 24.2163 0.985348
\(605\) 0 0
\(606\) −9.90813 −0.402490
\(607\) −7.23353 −0.293600 −0.146800 0.989166i \(-0.546897\pi\)
−0.146800 + 0.989166i \(0.546897\pi\)
\(608\) −15.4795 −0.627776
\(609\) 29.7146 1.20409
\(610\) 0 0
\(611\) 11.7462 0.475200
\(612\) 0 0
\(613\) −14.7654 −0.596369 −0.298185 0.954508i \(-0.596381\pi\)
−0.298185 + 0.954508i \(0.596381\pi\)
\(614\) −1.76938 −0.0714065
\(615\) 0 0
\(616\) 2.53480 0.102130
\(617\) −10.5205 −0.423540 −0.211770 0.977320i \(-0.567923\pi\)
−0.211770 + 0.977320i \(0.567923\pi\)
\(618\) 6.47013 0.260267
\(619\) 7.94623 0.319386 0.159693 0.987167i \(-0.448950\pi\)
0.159693 + 0.987167i \(0.448950\pi\)
\(620\) 0 0
\(621\) −12.0701 −0.484355
\(622\) 7.37979 0.295903
\(623\) 18.5116 0.741652
\(624\) 26.7654 1.07147
\(625\) 0 0
\(626\) 9.61285 0.384207
\(627\) −12.8573 −0.513470
\(628\) −17.4795 −0.697508
\(629\) 0 0
\(630\) 0 0
\(631\) 14.2636 0.567827 0.283913 0.958850i \(-0.408367\pi\)
0.283913 + 0.958850i \(0.408367\pi\)
\(632\) 9.56046 0.380295
\(633\) −32.9545 −1.30983
\(634\) −4.26364 −0.169331
\(635\) 0 0
\(636\) −38.7052 −1.53476
\(637\) 15.7418 0.623711
\(638\) 3.43801 0.136112
\(639\) −20.1684 −0.797849
\(640\) 0 0
\(641\) −25.4509 −1.00525 −0.502625 0.864504i \(-0.667632\pi\)
−0.502625 + 0.864504i \(0.667632\pi\)
\(642\) −4.66815 −0.184237
\(643\) −16.1126 −0.635419 −0.317710 0.948188i \(-0.602914\pi\)
−0.317710 + 0.948188i \(0.602914\pi\)
\(644\) 15.0593 0.593420
\(645\) 0 0
\(646\) 0 0
\(647\) −40.4558 −1.59048 −0.795242 0.606293i \(-0.792656\pi\)
−0.795242 + 0.606293i \(0.792656\pi\)
\(648\) −13.4637 −0.528903
\(649\) −1.80642 −0.0709083
\(650\) 0 0
\(651\) −27.2859 −1.06942
\(652\) −9.65233 −0.378014
\(653\) 6.87601 0.269079 0.134540 0.990908i \(-0.457044\pi\)
0.134540 + 0.990908i \(0.457044\pi\)
\(654\) −1.96836 −0.0769689
\(655\) 0 0
\(656\) 12.5936 0.491699
\(657\) −10.6035 −0.413681
\(658\) 1.65032 0.0643361
\(659\) 16.0286 0.624385 0.312192 0.950019i \(-0.398937\pi\)
0.312192 + 0.950019i \(0.398937\pi\)
\(660\) 0 0
\(661\) 31.1655 1.21220 0.606098 0.795390i \(-0.292734\pi\)
0.606098 + 0.795390i \(0.292734\pi\)
\(662\) 7.74620 0.301065
\(663\) 0 0
\(664\) 8.74128 0.339227
\(665\) 0 0
\(666\) 4.17484 0.161772
\(667\) 41.8894 1.62196
\(668\) −37.7353 −1.46002
\(669\) 51.9595 2.00887
\(670\) 0 0
\(671\) 20.2163 0.780443
\(672\) 12.3225 0.475350
\(673\) 19.8479 0.765081 0.382540 0.923939i \(-0.375049\pi\)
