Properties

Label 7225.2.a.r.1.1
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.17009 q^{2} +0.539189 q^{3} +2.70928 q^{4} -1.17009 q^{6} -4.87936 q^{7} -1.53919 q^{8} -2.70928 q^{9} +3.17009 q^{11} +1.46081 q^{12} -2.63090 q^{13} +10.5886 q^{14} -2.07838 q^{16} +5.87936 q^{18} -1.07838 q^{19} -2.63090 q^{21} -6.87936 q^{22} +5.21953 q^{23} -0.829914 q^{24} +5.70928 q^{26} -3.07838 q^{27} -13.2195 q^{28} -2.92162 q^{29} +4.09171 q^{31} +7.58864 q^{32} +1.70928 q^{33} -7.34017 q^{36} -5.26180 q^{37} +2.34017 q^{38} -1.41855 q^{39} +5.60197 q^{41} +5.70928 q^{42} +3.36910 q^{43} +8.58864 q^{44} -11.3268 q^{46} +6.78765 q^{47} -1.12064 q^{48} +16.8082 q^{49} -7.12783 q^{52} +3.75872 q^{53} +6.68035 q^{54} +7.51026 q^{56} -0.581449 q^{57} +6.34017 q^{58} +2.34017 q^{59} -12.2557 q^{61} -8.87936 q^{62} +13.2195 q^{63} -12.3112 q^{64} -3.70928 q^{66} -10.2062 q^{67} +2.81432 q^{69} +4.06505 q^{71} +4.17009 q^{72} -11.0784 q^{73} +11.4186 q^{74} -2.92162 q^{76} -15.4680 q^{77} +3.07838 q^{78} -6.92881 q^{79} +6.46800 q^{81} -12.1568 q^{82} +8.23287 q^{83} -7.12783 q^{84} -7.31124 q^{86} -1.57531 q^{87} -4.87936 q^{88} +7.15449 q^{89} +12.8371 q^{91} +14.1412 q^{92} +2.20620 q^{93} -14.7298 q^{94} +4.09171 q^{96} +8.18342 q^{97} -36.4752 q^{98} -8.58864 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + q^{4} + 2 q^{6} - 2 q^{7} - 3 q^{8} - q^{9} + 4 q^{11} + 6 q^{12} - 4 q^{13} + 12 q^{14} - 3 q^{16} + 5 q^{18} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 10 q^{26} - 6 q^{27} - 16 q^{28}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.17009 −1.53448 −0.767241 0.641358i \(-0.778371\pi\)
−0.767241 + 0.641358i \(0.778371\pi\)
\(3\) 0.539189 0.311301 0.155650 0.987812i \(-0.450253\pi\)
0.155650 + 0.987812i \(0.450253\pi\)
\(4\) 2.70928 1.35464
\(5\) 0 0
\(6\) −1.17009 −0.477686
\(7\) −4.87936 −1.84423 −0.922113 0.386921i \(-0.873538\pi\)
−0.922113 + 0.386921i \(0.873538\pi\)
\(8\) −1.53919 −0.544185
\(9\) −2.70928 −0.903092
\(10\) 0 0
\(11\) 3.17009 0.955817 0.477909 0.878410i \(-0.341395\pi\)
0.477909 + 0.878410i \(0.341395\pi\)
\(12\) 1.46081 0.421700
\(13\) −2.63090 −0.729680 −0.364840 0.931070i \(-0.618876\pi\)
−0.364840 + 0.931070i \(0.618876\pi\)
\(14\) 10.5886 2.82993
\(15\) 0 0
\(16\) −2.07838 −0.519594
\(17\) 0 0
\(18\) 5.87936 1.38578
\(19\) −1.07838 −0.247397 −0.123698 0.992320i \(-0.539476\pi\)
−0.123698 + 0.992320i \(0.539476\pi\)
\(20\) 0 0
\(21\) −2.63090 −0.574109
\(22\) −6.87936 −1.46668
\(23\) 5.21953 1.08835 0.544174 0.838972i \(-0.316843\pi\)
0.544174 + 0.838972i \(0.316843\pi\)
\(24\) −0.829914 −0.169405
\(25\) 0 0
\(26\) 5.70928 1.11968
\(27\) −3.07838 −0.592434
\(28\) −13.2195 −2.49826
\(29\) −2.92162 −0.542532 −0.271266 0.962504i \(-0.587442\pi\)
−0.271266 + 0.962504i \(0.587442\pi\)
\(30\) 0 0
\(31\) 4.09171 0.734893 0.367446 0.930045i \(-0.380232\pi\)
0.367446 + 0.930045i \(0.380232\pi\)
\(32\) 7.58864 1.34149
\(33\) 1.70928 0.297547
\(34\) 0 0
\(35\) 0 0
\(36\) −7.34017 −1.22336
\(37\) −5.26180 −0.865034 −0.432517 0.901626i \(-0.642374\pi\)
−0.432517 + 0.901626i \(0.642374\pi\)
\(38\) 2.34017 0.379626
\(39\) −1.41855 −0.227150
\(40\) 0 0
\(41\) 5.60197 0.874880 0.437440 0.899247i \(-0.355885\pi\)
0.437440 + 0.899247i \(0.355885\pi\)
\(42\) 5.70928 0.880960
\(43\) 3.36910 0.513783 0.256892 0.966440i \(-0.417302\pi\)
0.256892 + 0.966440i \(0.417302\pi\)
\(44\) 8.58864 1.29479
\(45\) 0 0
\(46\) −11.3268 −1.67005
\(47\) 6.78765 0.990081 0.495040 0.868870i \(-0.335153\pi\)
0.495040 + 0.868870i \(0.335153\pi\)
\(48\) −1.12064 −0.161750
\(49\) 16.8082 2.40117
\(50\) 0 0
\(51\) 0 0
\(52\) −7.12783 −0.988452
\(53\) 3.75872 0.516300 0.258150 0.966105i \(-0.416887\pi\)
0.258150 + 0.966105i \(0.416887\pi\)
\(54\) 6.68035 0.909080
\(55\) 0 0
\(56\) 7.51026 1.00360
\(57\) −0.581449 −0.0770148
\(58\) 6.34017 0.832505
\(59\) 2.34017 0.304665 0.152332 0.988329i \(-0.451322\pi\)
0.152332 + 0.988329i \(0.451322\pi\)
\(60\) 0 0
\(61\) −12.2557 −1.56918 −0.784588 0.620018i \(-0.787125\pi\)
−0.784588 + 0.620018i \(0.787125\pi\)
\(62\) −8.87936 −1.12768
\(63\) 13.2195 1.66550
\(64\) −12.3112 −1.53891
\(65\) 0 0
\(66\) −3.70928 −0.456580
\(67\) −10.2062 −1.24689 −0.623443 0.781869i \(-0.714267\pi\)
−0.623443 + 0.781869i \(0.714267\pi\)
\(68\) 0 0
\(69\) 2.81432 0.338804
\(70\) 0 0
\(71\) 4.06505 0.482432 0.241216 0.970471i \(-0.422454\pi\)
0.241216 + 0.970471i \(0.422454\pi\)
\(72\) 4.17009 0.491449
\(73\) −11.0784 −1.29663 −0.648313 0.761374i \(-0.724525\pi\)
−0.648313 + 0.761374i \(0.724525\pi\)
\(74\) 11.4186 1.32738
\(75\) 0 0
\(76\) −2.92162 −0.335133
\(77\) −15.4680 −1.76274
\(78\) 3.07838 0.348558
\(79\) −6.92881 −0.779552 −0.389776 0.920910i \(-0.627448\pi\)
