Properties

Label 7225.2.a.bs.1.6
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,8,12,0,-8,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.301687\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.301687 q^{2} -1.06101 q^{3} -1.90899 q^{4} +0.320094 q^{6} -2.50984 q^{7} +1.17929 q^{8} -1.87425 q^{9} -2.44557 q^{11} +2.02546 q^{12} +5.61335 q^{13} +0.757185 q^{14} +3.46219 q^{16} +0.565436 q^{18} -7.13107 q^{19} +2.66297 q^{21} +0.737797 q^{22} -0.860805 q^{23} -1.25124 q^{24} -1.69348 q^{26} +5.17165 q^{27} +4.79124 q^{28} -3.75143 q^{29} +2.24733 q^{31} -3.40308 q^{32} +2.59479 q^{33} +3.57791 q^{36} -5.10557 q^{37} +2.15135 q^{38} -5.95585 q^{39} -12.3496 q^{41} -0.803384 q^{42} +2.62014 q^{43} +4.66856 q^{44} +0.259694 q^{46} +2.30114 q^{47} -3.67344 q^{48} -0.700712 q^{49} -10.7158 q^{52} -2.77475 q^{53} -1.56022 q^{54} -2.95983 q^{56} +7.56616 q^{57} +1.13176 q^{58} +7.44167 q^{59} -0.906291 q^{61} -0.677989 q^{62} +4.70406 q^{63} -5.89773 q^{64} -0.782813 q^{66} -6.69889 q^{67} +0.913326 q^{69} +0.240766 q^{71} -2.21028 q^{72} -6.45746 q^{73} +1.54028 q^{74} +13.6131 q^{76} +6.13799 q^{77} +1.79680 q^{78} -14.7096 q^{79} +0.135560 q^{81} +3.72571 q^{82} -13.8984 q^{83} -5.08358 q^{84} -0.790460 q^{86} +3.98032 q^{87} -2.88404 q^{88} -0.395163 q^{89} -14.0886 q^{91} +1.64326 q^{92} -2.38445 q^{93} -0.694222 q^{94} +3.61071 q^{96} -8.95923 q^{97} +0.211396 q^{98} +4.58361 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 8 q^{3} + 12 q^{4} - 8 q^{6} + 16 q^{7} + 12 q^{8} + 12 q^{9} - 16 q^{11} + 16 q^{12} + 8 q^{13} + 16 q^{14} + 12 q^{16} - 4 q^{18} + 16 q^{21} + 16 q^{22} + 16 q^{23} + 16 q^{26} + 32 q^{27}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.301687 −0.213325 −0.106662 0.994295i \(-0.534016\pi\)
−0.106662 + 0.994295i \(0.534016\pi\)
\(3\) −1.06101 −0.612577 −0.306288 0.951939i \(-0.599087\pi\)
−0.306288 + 0.951939i \(0.599087\pi\)
\(4\) −1.90899 −0.954493
\(5\) 0 0
\(6\) 0.320094 0.130678
\(7\) −2.50984 −0.948630 −0.474315 0.880355i \(-0.657304\pi\)
−0.474315 + 0.880355i \(0.657304\pi\)
\(8\) 1.17929 0.416942
\(9\) −1.87425 −0.624750
\(10\) 0 0
\(11\) −2.44557 −0.737368 −0.368684 0.929555i \(-0.620192\pi\)
−0.368684 + 0.929555i \(0.620192\pi\)
\(12\) 2.02546 0.584700
\(13\) 5.61335 1.55686 0.778432 0.627729i \(-0.216015\pi\)
0.778432 + 0.627729i \(0.216015\pi\)
\(14\) 0.757185 0.202366
\(15\) 0 0
\(16\) 3.46219 0.865549
\(17\) 0 0
\(18\) 0.565436 0.133275
\(19\) −7.13107 −1.63598 −0.817990 0.575233i \(-0.804911\pi\)
−0.817990 + 0.575233i \(0.804911\pi\)
\(20\) 0 0
\(21\) 2.66297 0.581108
\(22\) 0.737797 0.157299
\(23\) −0.860805 −0.179490 −0.0897451 0.995965i \(-0.528605\pi\)
−0.0897451 + 0.995965i \(0.528605\pi\)
\(24\) −1.25124 −0.255409
\(25\) 0 0
\(26\) −1.69348 −0.332118
\(27\) 5.17165 0.995284
\(28\) 4.79124 0.905460
\(29\) −3.75143 −0.696624 −0.348312 0.937379i \(-0.613245\pi\)
−0.348312 + 0.937379i \(0.613245\pi\)
\(30\) 0 0
\(31\) 2.24733 0.403632 0.201816 0.979423i \(-0.435316\pi\)
0.201816 + 0.979423i \(0.435316\pi\)
\(32\) −3.40308 −0.601585
\(33\) 2.59479 0.451694
\(34\) 0 0
\(35\) 0 0
\(36\) 3.57791 0.596319