0.382540 + 0.923939i \(0.375049\pi\)
\(674\) 1.64449 0.0633434
\(675\) 0 0
\(676\) 1.08742 0.0418239
\(677\) −28.8385 −1.10836 −0.554178 0.832398i \(-0.686967\pi\)
−0.554178 + 0.832398i \(0.686967\pi\)
\(678\) 4.04149 0.155212
\(679\) 24.6450 0.945787
\(680\) 0 0
\(681\) 9.62714 0.368913
\(682\) −3.15701 −0.120888
\(683\) 19.2050 0.734857 0.367429 0.930052i \(-0.380238\pi\)
0.367429 + 0.930052i \(0.380238\pi\)
\(684\) −16.0415 −0.613362
\(685\) 0 0
\(686\) 5.67890 0.216821
\(687\) 14.3368 0.546982
\(688\) 8.48442 0.323465
\(689\) 32.3783 1.23351
\(690\) 0 0
\(691\) 34.5555 1.31455 0.657277 0.753649i \(-0.271708\pi\)
0.657277 + 0.753649i \(0.271708\pi\)
\(692\) −4.73683 −0.180067
\(693\) 3.97280 0.150914
\(694\) 9.83161 0.373203
\(695\) 0 0
\(696\) 22.6637 0.859065
\(697\) 0 0
\(698\) 8.24797 0.312190
\(699\) 41.0321 1.55198
\(700\) 0 0
\(701\) −20.9131 −0.789875 −0.394938 0.918708i \(-0.629234\pi\)
−0.394938 + 0.918708i \(0.629234\pi\)
\(702\) 2.66370 0.100535
\(703\) −31.2257 −1.17770
\(704\) −7.56491 −0.285113
\(705\) 0 0
\(706\) −1.15563 −0.0434926
\(707\) −22.8988 −0.861197
\(708\) −5.80642 −0.218219
\(709\) −32.9906 −1.23899 −0.619495 0.785001i \(-0.712662\pi\)
−0.619495 + 0.785001i \(0.712662\pi\)
\(710\) 0 0
\(711\) 14.9842 0.561951
\(712\) 14.1191 0.529134
\(713\) −38.4657 −1.44055
\(714\) 0 0
\(715\) 0 0
\(716\) −22.1017 −0.825980
\(717\) 47.4291 1.77127
\(718\) 3.31756 0.123810
\(719\) −10.5141 −0.392108 −0.196054 0.980593i \(-0.562813\pi\)
−0.196054 + 0.980593i \(0.562813\pi\)
\(720\) 0 0
\(721\) 14.9532 0.556885
\(722\) −0.190662 −0.00709569
\(723\) −27.0923 −1.00758
\(724\) 7.35905 0.273497
\(725\) 0 0
\(726\) −6.39361 −0.237289
\(727\) −43.2815 −1.60522 −0.802610 0.596503i \(-0.796556\pi\)
−0.802610 + 0.596503i \(0.796556\pi\)
\(728\) −6.81579 −0.252610
\(729\) −4.96836 −0.184013
\(730\) 0 0
\(731\) 0 0
\(732\) 64.9817 2.40179
\(733\) −22.8859 −0.845308 −0.422654 0.906291i \(-0.638902\pi\)
−0.422654 + 0.906291i \(0.638902\pi\)
\(734\) 3.38424 0.124914
\(735\) 0 0
\(736\) 17.3713 0.640316
\(737\) 11.9813 0.441336
\(738\) −2.17484 −0.0800570
\(739\) −0.815792 −0.0300094 −0.0150047 0.999887i \(-0.504776\pi\)
−0.0150047 + 0.999887i \(0.504776\pi\)
\(740\) 0 0
\(741\) 34.5718 1.27003
\(742\) 4.54909 0.167002
\(743\) −30.1639 −1.10661 −0.553304 0.832980i \(-0.686633\pi\)
−0.553304 + 0.832980i \(0.686633\pi\)