−0.389776 + 0.920910i \(0.627448\pi\)
\(80\) 0 0
\(81\) 6.46800 0.718667
\(82\) −12.1568 −1.34249
\(83\) 8.23287 0.903674 0.451837 0.892100i \(-0.350769\pi\)
0.451837 + 0.892100i \(0.350769\pi\)
\(84\) −7.12783 −0.777710
\(85\) 0 0
\(86\) −7.31124 −0.788392
\(87\) −1.57531 −0.168891
\(88\) −4.87936 −0.520142
\(89\) 7.15449 0.758374 0.379187 0.925320i \(-0.376204\pi\)
0.379187 + 0.925320i \(0.376204\pi\)
\(90\) 0 0
\(91\) 12.8371 1.34569
\(92\) 14.1412 1.47432
\(93\) 2.20620 0.228773
\(94\) −14.7298 −1.51926
\(95\) 0 0
\(96\) 4.09171 0.417608
\(97\) 8.18342 0.830900 0.415450 0.909616i \(-0.363624\pi\)
0.415450 + 0.909616i \(0.363624\pi\)
\(98\) −36.4752 −3.68455
\(99\) −8.58864 −0.863191
\(100\) 0 0
\(101\) −2.47414 −0.246186 −0.123093 0.992395i \(-0.539281\pi\)
−0.123093 + 0.992395i \(0.539281\pi\)
\(102\) 0 0
\(103\) 19.6514 1.93631 0.968156 0.250348i \(-0.0805452\pi\)
0.968156 + 0.250348i \(0.0805452\pi\)
\(104\) 4.04945 0.397081
\(105\) 0 0
\(106\) −8.15676 −0.792254
\(107\) 12.6381 1.22177 0.610885 0.791719i \(-0.290814\pi\)
0.610885 + 0.791719i \(0.290814\pi\)
\(108\) −8.34017 −0.802534
\(109\) 8.15676 0.781275 0.390638 0.920544i \(-0.372255\pi\)
0.390638 + 0.920544i \(0.372255\pi\)
\(110\) 0 0
\(111\) −2.83710 −0.269286
\(112\) 10.1412 0.958249
\(113\) 17.0205 1.60116 0.800578 0.599229i \(-0.204526\pi\)
0.800578 + 0.599229i \(0.204526\pi\)
\(114\) 1.26180 0.118178
\(115\) 0 0
\(116\) −7.91548 −0.734934
\(117\) 7.12783 0.658968
\(118\) −5.07838 −0.467503
\(119\) 0 0
\(120\) 0 0
\(121\) −0.950552 −0.0864138
\(122\) 26.5958 2.40787
\(123\) 3.02052 0.272351
\(124\) 11.0856 0.995513
\(125\) 0 0
\(126\) −28.6875 −2.55569
\(127\) −8.04945 −0.714273 −0.357137 0.934052i \(-0.616247\pi\)
−0.357137 + 0.934052i \(0.616247\pi\)
\(128\) 11.5392 1.01993
\(129\) 1.81658 0.159941
\(130\) 0 0
\(131\) 11.6937 1.02168 0.510841 0.859675i \(-0.329334\pi\)
0.510841 + 0.859675i \(0.329334\pi\)
\(132\) 4.63090 0.403068
\(133\) 5.26180 0.456256
\(134\) 22.1483 1.91333
\(135\) 0 0
\(136\) 0 0
\(137\) −1.95055 −0.166647 −0.0833234 0.996523i \(-0.526553\pi\)
−0.0833234 + 0.996523i \(0.526553\pi\)
\(138\) −6.10731 −0.519889
\(139\) −2.00719 −0.170247 −0.0851237 0.996370i \(-0.527129\pi\)
−0.0851237 + 0.996370i \(0.527129\pi\)
\(140\) 0 0
\(141\) 3.65983 0.308213
\(142\) −8.82150 −0.740284
\(143\) −8.34017 −0.697440
\(144\) 5.63090 0.469241
\(145\) 0 0
\(146\) 24.0410 1.98965
\(147\) 9.06278 0.747485
\(148\) −14.2557 −1.17181
\(149\) −14.2823 −1.17005 −0.585026 0.811014i \(-0.698916\pi\)
−0.585026 + 0.811014i \(0.698916\pi\)
\(150\) 0 0
\(151\) −12.8638 −1.04684 −0.523419 0.852075i \(-0.675344\pi\)
−0.523419 + 0.852075i \(0.675344\pi\)
\(152\) 1.65983 0.134630
\(153\) 0 0
\(154\) 33.5669 2.70490
\(155\) 0 0
\(156\) −3.84324 −0.307706
\(157\) −3.75872 −0.299979 −0.149989 0.988688i \(-0.547924\pi\)
−0.149989 + 0.988688i \(0.547924\pi\)
\(158\) 15.0361 1.19621
\(159\) 2.02666 0.160725
\(160\) 0 0
\(161\) −25.4680 −2.00716
\(162\) −14.0361 −1.10278
\(163\) −8.69594 −0.681119 −0.340559 0.940223i \(-0.610616\pi\)
−0.340559 + 0.940223i \(0.610616\pi\)
\(164\) 15.1773 1.18515
\(165\) 0 0
\(166\) −17.8660 −1.38667
\(167\) −1.37629 −0.106501 −0.0532503 0.998581i \(-0.516958\pi\)
−0.0532503 + 0.998581i \(0.516958\pi\)
\(168\) 4.04945 0.312422
\(169\) −6.07838 −0.467568
\(170\) 0 0
\(171\) 2.92162 0.223422
\(172\) 9.12783 0.695990
\(173\) 17.3607 1.31991 0.659954 0.751306i \(-0.270576\pi\)
0.659954 + 0.751306i \(0.270576\pi\)
\(174\) 3.41855 0.259160
\(175\) 0 0
\(176\) −6.58864 −0.496637
\(177\) 1.26180 0.0948423
\(178\) −15.5259 −1.16371
\(179\) −6.83710 −0.511029 −0.255514 0.966805i \(-0.582245\pi\)
−0.255514 + 0.966805i \(0.582245\pi\)
\(180\) 0 0
\(181\) −15.0205 −1.11647 −0.558233 0.829684i \(-0.688521\pi\)
−0.558233 + 0.829684i \(0.688521\pi\)
\(182\) −27.8576 −2.06494
\(183\) −6.60811 −0.488486
\(184\) −8.03385 −0.592263
\(185\) 0 0
\(186\) −4.78765 −0.351048
\(187\) 0 0
\(188\) 18.3896 1.34120
\(189\) 15.0205 1.09258
\(190\) 0 0
\(191\) −24.2823 −1.75701 −0.878503 0.477736i \(-0.841457\pi\)
−0.878503 + 0.477736i \(0.841457\pi\)
\(192\) −6.63809 −0.479063
\(193\) −11.8576 −0.853530 −0.426765 0.904363i \(-0.640347\pi\)
−0.426765 + 0.904363i \(0.640347\pi\)
\(194\) −17.7587 −1.27500
\(195\) 0 0
\(196\) 45.5380 3.25271
\(197\) −18.2557 −1.30066 −0.650331 0.759651i \(-0.725370\pi\)
−0.650331 + 0.759651i \(0.725370\pi\)
\(198\) 18.6381 1.32455
\(199\) 3.72487 0.264049 0.132025 0.991246i \(-0.457852\pi\)
0.132025 + 0.991246i \(0.457852\pi\)
\(200\) 0 0
\(201\) −5.50307 −0.388157
\(202\) 5.36910 0.377769
\(203\) 14.2557 1.00055
\(204\) 0 0
\(205\) 0 0
\(206\) −42.6453 −2.97124
\(207\) −14.1412 −0.982878