\(37\) −5.10557 −0.839351 −0.419675 0.907674i \(-0.637856\pi\)
−0.419675 + 0.907674i \(0.637856\pi\)
\(38\) 2.15135 0.348995
\(39\) −5.95585 −0.953699
\(40\) 0 0
\(41\) −12.3496 −1.92868 −0.964340 0.264666i \(-0.914738\pi\)
−0.964340 + 0.264666i \(0.914738\pi\)
\(42\) −0.803384 −0.123965
\(43\) 2.62014 0.399567 0.199783 0.979840i \(-0.435976\pi\)
0.199783 + 0.979840i \(0.435976\pi\)
\(44\) 4.66856 0.703812
\(45\) 0 0
\(46\) 0.259694 0.0382897
\(47\) 2.30114 0.335655 0.167828 0.985816i \(-0.446325\pi\)
0.167828 + 0.985816i \(0.446325\pi\)
\(48\) −3.67344 −0.530215
\(49\) −0.700712 −0.100102
\(50\) 0 0
\(51\) 0 0
\(52\) −10.7158 −1.48602
\(53\) −2.77475 −0.381141 −0.190571 0.981674i \(-0.561034\pi\)
−0.190571 + 0.981674i \(0.561034\pi\)
\(54\) −1.56022 −0.212319
\(55\) 0 0
\(56\) −2.95983 −0.395523
\(57\) 7.56616 1.00216
\(58\) 1.13176 0.148607
\(59\) 7.44167 0.968823 0.484412 0.874840i \(-0.339034\pi\)
0.484412 + 0.874840i \(0.339034\pi\)
\(60\) 0 0
\(61\) −0.906291 −0.116039 −0.0580193 0.998315i \(-0.518478\pi\)
−0.0580193 + 0.998315i \(0.518478\pi\)
\(62\) −0.677989 −0.0861047
\(63\) 4.70406 0.592656
\(64\) −5.89773 −0.737216
\(65\) 0 0
\(66\) −0.782813 −0.0963576
\(67\) −6.69889 −0.818399 −0.409200 0.912445i \(-0.634192\pi\)
−0.409200 + 0.912445i \(0.634192\pi\)
\(68\) 0 0
\(69\) 0.913326 0.109952
\(70\) 0 0
\(71\) 0.240766 0.0285737 0.0142868 0.999898i \(-0.495452\pi\)
0.0142868 + 0.999898i \(0.495452\pi\)
\(72\) −2.21028 −0.260484
\(73\) −6.45746 −0.755788 −0.377894 0.925849i \(-0.623352\pi\)
−0.377894 + 0.925849i \(0.623352\pi\)
\(74\) 1.54028 0.179054
\(75\) 0 0
\(76\) 13.6131 1.56153
\(77\) 6.13799 0.699489
\(78\) 1.79680 0.203448
\(79\) −14.7096 −1.65496 −0.827479 0.561497i \(-0.810226\pi\)
−0.827479 + 0.561497i \(0.810226\pi\)
\(80\) 0 0
\(81\) 0.135560 0.0150623
\(82\) 3.72571 0.411435
\(83\) −13.8984 −1.52555 −0.762775 0.646664i \(-0.776164\pi\)
−0.762775 + 0.646664i \(0.776164\pi\)
\(84\) −5.08358 −0.554664
\(85\) 0 0
\(86\) −0.790460 −0.0852375
\(87\) 3.98032 0.426736
\(88\) −2.88404 −0.307439
\(89\) −0.395163 −0.0418872 −0.0209436 0.999781i \(-0.506667\pi\)
−0.0209436 + 0.999781i \(0.506667\pi\)
\(90\) 0 0
\(91\) −14.0886 −1.47689
\(92\) 1.64326 0.171322
\(93\) −2.38445 −0.247255
\(94\) −0.694222 −0.0716036
\(95\) 0 0
\(96\) 3.61071 0.368517
\(97\) −8.95923 −0.909672 −0.454836 0.890575i \(-0.650302\pi\)
−0.454836 + 0.890575i \(0.650302\pi\)
\(98\) 0.211396 0.0213542
\(99\) 4.58361 0.460671
\(100\) 0 0
\(101\) −15.2882 −1.52124 −0.760619 0.649199i \(-0.775104\pi\)
−0.760619 + 0.649199i \(0.775104\pi\)
\(102\) 0 0
\(103\) 14.7746 1.45579 0.727894 0.685690i \(-0.240499\pi\)
0.727894 + 0.685690i \(0.240499\pi\)
\(104\) 6.61977 0.649122
\(105\) 0 0
\(106\) 0.837105 0.0813068
\(107\) 1.47078 0.142185 0.0710926 0.997470i \(-0.477351\pi\)
0.0710926 + 0.997470i \(0.477351\pi\)
\(108\) −9.87260 −0.949991
\(109\) −9.43771 −0.903969 −0.451984 0.892026i \(-0.649284\pi\)
−0.451984 + 0.892026i \(0.649284\pi\)
\(110\) 0 0
\(111\) 5.41708 0.514167
\(112\) −8.68955 −0.821085
\(113\) 14.9610 1.40742 0.703708 0.710489i \(-0.251526\pi\)