\(744\) −20.8113 −0.762981
\(745\) 0 0
\(746\) −5.15118 −0.188598
\(747\) 13.7003 0.501267
\(748\) 0 0
\(749\) −10.7886 −0.394207
\(750\) 0 0
\(751\) 2.17728 0.0794500 0.0397250 0.999211i \(-0.487352\pi\)
0.0397250 + 0.999211i \(0.487352\pi\)
\(752\) −11.4237 −0.416580
\(753\) 10.0098 0.364779
\(754\) −9.24443 −0.336662
\(755\) 0 0
\(756\) −7.35905 −0.267646
\(757\) 29.3230 1.06576 0.532881 0.846190i \(-0.321110\pi\)
0.532881 + 0.846190i \(0.321110\pi\)
\(758\) −2.54125 −0.0923023
\(759\) 14.4286 0.523726
\(760\) 0 0
\(761\) 49.2212 1.78427 0.892134 0.451770i \(-0.149207\pi\)
0.892134 + 0.451770i \(0.149207\pi\)
\(762\) 0.193576 0.00701252
\(763\) −4.54909 −0.164688
\(764\) 28.3912 1.02716
\(765\) 0 0
\(766\) −11.4465 −0.413578
\(767\) 4.85728 0.175386
\(768\) −19.5002 −0.703654
\(769\) 37.0178 1.33490 0.667449 0.744656i \(-0.267386\pi\)
0.667449 + 0.744656i \(0.267386\pi\)
\(770\) 0 0
\(771\) 13.7047 0.493563
\(772\) −33.7748 −1.21558
\(773\) −4.20787 −0.151346 −0.0756732 0.997133i \(-0.524111\pi\)
−0.0756732 + 0.997133i \(0.524111\pi\)
\(774\) −1.46520 −0.0526657
\(775\) 0 0
\(776\) 18.7971 0.674775
\(777\) 24.8573 0.891750
\(778\) 3.89967 0.139810
\(779\) 16.2667 0.582815
\(780\) 0 0
\(781\) −13.8938 −0.497161
\(782\) 0 0
\(783\) −20.4701 −0.731543
\(784\) −15.3096 −0.546771
\(785\) 0 0
\(786\) 9.23999 0.329579
\(787\) −23.8557 −0.850366 −0.425183 0.905108i \(-0.639790\pi\)
−0.425183 + 0.905108i \(0.639790\pi\)
\(788\) −17.9269 −0.638618
\(789\) −18.1334 −0.645564
\(790\) 0 0
\(791\) 9.34031 0.332103
\(792\) 3.03011 0.107670
\(793\) −54.3595 −1.93036
\(794\) −9.98709 −0.354429
\(795\) 0 0
\(796\) 13.7397 0.486992
\(797\) −34.4415 −1.21998 −0.609991 0.792408i \(-0.708827\pi\)
−0.609991 + 0.792408i \(0.708827\pi\)
\(798\) 4.85728 0.171946
\(799\) 0 0
\(800\) 0 0
\(801\) 22.1289 0.781886
\(802\) 4.05439 0.143166
\(803\) −7.30465 −0.257776
\(804\) 38.5116 1.35820
\(805\) 0 0
\(806\) 8.48886 0.299007
\(807\) 8.63206 0.303863
\(808\) −17.4652 −0.614424
\(809\) 40.2578 1.41539 0.707695 0.706518i \(-0.249735\pi\)
0.707695 + 0.706518i \(0.249735\pi\)
\(810\) 0 0
\(811\) 20.4953 0.719688 0.359844 0.933013i \(-0.382830\pi\)
0.359844 + 0.933013i \(0.382830\pi\)
\(812\) 25.5397 0.896268
\(813\) −19.6128 −0.687853
\(814\) 2.87601 0.100804
\(815\) 0 0
\(816\) 0 0
\(817\) 10.9590 0.383407
\(818\) −0.971896 −0.0339816
\(819\) −10.6824 −0.373275