\(208\) 5.46800 0.379138
\(209\) −3.41855 −0.236466
\(210\) 0 0
\(211\) 22.2485 1.53165 0.765824 0.643051i \(-0.222332\pi\)
0.765824 + 0.643051i \(0.222332\pi\)
\(212\) 10.1834 0.699400
\(213\) 2.19183 0.150182
\(214\) −27.4257 −1.87478
\(215\) 0 0
\(216\) 4.73820 0.322394
\(217\) −19.9649 −1.35531
\(218\) −17.7009 −1.19885
\(219\) −5.97334 −0.403641
\(220\) 0 0
\(221\) 0 0
\(222\) 6.15676 0.413214
\(223\) −2.19183 −0.146776 −0.0733878 0.997303i \(-0.523381\pi\)
−0.0733878 + 0.997303i \(0.523381\pi\)
\(224\) −37.0277 −2.47402
\(225\) 0 0
\(226\) −36.9360 −2.45695
\(227\) 9.55971 0.634500 0.317250 0.948342i \(-0.397241\pi\)
0.317250 + 0.948342i \(0.397241\pi\)
\(228\) −1.57531 −0.104327
\(229\) −7.36910 −0.486964 −0.243482 0.969905i \(-0.578290\pi\)
−0.243482 + 0.969905i \(0.578290\pi\)
\(230\) 0 0
\(231\) −8.34017 −0.548743
\(232\) 4.49693 0.295238
\(233\) −9.44521 −0.618776 −0.309388 0.950936i \(-0.600124\pi\)
−0.309388 + 0.950936i \(0.600124\pi\)
\(234\) −15.4680 −1.01117
\(235\) 0 0
\(236\) 6.34017 0.412710
\(237\) −3.73594 −0.242675
\(238\) 0 0
\(239\) 6.25565 0.404644 0.202322 0.979319i \(-0.435151\pi\)
0.202322 + 0.979319i \(0.435151\pi\)
\(240\) 0 0
\(241\) −2.49693 −0.160841 −0.0804207 0.996761i \(-0.525626\pi\)
−0.0804207 + 0.996761i \(0.525626\pi\)
\(242\) 2.06278 0.132600
\(243\) 12.7226 0.816156
\(244\) −33.2039 −2.12566
\(245\) 0 0
\(246\) −6.55479 −0.417918
\(247\) 2.83710 0.180520
\(248\) −6.29791 −0.399918
\(249\) 4.43907 0.281315
\(250\) 0 0
\(251\) −11.8166 −0.745856 −0.372928 0.927860i \(-0.621646\pi\)
−0.372928 + 0.927860i \(0.621646\pi\)
\(252\) 35.8154 2.25616
\(253\) 16.5464 1.04026
\(254\) 17.4680 1.09604
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) 14.9444 0.932207 0.466103 0.884730i \(-0.345658\pi\)
0.466103 + 0.884730i \(0.345658\pi\)
\(258\) −3.94214 −0.245427
\(259\) 25.6742 1.59532
\(260\) 0 0
\(261\) 7.91548 0.489956
\(262\) −25.3763 −1.56775
\(263\) −12.9444 −0.798186 −0.399093 0.916910i \(-0.630675\pi\)
−0.399093 + 0.916910i \(0.630675\pi\)
\(264\) −2.63090 −0.161921
\(265\) 0 0
\(266\) −11.4186 −0.700116
\(267\) 3.85762 0.236083
\(268\) −27.6514 −1.68908
\(269\) −7.47641 −0.455845 −0.227922 0.973679i \(-0.573193\pi\)
−0.227922 + 0.973679i \(0.573193\pi\)
\(270\) 0 0
\(271\) −2.15676 −0.131014 −0.0655068 0.997852i \(-0.520866\pi\)
−0.0655068 + 0.997852i \(0.520866\pi\)
\(272\) 0 0
\(273\) 6.92162 0.418916
\(274\) 4.23287 0.255717
\(275\) 0 0
\(276\) 7.62475 0.458956
\(277\) −12.1568 −0.730429 −0.365214 0.930923i \(-0.619004\pi\)
−0.365214 + 0.930923i \(0.619004\pi\)
\(278\) 4.35577 0.261242
\(279\) −11.0856 −0.663675
\(280\) 0 0
\(281\) −13.1194 −0.782639 −0.391319 0.920255i \(-0.627981\pi\)
−0.391319 + 0.920255i \(0.627981\pi\)
\(282\) −7.94214 −0.472948
\(283\) −13.9577 −0.829701 −0.414851 0.909889i \(-0.636166\pi\)
−0.414851 + 0.909889i \(0.636166\pi\)
\(284\) 11.0133 0.653521
\(285\) 0 0
\(286\) 18.0989 1.07021
\(287\) −27.3340 −1.61348
\(288\) −20.5597 −1.21149
\(289\) 0 0
\(290\) 0 0
\(291\) 4.41241 0.258660
\(292\) −30.0144 −1.75646
\(293\) −4.73820 −0.276809 −0.138404 0.990376i \(-0.544197\pi\)
−0.138404 + 0.990376i \(0.544197\pi\)
\(294\) −19.6670 −1.14700
\(295\) 0 0
\(296\) 8.09890 0.470739
\(297\) −9.75872 −0.566259
\(298\) 30.9939 1.79543
\(299\) −13.7321 −0.794146
\(300\) 0 0
\(301\) −16.4391 −0.947532
\(302\) 27.9155 1.60636
\(303\) −1.33403 −0.0766380
\(304\) 2.24128 0.128546
\(305\) 0 0
\(306\) 0 0
\(307\) 21.5936 1.23241 0.616205 0.787586i \(-0.288669\pi\)
0.616205 + 0.787586i \(0.288669\pi\)
\(308\) −41.9071 −2.38788
\(309\) 10.5958 0.602775
\(310\) 0 0
\(311\) 24.2628 1.37582 0.687910 0.725796i \(-0.258528\pi\)
0.687910 + 0.725796i \(0.258528\pi\)
\(312\) 2.18342 0.123612
\(313\) 4.07223 0.230176 0.115088 0.993355i \(-0.463285\pi\)
0.115088 + 0.993355i \(0.463285\pi\)
\(314\) 8.15676 0.460312
\(315\) 0 0
\(316\) −18.7721 −1.05601
\(317\) 8.05786 0.452574 0.226287 0.974061i \(-0.427341\pi\)
0.226287 + 0.974061i \(0.427341\pi\)
\(318\) −4.39803 −0.246629
\(319\) −9.26180 −0.518561
\(320\) 0 0
\(321\) 6.81432 0.380338
\(322\) 55.2678 3.07995
\(323\) 0 0
\(324\) 17.5236 0.973533
\(325\) 0 0
\(326\) 18.8710 1.04517
\(327\) 4.39803 0.243212
\(328\) −8.62249 −0.476097
\(329\) −33.1194 −1.82593
\(330\) 0 0
\(331\) 10.0722 0.553620 0.276810 0.960925i \(-0.410723\pi\)
0.276810 + 0.960925i \(0.410723\pi\)
\(332\) 22.3051 1.22415
\(333\) 14.2557 0.781205
\(334\) 2.98667 0.163423
\(335\) 0 0
\(336\) 5.46800 0.298304
\(337\) 11.2351 0.612017 0.306008 0.952029i \(-0.401006\pi\)
0.306008 + 0.952029i \(0.401006\pi\)
\(338\) 13.1906 0.717474
\(339\) 9.17727 0.498441
\(340\) 0 0
\(341\) 12.9711 0.702423
\(342\) −6.34017 −0.342837
\(343\) −47.8576 −2.58407
\(344\) −5.18568 −0.279593
\(345\) 0 0
\(346\) −37.6742 −2.02538
\(347\) −8.74927 −0.469685 −0.234843 0.972033i \(-0.575457\pi\)
−0.234843 + 0.972033i \(0.575457\pi\)
\(348\) −4.26794 −0.228786
\(349\) 26.9093 1.44042 0.720212 0.693754i \(-0.244045\pi\)
0.720212 + 0.693754i \(0.244045\pi\)
\(350\) 0 0
\(351\) 8.09890 0.432287
\(352\) 24.0566 1.28222
\(353\) −18.3135 −0.974730 −0.487365 0.873198i \(-0.662042\pi\)
−0.487365 + 0.873198i \(0.662042\pi\)
\(354\) −2.73820 −0.145534
\(355\) 0 0
\(356\) 19.3835 1.02732
\(357\) 0 0
\(358\) 14.8371 0.784165
\(359\) 9.57531 0.505365 0.252683 0.967549i \(-0.418687\pi\)
0.252683 + 0.967549i \(0.418687\pi\)
\(360\) 0 0
\(361\) −17.8371 −0.938795
\(362\) 32.5958 1.71320
\(363\) −0.512527 −0.0269007
\(364\) 34.7792 1.82293
\(365\) 0 0
\(366\) 14.3402 0.749573
\(367\) 12.1145 0.632371 0.316186 0.948697i \(-0.397598\pi\)
0.316186 + 0.948697i \(0.397598\pi\)
\(368\) −10.8482 −0.565500
\(369\) −15.1773 −0.790097
\(370\) 0 0
\(371\) −18.3402 −0.952174
\(372\) 5.97721 0.309904
\(373\) −30.4619 −1.57726 −0.788628 0.614871i \(-0.789208\pi\)
−0.788628 + 0.614871i \(0.789208\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −10.4475 −0.538788
\(377\) 7.68649 0.395874
\(378\) −32.5958 −1.67655
\(379\) −0.986669 −0.0506818 −0.0253409 0.999679i \(-0.508067\pi\)
−0.0253409 + 0.999679i \(0.508067\pi\)
\(380\) 0 0
\(381\) −4.34017 −0.222354
\(382\) 52.6947 2.69610
\(383\) −24.9588 −1.27533 −0.637667 0.770312i \(-0.720100\pi\)
−0.637667 + 0.770312i \(0.720100\pi\)
\(384\) 6.22180 0.317505
\(385\) 0 0
\(386\) 25.7321 1.30973
\(387\) −9.12783 −0.463993
\(388\) 22.1711 1.12557
\(389\) −33.8082 −1.71414 −0.857071 0.515198i \(-0.827718\pi\)
−0.857071 + 0.515198i \(0.827718\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −25.8710 −1.30668
\(393\) 6.30510 0.318050
\(394\) 39.6163 1.99584
\(395\) 0 0
\(396\) −23.2690 −1.16931
\(397\) 28.5236 1.43156 0.715779 0.698327i \(-0.246072\pi\)
0.715779 + 0.698327i \(0.246072\pi\)
\(398\) −8.08330 −0.405179
\(399\) 2.83710 0.142033
\(400\) 0 0
\(401\) 33.0928 1.65257 0.826287 0.563250i \(-0.190449\pi\)
0.826287 + 0.563250i \(0.190449\pi\)
\(402\) 11.9421 0.595620
\(403\) −10.7649 −0.536236
\(404\) −6.70313 −0.333493
\(405\) 0 0
\(406\) −30.9360 −1.53533
\(407\) −16.6803 −0.826814
\(408\) 0 0
\(409\) −30.1978 −1.49318 −0.746592 0.665282i \(-0.768311\pi\)
−0.746592 + 0.665282i \(0.768311\pi\)
\(410\) 0 0
\(411\) −1.05172 −0.0518773
\(412\) 53.2411 2.62300
\(413\) −11.4186 −0.561870
\(414\) 30.6875 1.50821
\(415\) 0 0
\(416\) −19.9649 −0.978861
\(417\) −1.08225 −0.0529982
\(418\) 7.41855 0.362853
\(419\) −18.1639 −0.887367 −0.443683 0.896184i \(-0.646329\pi\)
−0.443683 + 0.896184i \(0.646329\pi\)
\(420\) 0 0
\(421\) 0.760991 0.0370884 0.0185442 0.999828i \(-0.494097\pi\)
0.0185442 + 0.999828i \(0.494097\pi\)
\(422\) −48.2811 −2.35029
\(423\) −18.3896 −0.894134
\(424\) −5.78539 −0.280963
\(425\) 0 0
\(426\) −4.75646 −0.230451
\(427\) 59.7998 2.89391
\(428\) 34.2401 1.65506
\(429\) −4.49693 −0.217114
\(430\) 0 0
\(431\) −6.34736 −0.305742 −0.152871 0.988246i \(-0.548852\pi\)
−0.152871 + 0.988246i \(0.548852\pi\)
\(432\) 6.39803 0.307825
\(433\) 3.62475 0.174195 0.0870973 0.996200i \(-0.472241\pi\)
0.0870973 + 0.996200i \(0.472241\pi\)
\(434\) 43.3256 2.07970
\(435\) 0 0
\(436\) 22.0989 1.05835
\(437\) −5.62863 −0.269254
\(438\) 12.9627 0.619380
\(439\) −6.40522 −0.305704 −0.152852 0.988249i \(-0.548846\pi\)
−0.152852 + 0.988249i \(0.548846\pi\)
\(440\) 0 0
\(441\) −45.5380 −2.16847
\(442\) 0 0
\(443\) −27.4824 −1.30573 −0.652864 0.757476i \(-0.726432\pi\)
−0.652864 + 0.757476i \(0.726432\pi\)
\(444\) −7.68649 −0.364785
\(445\) 0 0
\(446\) 4.75646 0.225225
\(447\) −7.70086 −0.364238
\(448\) 60.0710 2.83809
\(449\) 28.7526 1.35692 0.678459 0.734638i \(-0.262648\pi\)
0.678459 + 0.734638i \(0.262648\pi\)
\(450\) 0 0
\(451\) 17.7587 0.836226
\(452\) 46.1133 2.16899
\(453\) −6.93600 −0.325882
\(454\) −20.7454 −0.973630
\(455\) 0 0
\(456\) 0.894960 0.0419104
\(457\) −31.4101 −1.46930 −0.734652 0.678444i \(-0.762655\pi\)
−0.734652 + 0.678444i \(0.762655\pi\)
\(458\) 15.9916 0.747238
\(459\) 0 0
\(460\) 0 0
\(461\) 7.75872 0.361360 0.180680 0.983542i \(-0.442170\pi\)
0.180680 + 0.983542i \(0.442170\pi\)
\(462\) 18.0989 0.842037
\(463\) −24.2329 −1.12620 −0.563098 0.826390i \(-0.690391\pi\)
−0.563098 + 0.826390i \(0.690391\pi\)
\(464\) 6.07223 0.281896
\(465\) 0 0
\(466\) 20.4969 0.949502
\(467\) −12.3174 −0.569981 −0.284990 0.958530i \(-0.591990\pi\)
−0.284990 + 0.958530i \(0.591990\pi\)
\(468\) 19.3112 0.892663
\(469\) 49.7998 2.29954
\(470\) 0 0
\(471\) −2.02666 −0.0933837
\(472\) −3.60197 −0.165794