\(820\) 0 0
\(821\) 33.6958 1.17599 0.587996 0.808864i \(-0.299917\pi\)
0.587996 + 0.808864i \(0.299917\pi\)
\(822\) −7.08250 −0.247030
\(823\) −16.6113 −0.579034 −0.289517 0.957173i \(-0.593495\pi\)
−0.289517 + 0.957173i \(0.593495\pi\)
\(824\) 11.4050 0.397311
\(825\) 0 0
\(826\) 0.682439 0.0237451
\(827\) 0.316030 0.0109894 0.00549472 0.999985i \(-0.498251\pi\)
0.00549472 + 0.999985i \(0.498251\pi\)
\(828\) 18.0020 0.625613
\(829\) 18.2034 0.632231 0.316115 0.948721i \(-0.397621\pi\)
0.316115 + 0.948721i \(0.397621\pi\)
\(830\) 0 0
\(831\) 2.53035 0.0877769
\(832\) 20.3412 0.705205
\(833\) 0 0
\(834\) 12.6079 0.436577
\(835\) 0 0
\(836\) −11.0509 −0.382202
\(837\) 18.7971 0.649721
\(838\) −4.09387 −0.141421
\(839\) −2.63851 −0.0910916 −0.0455458 0.998962i \(-0.514503\pi\)
−0.0455458 + 0.998962i \(0.514503\pi\)
\(840\) 0 0
\(841\) 42.0420 1.44972
\(842\) 8.60793 0.296649
\(843\) −32.5402 −1.12074
\(844\) −28.3245 −0.974969
\(845\) 0 0
\(846\) 1.97280 0.0678264
\(847\) −14.7763 −0.507720
\(848\) −31.4893 −1.08135
\(849\) 4.38271 0.150414
\(850\) 0 0
\(851\) 35.0420 1.20122
\(852\) −44.6593 −1.53000
\(853\) 4.68244 0.160324 0.0801618 0.996782i \(-0.474456\pi\)
0.0801618 + 0.996782i \(0.474456\pi\)
\(854\) −7.63741 −0.261347
\(855\) 0 0
\(856\) −8.22861 −0.281248
\(857\) 47.3689 1.61809 0.809045 0.587746i \(-0.199985\pi\)
0.809045 + 0.587746i \(0.199985\pi\)
\(858\) −3.18421 −0.108707
\(859\) −16.1748 −0.551878 −0.275939 0.961175i \(-0.588989\pi\)
−0.275939 + 0.961175i \(0.588989\pi\)
\(860\) 0 0
\(861\) −12.9491 −0.441306
\(862\) −5.50024 −0.187339
\(863\) 32.5674 1.10861 0.554303 0.832315i \(-0.312985\pi\)
0.554303 + 0.832315i \(0.312985\pi\)
\(864\) −8.48886 −0.288797
\(865\) 0 0
\(866\) 7.76049 0.263712
\(867\) 0 0
\(868\) −23.4523 −0.796023
\(869\) 10.3225 0.350166
\(870\) 0 0
\(871\) −32.2163 −1.09161
\(872\) −3.46965 −0.117497
\(873\) 29.4608 0.997096
\(874\) 6.84743 0.231618
\(875\) 0 0
\(876\) −23.4795 −0.793299
\(877\) 13.2543 0.447565 0.223783 0.974639i \(-0.428159\pi\)
0.223783 + 0.974639i \(0.428159\pi\)
\(878\) −3.72546 −0.125728
\(879\) 6.53035 0.220263
\(880\) 0 0
\(881\) 2.78721 0.0939035 0.0469518 0.998897i \(-0.485049\pi\)
0.0469518 + 0.998897i \(0.485049\pi\)
\(882\) 2.64387 0.0890236
\(883\) 27.1985 0.915302 0.457651 0.889132i \(-0.348691\pi\)
0.457651 + 0.889132i \(0.348691\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −9.54818 −0.320777