\(473\) 10.6803 0.491083
\(474\) 8.10731 0.372381
\(475\) 0 0
\(476\) 0 0
\(477\) −10.1834 −0.466267
\(478\) −13.5753 −0.620920
\(479\) 2.14957 0.0982162 0.0491081 0.998793i \(-0.484362\pi\)
0.0491081 + 0.998793i \(0.484362\pi\)
\(480\) 0 0
\(481\) 13.8432 0.631198
\(482\) 5.41855 0.246808
\(483\) −13.7321 −0.624830
\(484\) −2.57531 −0.117059
\(485\) 0 0
\(486\) −27.6092 −1.25238
\(487\) −40.0833 −1.81635 −0.908174 0.418593i \(-0.862523\pi\)
−0.908174 + 0.418593i \(0.862523\pi\)
\(488\) 18.8638 0.853922
\(489\) −4.68876 −0.212033
\(490\) 0 0
\(491\) 2.25565 0.101796 0.0508981 0.998704i \(-0.483792\pi\)
0.0508981 + 0.998704i \(0.483792\pi\)
\(492\) 8.18342 0.368937
\(493\) 0 0
\(494\) −6.15676 −0.277006
\(495\) 0 0
\(496\) −8.50412 −0.381846
\(497\) −19.8348 −0.889714
\(498\) −9.63317 −0.431672
\(499\) 42.5452 1.90458 0.952291 0.305190i \(-0.0987201\pi\)
0.952291 + 0.305190i \(0.0987201\pi\)
\(500\) 0 0
\(501\) −0.742080 −0.0331537
\(502\) 25.6430 1.14450
\(503\) −9.55971 −0.426246 −0.213123 0.977025i \(-0.568364\pi\)
−0.213123 + 0.977025i \(0.568364\pi\)
\(504\) −20.3474 −0.906343
\(505\) 0 0
\(506\) −35.9071 −1.59626
\(507\) −3.27739 −0.145554
\(508\) −21.8082 −0.967581
\(509\) 28.3545 1.25679 0.628397 0.777893i \(-0.283712\pi\)
0.628397 + 0.777893i \(0.283712\pi\)
\(510\) 0 0
\(511\) 54.0554 2.39127
\(512\) −22.1701 −0.979789
\(513\) 3.31965 0.146566
\(514\) −32.4307 −1.43046
\(515\) 0 0
\(516\) 4.92162 0.216662
\(517\) 21.5174 0.946336
\(518\) −55.7152 −2.44799
\(519\) 9.36069 0.410889
\(520\) 0 0
\(521\) −15.1050 −0.661764 −0.330882 0.943672i \(-0.607346\pi\)
−0.330882 + 0.943672i \(0.607346\pi\)
\(522\) −17.1773 −0.751829
\(523\) 10.8865 0.476036 0.238018 0.971261i \(-0.423502\pi\)
0.238018 + 0.971261i \(0.423502\pi\)
\(524\) 31.6814 1.38401
\(525\) 0 0
\(526\) 28.0905 1.22480
\(527\) 0 0
\(528\) −3.55252 −0.154604
\(529\) 4.24354 0.184502
\(530\) 0 0
\(531\) −6.34017 −0.275140
\(532\) 14.2557 0.618061
\(533\) −14.7382 −0.638383
\(534\) −8.37137 −0.362265
\(535\) 0 0
\(536\) 15.7093 0.678537
\(537\) −3.68649 −0.159084
\(538\) 16.2245 0.699486
\(539\) 53.2834 2.29508
\(540\) 0 0
\(541\) 6.86830 0.295291 0.147646 0.989040i \(-0.452830\pi\)
0.147646 + 0.989040i \(0.452830\pi\)
\(542\) 4.68035 0.201038
\(543\) −8.09890 −0.347557
\(544\) 0 0
\(545\) 0 0
\(546\) −15.0205 −0.642819
\(547\) 5.89988 0.252261 0.126130 0.992014i \(-0.459744\pi\)
0.126130 + 0.992014i \(0.459744\pi\)
\(548\) −5.28458 −0.225746
\(549\) 33.2039 1.41711
\(550\) 0 0
\(551\) 3.15061 0.134221
\(552\) −4.33176 −0.184372
\(553\) 33.8082 1.43767
\(554\) 26.3812 1.12083
\(555\) 0 0
\(556\) −5.43802 −0.230624
\(557\) 17.7359 0.751496 0.375748 0.926722i \(-0.377386\pi\)
0.375748 + 0.926722i \(0.377386\pi\)
\(558\) 24.0566 1.01840
\(559\) −8.86376 −0.374897
\(560\) 0 0
\(561\) 0 0
\(562\) 28.4703 1.20095
\(563\) −38.8020 −1.63531 −0.817655 0.575708i \(-0.804726\pi\)
−0.817655 + 0.575708i \(0.804726\pi\)
\(564\) 9.91548 0.417517
\(565\) 0 0
\(566\) 30.2895 1.27316
\(567\) −31.5597 −1.32538
\(568\) −6.25687 −0.262533
\(569\) −12.1568 −0.509638 −0.254819 0.966989i \(-0.582016\pi\)
−0.254819 + 0.966989i \(0.582016\pi\)
\(570\) 0 0
\(571\) 15.4569 0.646853 0.323426 0.946253i \(-0.395165\pi\)
0.323426 + 0.946253i \(0.395165\pi\)
\(572\) −22.5958 −0.944779
\(573\) −13.0928 −0.546958
\(574\) 59.3172 2.47585
\(575\) 0 0
\(576\) 33.3545 1.38977
\(577\) 2.36296 0.0983713 0.0491856 0.998790i \(-0.484337\pi\)
0.0491856 + 0.998790i \(0.484337\pi\)
\(578\) 0 0
\(579\) −6.39350 −0.265705
\(580\) 0 0
\(581\) −40.1711 −1.66658
\(582\) −9.57531 −0.396909
\(583\) 11.9155 0.493489
\(584\) 17.0517 0.705605
\(585\) 0 0
\(586\) 10.2823 0.424758
\(587\) −3.65142 −0.150710 −0.0753550 0.997157i \(-0.524009\pi\)
−0.0753550 + 0.997157i \(0.524009\pi\)
\(588\) 24.5536 1.01257
\(589\) −4.41241 −0.181810
\(590\) 0 0
\(591\) −9.84324 −0.404897
\(592\) 10.9360 0.449467
\(593\) −1.38735 −0.0569718 −0.0284859 0.999594i \(-0.509069\pi\)
−0.0284859 + 0.999594i \(0.509069\pi\)
\(594\) 21.1773 0.868914
\(595\) 0 0
\(596\) −38.6947 −1.58500
\(597\) 2.00841 0.0821988
\(598\) 29.7998 1.21860
\(599\) −0.451356 −0.0184419 −0.00922095 0.999957i \(-0.502935\pi\)
−0.00922095 + 0.999957i \(0.502935\pi\)
\(600\) 0 0
\(601\) −22.1301 −0.902705 −0.451353 0.892346i \(-0.649058\pi\)
−0.451353 + 0.892346i \(0.649058\pi\)
\(602\) 35.6742 1.45397
\(603\) 27.6514 1.12605
\(604\) −34.8515 −1.41809
\(605\) 0 0
\(606\) 2.89496 0.117600
\(607\) −10.2667 −0.416713 −0.208357 0.978053i \(-0.566811\pi\)
−0.208357 + 0.978053i \(0.566811\pi\)
\(608\) −8.18342 −0.331881
\(609\) 7.68649 0.311472
\(610\) 0 0
\(611\) −17.8576 −0.722442
\(612\) 0 0
\(613\) 9.05172 0.365595 0.182798 0.983151i \(-0.441485\pi\)
0.182798 + 0.983151i \(0.441485\pi\)
\(614\) −46.8599 −1.89111
\(615\) 0 0
\(616\) 23.8082 0.959259
\(617\) −17.8166 −0.717269 −0.358634 0.933478i \(-0.616757\pi\)
−0.358634 + 0.933478i \(0.616757\pi\)
\(618\) −22.9939 −0.924949
\(619\) −38.3884 −1.54296 −0.771480 0.636254i \(-0.780483\pi\)
−0.771480 + 0.636254i \(0.780483\pi\)
\(620\) 0 0
\(621\) −16.0677 −0.644775
\(622\) −52.6525 −2.11117
\(623\) −34.9093 −1.39861
\(624\) 2.94828 0.118026
\(625\) 0 0
\(626\) −8.83710 −0.353202
\(627\) −1.84324 −0.0736121
\(628\) −10.1834 −0.406363
\(629\) 0 0
\(630\) 0 0
\(631\) 27.4863 1.09421 0.547105 0.837064i \(-0.315730\pi\)
0.547105 + 0.837064i \(0.315730\pi\)
\(632\) 10.6647 0.424221
\(633\) 11.9961 0.476803
\(634\) −17.4863 −0.694468
\(635\) 0 0
\(636\) 5.49079 0.217724
\(637\) −44.2206 −1.75208
\(638\) 20.0989 0.795723
\(639\) −11.0133 −0.435681
\(640\) 0 0
\(641\) 9.79976 0.387067 0.193534 0.981094i \(-0.438005\pi\)
0.193534 + 0.981094i \(0.438005\pi\)
\(642\) −14.7877 −0.583622
\(643\) −16.9372 −0.667939 −0.333969 0.942584i \(-0.608388\pi\)
−0.333969 + 0.942584i \(0.608388\pi\)
\(644\) −68.9998 −2.71897
\(645\) 0 0
\(646\) 0 0
\(647\) 2.98545 0.117370 0.0586850 0.998277i \(-0.481309\pi\)
0.0586850 + 0.998277i \(0.481309\pi\)
\(648\) −9.95547 −0.391088
\(649\) 7.41855 0.291204
\(650\) 0 0
\(651\) −10.7649 −0.421908
\(652\) −23.5597 −0.922669
\(653\) 40.1978 1.57306 0.786531 0.617551i \(-0.211875\pi\)
0.786531 + 0.617551i \(0.211875\pi\)
\(654\) −9.54411 −0.373204
\(655\) 0 0
\(656\) −11.6430 −0.454583
\(657\) 30.0144 1.17097
\(658\) 71.8720 2.80186
\(659\) 43.9832 1.71334 0.856671 0.515864i \(-0.172529\pi\)
0.856671 + 0.515864i \(0.172529\pi\)
\(660\) 0 0
\(661\) −26.1133 −1.01569 −0.507844 0.861449i \(-0.669557\pi\)
−0.507844 + 0.861449i \(0.669557\pi\)
\(662\) −21.8576 −0.849521
\(663\) 0 0
\(664\) −12.6719 −0.491766
\(665\) 0 0
\(666\) −30.9360 −1.19875
\(667\) −15.2495 −0.590463
\(668\) −3.72875 −0.144270
\(669\) −1.18181 −0.0456914
\(670\) 0 0
\(671\) −38.8515 −1.49984
\(672\) −19.9649 −0.770164
\(673\) −13.3340 −0.513989 −0.256995 0.966413i \(-0.582732\pi\)
−0.256995 + 0.966413i \(0.582732\pi\)
\(674\) −24.3812 −0.939129
\(675\) 0 0
\(676\) −16.4680 −0.633385
\(677\) 26.5113 1.01891 0.509456 0.860497i \(-0.329847\pi\)
0.509456 + 0.860497i \(0.329847\pi\)
\(678\) −19.9155 −0.764849
\(679\) −39.9299 −1.53237
\(680\) 0 0
\(681\) 5.15449 0.197520
\(682\) −28.1483 −1.07786
\(683\) −5.71646 −0.218734 −0.109367 0.994001i \(-0.534882\pi\)
−0.109367 + 0.994001i \(0.534882\pi\)
\(684\) 7.91548 0.302656
\(685\) 0 0
\(686\) 103.855 3.96521
\(687\) −3.97334 −0.151592
\(688\) −7.00227 −0.266959
\(689\) −9.88882 −0.376734
\(690\) 0 0
\(691\) 43.8504 1.66815 0.834075 0.551652i \(-0.186002\pi\)
0.834075 + 0.551652i \(0.186002\pi\)
\(692\) 47.0349 1.78800
\(693\) 41.9071 1.59192
\(694\) 18.9867 0.720724
\(695\) 0 0
\(696\) 2.42469 0.0919078
\(697\) 0 0
\(698\) −58.3956 −2.21031
\(699\) −5.09275 −0.192626
\(700\) 0 0
\(701\) 0.0806452 0.00304593 0.00152296 0.999999i \(-0.499515\pi\)
0.00152296 + 0.999999i \(0.499515\pi\)
\(702\) −17.5753 −0.663337
\(703\) 5.67420 0.214007
\(704\) −39.0277 −1.47091
\(705\) 0 0
\(706\) 39.7419 1.49571
\(707\) 12.0722 0.454023
\(708\) 3.41855 0.128477
\(709\) −10.8227 −0.406456 −0.203228 0.979131i \(-0.565143\pi\)
−0.203228 + 0.979131i \(0.565143\pi\)
\(710\) 0 0
\(711\) 18.7721 0.704007
\(712\) −11.0121 −0.412696
\(713\) 21.3568 0.799819
\(714\) 0 0
\(715\) 0 0
\(716\) −18.5236 −0.692259
\(717\) 3.37298 0.125966
\(718\) −20.7792 −0.775474
\(719\) −43.7659 −1.63219 −0.816097 0.577916i \(-0.803866\pi\)
−0.816097 + 0.577916i \(0.803866\pi\)
\(720\) 0 0
\(721\) −95.8864 −3.57100
\(722\) 38.7081 1.44056
\(723\) −1.34632 −0.0500700
\(724\) −40.6947 −1.51241
\(725\) 0 0
\(726\) 1.11223 0.0412786
\(727\) 3.59809 0.133446 0.0667229 0.997772i \(-0.478746\pi\)
0.0667229 + 0.997772i \(0.478746\pi\)
\(728\) −19.7587 −0.732307
\(729\) −12.5441 −0.464597
\(730\) 0 0
\(731\) 0 0
\(732\) −17.9032 −0.661721
\(733\) −39.8264 −1.47102 −0.735511 0.677513i \(-0.763058\pi\)
−0.735511 + 0.677513i \(0.763058\pi\)
\(734\) −26.2895 −0.970363
\(735\) 0 0
\(736\) 39.6092 1.46001
\(737\) −32.3545 −1.19180
\(738\) 32.9360 1.21239
\(739\) −13.7587 −0.506123 −0.253061 0.967450i \(-0.581437\pi\)
−0.253061 + 0.967450i \(0.581437\pi\)
\(740\) 0 0
\(741\) 1.52973 0.0561962
\(742\) 39.7998 1.46110
\(743\) 9.34963 0.343005 0.171502 0.985184i \(-0.445138\pi\)
0.171502 + 0.985184i \(0.445138\pi\)
\(744\) −3.39576 −0.124495
\(745\) 0 0
\(746\) 66.1049 2.42027
\(747\) −22.3051 −0.816101
\(748\) 0 0
\(749\) −61.6658 −2.25322
\(750\) 0 0
\(751\) 53.7392 1.96097 0.980487 0.196586i \(-0.0629856\pi\)