\(887\) −48.2657 −1.62060 −0.810301 0.586014i \(-0.800696\pi\)
−0.810301 + 0.586014i \(0.800696\pi\)
\(888\) 18.9590 0.636222
\(889\) 0.447375 0.0150045
\(890\) 0 0
\(891\) −14.5368 −0.487001
\(892\) 44.6593 1.49530
\(893\) −14.7556 −0.493776
\(894\) −3.38763 −0.113299
\(895\) 0 0
\(896\) 13.9877 0.467297
\(897\) −38.7971 −1.29540
\(898\) 4.24797 0.141757
\(899\) −65.2355 −2.17573
\(900\) 0 0
\(901\) 0 0
\(902\) −1.49823 −0.0498856
\(903\) −8.72393 −0.290314
\(904\) 7.12399 0.236940
\(905\) 0 0
\(906\) −8.76541 −0.291211
\(907\) −8.93825 −0.296790 −0.148395 0.988928i \(-0.547411\pi\)
−0.148395 + 0.988928i \(0.547411\pi\)
\(908\) 8.27454 0.274600
\(909\) −27.3733 −0.907916
\(910\) 0 0
\(911\) −51.6795 −1.71222 −0.856110 0.516794i \(-0.827125\pi\)
−0.856110 + 0.516794i \(0.827125\pi\)
\(912\) −33.6227 −1.11336
\(913\) 9.43801 0.312352
\(914\) 2.55353 0.0844633
\(915\) 0 0
\(916\) 12.3225 0.407146
\(917\) 21.3546 0.705191
\(918\) 0 0
\(919\) 18.9719 0.625825 0.312913 0.949782i \(-0.398695\pi\)
0.312913 + 0.949782i \(0.398695\pi\)
\(920\) 0 0
\(921\) −12.5936 −0.414974
\(922\) 1.61285 0.0531163
\(923\) 37.3590 1.22969
\(924\) 8.79706 0.289402
\(925\) 0 0
\(926\) 7.21723 0.237173
\(927\) 17.8751 0.587096
\(928\) 29.4608 0.967097
\(929\) −50.3912 −1.65328 −0.826640 0.562731i \(-0.809751\pi\)
−0.826640 + 0.562731i \(0.809751\pi\)
\(930\) 0 0
\(931\) −19.7748 −0.648092
\(932\) 35.2672 1.15521
\(933\) 52.5259 1.71962
\(934\) 10.9634 0.358735
\(935\) 0 0
\(936\) −8.14764 −0.266314
\(937\) 58.1530 1.89978 0.949889 0.312589i \(-0.101196\pi\)
0.949889 + 0.312589i \(0.101196\pi\)
\(938\) −4.52633 −0.147790
\(939\) 68.4197 2.23279
\(940\) 0 0
\(941\) 9.25734 0.301781 0.150890 0.988551i \(-0.451786\pi\)
0.150890 + 0.988551i \(0.451786\pi\)
\(942\) 6.32693 0.206142
\(943\) −18.2548 −0.594457
\(944\) −4.72393 −0.153751
\(945\) 0 0
\(946\) −1.00937 −0.0328174
\(947\) 43.9516 1.42824 0.714118 0.700025i \(-0.246828\pi\)
0.714118 + 0.700025i \(0.246828\pi\)
\(948\) 33.1798 1.07763
\(949\) 19.6414 0.637588
\(950\) 0 0
\(951\) −30.3466 −0.984057
\(952\) 0 0
\(953\) 38.1891 1.23707 0.618534 0.785758i \(-0.287727\pi\)
0.618534 + 0.785758i \(0.287727\pi\)
\(954\) 5.43801 0.176062
\(955\) 0 0
\(956\) 40.7654 1.31845
\(957\) 24.4701 0.791007
\(958\) −3.56046 −0.115033
\(959\) −16.3684 −0.528564
\(960\) 0 0