0.980487 + 0.196586i \(0.0629856\pi\)
\(752\) −14.1073 −0.514441
\(753\) −6.37137 −0.232186
\(754\) −16.6803 −0.607462
\(755\) 0 0
\(756\) 40.6947 1.48005
\(757\) −41.5136 −1.50884 −0.754418 0.656394i \(-0.772081\pi\)
−0.754418 + 0.656394i \(0.772081\pi\)
\(758\) 2.14116 0.0777703
\(759\) 8.92162 0.323834
\(760\) 0 0
\(761\) −18.0372 −0.653847 −0.326923 0.945051i \(-0.606012\pi\)
−0.326923 + 0.945051i \(0.606012\pi\)
\(762\) 9.41855 0.341198
\(763\) −39.7998 −1.44085
\(764\) −65.7875 −2.38011
\(765\) 0 0
\(766\) 54.1627 1.95698
\(767\) −6.15676 −0.222308
\(768\) −0.225678 −0.00814345
\(769\) −23.0843 −0.832443 −0.416221 0.909263i \(-0.636646\pi\)
−0.416221 + 0.909263i \(0.636646\pi\)
\(770\) 0 0
\(771\) 8.05786 0.290197
\(772\) −32.1256 −1.15622
\(773\) −27.4101 −0.985874 −0.492937 0.870065i \(-0.664077\pi\)
−0.492937 + 0.870065i \(0.664077\pi\)
\(774\) 19.8082 0.711990
\(775\) 0 0
\(776\) −12.5958 −0.452164
\(777\) 13.8432 0.496624
\(778\) 73.3667 2.63032
\(779\) −6.04104 −0.216443
\(780\) 0 0
\(781\) 12.8865 0.461117
\(782\) 0 0
\(783\) 8.99386 0.321414
\(784\) −34.9337 −1.24763
\(785\) 0 0
\(786\) −13.6826 −0.488043
\(787\) −30.6069 −1.09102 −0.545509 0.838105i \(-0.683664\pi\)
−0.545509 + 0.838105i \(0.683664\pi\)
\(788\) −49.4596 −1.76192
\(789\) −6.97948 −0.248476
\(790\) 0 0
\(791\) −83.0493 −2.95289
\(792\) 13.2195 0.469736
\(793\) 32.2434 1.14500
\(794\) −61.8987 −2.19670
\(795\) 0 0
\(796\) 10.0917 0.357691
\(797\) 22.9770 0.813888 0.406944 0.913453i \(-0.366594\pi\)
0.406944 + 0.913453i \(0.366594\pi\)
\(798\) −6.15676 −0.217947
\(799\) 0 0
\(800\) 0 0
\(801\) −19.3835 −0.684882
\(802\) −71.8141 −2.53585
\(803\) −35.1194 −1.23934
\(804\) −14.9093 −0.525812
\(805\) 0 0
\(806\) 23.3607 0.822845
\(807\) −4.03120 −0.141905
\(808\) 3.80817 0.133971
\(809\) −42.7670 −1.50361 −0.751803 0.659388i \(-0.770816\pi\)
−0.751803 + 0.659388i \(0.770816\pi\)
\(810\) 0 0
\(811\) 9.41136 0.330478 0.165239 0.986254i \(-0.447161\pi\)
0.165239 + 0.986254i \(0.447161\pi\)
\(812\) 38.6225 1.35538
\(813\) −1.16290 −0.0407846
\(814\) 36.1978 1.26873
\(815\) 0 0
\(816\) 0 0
\(817\) −3.63317 −0.127108
\(818\) 65.5318 2.29127
\(819\) −34.7792 −1.21529
\(820\) 0 0
\(821\) −32.6681 −1.14012 −0.570062 0.821602i \(-0.693081\pi\)
−0.570062 + 0.821602i \(0.693081\pi\)
\(822\) 2.28231 0.0796048
\(823\) −15.9265 −0.555164 −0.277582 0.960702i \(-0.589533\pi\)
−0.277582 + 0.960702i \(0.589533\pi\)
\(824\) −30.2472 −1.05371
\(825\) 0 0
\(826\) 24.7792 0.862180
\(827\) −6.01560 −0.209183 −0.104591 0.994515i \(-0.533353\pi\)
−0.104591 + 0.994515i \(0.533353\pi\)
\(828\) −38.3123 −1.33144
\(829\) 11.0472 0.383684 0.191842 0.981426i \(-0.438554\pi\)
0.191842 + 0.981426i \(0.438554\pi\)
\(830\) 0 0
\(831\) −6.55479 −0.227383
\(832\) 32.3896 1.12291
\(833\) 0 0
\(834\) 2.34858 0.0813248
\(835\) 0 0
\(836\) −9.26180 −0.320326
\(837\) −12.5958 −0.435375
\(838\) 39.4173 1.36165
\(839\) 35.9805 1.24219 0.621093 0.783737i \(-0.286689\pi\)
0.621093 + 0.783737i \(0.286689\pi\)
\(840\) 0 0
\(841\) −20.4641 −0.705659
\(842\) −1.65142 −0.0569116
\(843\) −7.07384 −0.243636
\(844\) 60.2772 2.07483
\(845\) 0 0
\(846\) 39.9071 1.37203
\(847\) 4.63809 0.159367
\(848\) −7.81205 −0.268267
\(849\) −7.52586 −0.258287
\(850\) 0 0
\(851\) −27.4641 −0.941458
\(852\) 5.93827 0.203442
\(853\) 28.7792 0.985382 0.492691 0.870204i \(-0.336013\pi\)
0.492691 + 0.870204i \(0.336013\pi\)
\(854\) −129.771 −4.44066
\(855\) 0 0
\(856\) −19.4524 −0.664869
\(857\) −17.0661 −0.582967 −0.291483 0.956576i \(-0.594149\pi\)
−0.291483 + 0.956576i \(0.594149\pi\)
\(858\) 9.75872 0.333157
\(859\) 18.9360 0.646088 0.323044 0.946384i \(-0.395294\pi\)
0.323044 + 0.946384i \(0.395294\pi\)
\(860\) 0 0
\(861\) −14.7382 −0.502277
\(862\) 13.7743 0.469155
\(863\) −30.8332 −1.04958 −0.524788 0.851233i \(-0.675855\pi\)
−0.524788 + 0.851233i \(0.675855\pi\)
\(864\) −23.3607 −0.794747
\(865\) 0 0
\(866\) −7.86603 −0.267299
\(867\) 0 0
\(868\) −54.0905 −1.83595
\(869\) −21.9649 −0.745109
\(870\) 0 0
\(871\) 26.8515 0.909828
\(872\) −12.5548 −0.425159
\(873\) −22.1711 −0.750379
\(874\) 12.2146 0.413165
\(875\) 0 0
\(876\) −16.1834 −0.546787
\(877\) 4.30898 0.145504 0.0727519 0.997350i \(-0.476822\pi\)
0.0727519 + 0.997350i \(0.476822\pi\)
\(878\) 13.8999 0.469098
\(879\) −2.55479 −0.0861708
\(880\) 0 0
\(881\) −12.2245 −0.411852 −0.205926 0.978568i \(-0.566021\pi\)
−0.205926 + 0.978568i \(0.566021\pi\)
\(882\) 98.8213 3.32749
\(883\) 28.2329 0.950112 0.475056 0.879956i \(-0.342428\pi\)
0.475056 + 0.879956i \(0.342428\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 59.6391 2.00362
\(887\) −5.17396 −0.173725 −0.0868623 0.996220i \(-0.527684\pi\)
−0.0868623 + 0.996220i \(0.527684\pi\)
\(888\) 4.36683 0.146541
\(889\) 39.2762 1.31728
\(890\) 0 0
\(891\) 20.5041 0.686914
\(892\) −5.93827 −0.198828
\(893\) −7.31965 −0.244943
\(894\) 16.7115 0.558918
\(895\) 0 0
\(896\) −56.3039 −1.88098
\(897\) −7.40417 −0.247218
\(898\) −62.3956 −2.08217
\(899\) −11.9544 −0.398702
\(900\) 0 0
\(901\) 0 0
\(902\) −38.5380 −1.28317
\(903\) −8.86376 −0.294968
\(904\) −26.1978 −0.871326
\(905\) 0 0
\(906\) 15.0517 0.500060
\(907\) −6.32457 −0.210004 −0.105002 0.994472i \(-0.533485\pi\)
−0.105002 + 0.994472i \(0.533485\pi\)
\(908\) 25.8999 0.859518
\(909\) 6.70313 0.222329
\(910\) 0 0
\(911\) −27.6526 −0.916173 −0.458086 0.888908i \(-0.651465\pi\)
−0.458086 + 0.888908i \(0.651465\pi\)
\(912\) 1.20847 0.0400165
\(913\) 26.0989 0.863747
\(914\) 68.1627 2.25462
\(915\) 0 0
\(916\) −19.9649 −0.659660
\(917\) −57.0577 −1.88421
\(918\) 0 0
\(919\) −47.5318 −1.56793 −0.783965 0.620805i \(-0.786806\pi\)
−0.783965 + 0.620805i \(0.786806\pi\)
\(920\) 0 0
\(921\) 11.6430 0.383650
\(922\) −16.8371 −0.554500
\(923\) −10.6947 −0.352021
\(924\) −22.5958 −0.743348
\(925\) 0 0
\(926\) 52.5874 1.72813
\(927\) −53.2411 −1.74867
\(928\) −22.1711 −0.727803
\(929\) 43.7875 1.43662 0.718310 0.695723i \(-0.244916\pi\)
0.718310 + 0.695723i \(0.244916\pi\)
\(930\) 0 0
\(931\) −18.1256 −0.594041
\(932\) −25.5897 −0.838218
\(933\) 13.0823 0.428294
\(934\) 26.7298 0.874626
\(935\) 0 0
\(936\) −10.9711 −0.358601
\(937\) 14.2367 0.465094 0.232547 0.972585i \(-0.425294\pi\)
0.232547 + 0.972585i \(0.425294\pi\)
\(938\) −108.070 −3.52860
\(939\) 2.19570 0.0716541
\(940\) 0 0
\(941\) −35.2183 −1.14808 −0.574042 0.818826i \(-0.694625\pi\)
−0.574042 + 0.818826i \(0.694625\pi\)
\(942\) 4.39803 0.143296
\(943\) 29.2397 0.952175
\(944\) −4.86376 −0.158302
\(945\) 0 0
\(946\) −23.1773 −0.753558
\(947\) −49.1227 −1.59627 −0.798137 0.602476i \(-0.794181\pi\)
−0.798137 + 0.602476i \(0.794181\pi\)
\(948\) −10.1217 −0.328737
\(949\) 29.1461 0.946122
\(950\) 0 0
\(951\) 4.34471 0.140887
\(952\) 0 0
\(953\) 17.0556 0.552485 0.276242 0.961088i \(-0.410911\pi\)
0.276242 + 0.961088i \(0.410911\pi\)
\(954\) 22.0989 0.715478
\(955\) 0 0
\(956\) 16.9483 0.548147
\(957\) −4.99386 −0.161428
\(958\) −4.66475 −0.150711
\(959\) 9.51745 0.307334
\(960\) 0 0
\(961\) −14.2579 −0.459933
\(962\) −30.0410 −0.968562
\(963\) −34.2401 −1.10337
\(964\) −6.76487 −0.217882
\(965\) 0 0
\(966\) 29.7998 0.958792
\(967\) −25.1955 −0.810233 −0.405117 0.914265i \(-0.632769\pi\)
−0.405117 + 0.914265i \(0.632769\pi\)
\(968\) 1.46308 0.0470251
\(969\) 0 0
\(970\) 0 0
\(971\) −1.67420 −0.0537277 −0.0268639 0.999639i \(-0.508552\pi\)
−0.0268639 + 0.999639i \(0.508552\pi\)
\(972\) 34.4690 1.10560
\(973\) 9.79380 0.313975
\(974\) 86.9842 2.78715
\(975\) 0 0
\(976\) 25.4719 0.815335
\(977\) −39.9109 −1.27686 −0.638432 0.769678i \(-0.720417\pi\)
−0.638432 + 0.769678i \(0.720417\pi\)
\(978\) 10.1750 0.325361
\(979\) 22.6803 0.724867
\(980\) 0 0
\(981\) −22.0989 −0.705563
\(982\) −4.89496 −0.156204
\(983\) 5.46081 0.174173 0.0870864 0.996201i \(-0.472244\pi\)
0.0870864 + 0.996201i \(0.472244\pi\)
\(984\) −4.64915 −0.148209
\(985\) 0 0
\(986\) 0 0
\(987\) −17.8576 −0.568414
\(988\) 7.68649 0.244540
\(989\) 17.5851 0.559175
\(990\) 0 0
\(991\) −42.0749 −1.33655 −0.668276 0.743913i \(-0.732968\pi\)
−0.668276 + 0.743913i \(0.732968\pi\)
\(992\) 31.0505 0.985854
\(993\) 5.43084 0.172342
\(994\) 43.0433 1.36525
\(995\) 0 0
\(996\) 12.0267 0.381079
\(997\) −54.6681 −1.73135 −0.865677 0.500602i \(-0.833112\pi\)
−0.865677 + 0.500602i \(0.833112\pi\)
\(998\) −92.3267 −2.92255
\(999\) 16.1978 0.512476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.r.1.1 3
5.4 even 2 1445.2.a.k.1.3 3
17.4 even 4 425.2.d.c.101.5 6
17.13 even 4 425.2.d.c.101.6 6
17.16 even 2 7225.2.a.q.1.1 3
85.4 even 4 85.2.d.a.16.2 yes 6
85.13 odd 4 425.2.c.b.424.1 6
85.38 odd 4 425.2.c.a.424.1 6
85.47 odd 4 425.2.c.a.424.6 6
85.64 even 4 85.2.d.a.16.1 6
85.72 odd 4 425.2.c.b.424.6 6
85.84 even 2 1445.2.a.j.1.3 3
255.89 odd 4 765.2.g.b.271.6 6
255.149 odd 4 765.2.g.b.271.5 6
340.259 odd 4 1360.2.c.f.1121.3 6
340.319 odd 4 1360.2.c.f.1121.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.1 6 85.64 even 4
85.2.d.a.16.2 yes 6 85.4 even 4
425.2.c.a.424.1 6 85.38 odd 4
425.2.c.a.424.6 6 85.47 odd 4
425.2.c.b.424.1 6 85.13 odd 4
425.2.c.b.424.6 6 85.72 odd 4
425.2.d.c.101.5 6 17.4 even 4
425.2.d.c.101.6 6 17.13 even 4
765.2.g.b.271.5 6 255.149 odd 4
765.2.g.b.271.6 6 255.89 odd 4
1360.2.c.f.1121.3 6 340.259 odd 4
1360.2.c.f.1121.4 6 340.319 odd 4
1445.2.a.j.1.3 3 85.84 even 2
1445.2.a.k.1.3 3 5.4 even 2
7225.2.a.q.1.1 3 17.16 even 2
7225.2.a.r.1.1 3 1.1 even 1 trivial