\(961\) 28.9037 0.932377
\(962\) −7.73329 −0.249331
\(963\) −12.8968 −0.415592
\(964\) −23.2859 −0.749989
\(965\) 0 0
\(966\) −5.45091 −0.175380
\(967\) −7.36043 −0.236696 −0.118348 0.992972i \(-0.537760\pi\)
−0.118348 + 0.992972i \(0.537760\pi\)
\(968\) −11.2701 −0.362235
\(969\) 0 0
\(970\) 0 0
\(971\) 35.2257 1.13045 0.565223 0.824938i \(-0.308790\pi\)
0.565223 + 0.824938i \(0.308790\pi\)
\(972\) −32.8593 −1.05396
\(973\) 29.1383 0.934130
\(974\) 9.25671 0.296604
\(975\) 0 0
\(976\) 52.8671 1.69224
\(977\) −46.9273 −1.50134 −0.750669 0.660678i \(-0.770269\pi\)
−0.750669 + 0.660678i \(0.770269\pi\)
\(978\) 3.49378 0.111719
\(979\) 15.2444 0.487214
\(980\) 0 0
\(981\) −5.43801 −0.173622
\(982\) 7.90813 0.252359
\(983\) 8.21432 0.261996 0.130998 0.991383i \(-0.458182\pi\)
0.130998 + 0.991383i \(0.458182\pi\)
\(984\) −9.87649 −0.314851
\(985\) 0 0
\(986\) 0 0
\(987\) 11.7462 0.373886
\(988\) 29.7146 0.945346
\(989\) −12.2983 −0.391065
\(990\) 0 0
\(991\) −17.7683 −0.564430 −0.282215 0.959351i \(-0.591069\pi\)
−0.282215 + 0.959351i \(0.591069\pi\)
\(992\) −27.0529 −0.858929
\(993\) 55.1338 1.74962
\(994\) 5.24888 0.166484
\(995\) 0 0
\(996\) 30.3368 0.961257
\(997\) 11.6958 0.370410 0.185205 0.982700i \(-0.440705\pi\)
0.185205 + 0.982700i \(0.440705\pi\)
\(998\) 4.60549 0.145784
\(999\) −17.1240 −0.541779
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.r.1.2 3
5.4 even 2 1445.2.a.k.1.2 3
17.4 even 4 425.2.d.c.101.4 6
17.13 even 4 425.2.d.c.101.3 6
17.16 even 2 7225.2.a.q.1.2 3
85.4 even 4 85.2.d.a.16.3 6
85.13 odd 4 425.2.c.b.424.3 6
85.38 odd 4 425.2.c.a.424.3 6
85.47 odd 4 425.2.c.a.424.4 6
85.64 even 4 85.2.d.a.16.4 yes 6
85.72 odd 4 425.2.c.b.424.4 6
85.84 even 2 1445.2.a.j.1.2 3
255.89 odd 4 765.2.g.b.271.4 6
255.149 odd 4 765.2.g.b.271.3 6
340.259 odd 4 1360.2.c.f.1121.6 6
340.319 odd 4 1360.2.c.f.1121.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.3 6 85.4 even 4
85.2.d.a.16.4 yes 6 85.64 even 4
425.2.c.a.424.3 6 85.38 odd 4
425.2.c.a.424.4 6 85.47 odd 4
425.2.c.b.424.3 6 85.13 odd 4
425.2.c.b.424.4 6 85.72 odd 4
425.2.d.c.101.3 6 17.13 even 4
425.2.d.c.101.4 6 17.4 even 4
765.2.g.b.271.3 6 255.149 odd 4
765.2.g.b.271.4 6 255.89 odd 4
1360.2.c.f.1121.1 6 340.319 odd 4
1360.2.c.f.1121.6 6 340.259 odd 4
1445.2.a.j.1.2 3 85.84 even 2
1445.2.a.k.1.2 3 5.4 even 2
7225.2.a.q.1.2 3 17.16 even 2
7225.2.a.r.1.2 3 1.1 even 1 trivial