0.703708 + 0.710489i \(0.251526\pi\)
\(114\) −2.28261 −0.213786
\(115\) 0 0
\(116\) 7.16143 0.664922
\(117\) −10.5208 −0.972651
\(118\) −2.24505 −0.206674
\(119\) 0 0
\(120\) 0 0
\(121\) −5.01917 −0.456288
\(122\) 0.273416 0.0247539
\(123\) 13.1031 1.18146
\(124\) −4.29011 −0.385264
\(125\) 0 0
\(126\) −1.41915 −0.126428
\(127\) 5.95484 0.528406 0.264203 0.964467i \(-0.414891\pi\)
0.264203 + 0.964467i \(0.414891\pi\)
\(128\) 8.58542 0.758851
\(129\) −2.78000 −0.244765
\(130\) 0 0
\(131\) −4.18730 −0.365846 −0.182923 0.983127i \(-0.558556\pi\)
−0.182923 + 0.983127i \(0.558556\pi\)
\(132\) −4.95341 −0.431139
\(133\) 17.8978 1.55194
\(134\) 2.02097 0.174585
\(135\) 0 0
\(136\) 0 0
\(137\) −7.25998 −0.620262 −0.310131 0.950694i \(-0.600373\pi\)
−0.310131 + 0.950694i \(0.600373\pi\)
\(138\) −0.275538 −0.0234554
\(139\) 10.3932 0.881540 0.440770 0.897620i \(-0.354705\pi\)
0.440770 + 0.897620i \(0.354705\pi\)
\(140\) 0 0
\(141\) −2.44154 −0.205615
\(142\) −0.0726360 −0.00609548
\(143\) −13.7279 −1.14798
\(144\) −6.48902 −0.540751
\(145\) 0 0
\(146\) 1.94813 0.161228
\(147\) 0.743466 0.0613200
\(148\) 9.74646 0.801154
\(149\) −6.01765 −0.492985 −0.246492 0.969145i \(-0.579278\pi\)
−0.246492 + 0.969145i \(0.579278\pi\)
\(150\) 0 0
\(151\) −10.4183 −0.847828 −0.423914 0.905702i \(-0.639344\pi\)
−0.423914 + 0.905702i \(0.639344\pi\)
\(152\) −8.40959 −0.682108
\(153\) 0 0
\(154\) −1.85175 −0.149218
\(155\) 0 0
\(156\) 11.3696 0.910298
\(157\) −13.4073 −1.07002 −0.535008 0.844847i \(-0.679691\pi\)
−0.535008 + 0.844847i \(0.679691\pi\)
\(158\) 4.43769 0.353044
\(159\) 2.94405 0.233478
\(160\) 0 0
\(161\) 2.16048 0.170270
\(162\) −0.0408968 −0.00321315
\(163\) −1.57513 −0.123374 −0.0616870 0.998096i \(-0.519648\pi\)
−0.0616870 + 0.998096i \(0.519648\pi\)
\(164\) 23.5752 1.84091
\(165\) 0 0
\(166\) 4.19297 0.325438
\(167\) −17.6049 −1.36231 −0.681154 0.732140i \(-0.738522\pi\)
−0.681154 + 0.732140i \(0.738522\pi\)
\(168\) 3.14042 0.242288
\(169\) 18.5098 1.42383
\(170\) 0 0
\(171\) 13.3654 1.02208
\(172\) −5.00180 −0.381384
\(173\) 18.8429 1.43260 0.716300 0.697793i \(-0.245834\pi\)
0.716300 + 0.697793i \(0.245834\pi\)
\(174\) −1.20081 −0.0910333
\(175\) 0 0
\(176\) −8.46705 −0.638228
\(177\) −7.89572 −0.593479
\(178\) 0.119215 0.00893557
\(179\) 3.31384 0.247688 0.123844 0.992302i \(-0.460478\pi\)
0.123844 + 0.992302i \(0.460478\pi\)
\(180\) 0 0
\(181\) 15.8652 1.17925 0.589624 0.807678i \(-0.299276\pi\)
0.589624 + 0.807678i \(0.299276\pi\)
\(182\) 4.25035 0.315057
\(183\) 0.961587 0.0710826
\(184\) −1.01514 −0.0748370
\(185\) 0 0
\(186\) 0.719356 0.0527457
\(187\) 0 0
\(188\) −4.39284 −0.320380
\(189\) −12.9800 −0.944156
\(190\) 0 0
\(191\) 27.4943 1.98941 0.994707 0.102748i \(-0.0327636\pi\)
0.994707 + 0.102748i \(0.0327636\pi\)
\(192\) 6.25757 0.451601
\(193\) −14.7613 −1.06254 −0.531270 0.847203i \(-0.678285\pi\)
−0.531270 + 0.847203i \(0.678285\pi\)
\(194\) 2.70288 0.194056
\(195\) 0 0
\(196\) 1.33765 0.0955464
\(197\) 0.376406 0.0268178 0.0134089 0.999910i \(-0.495732\pi\)
0.0134089 + 0.999910i \(0.495732\pi\)
\(198\) −1.38282 −0.0982724
\(199\) 7.53004 0.533791 0.266895 0.963726i \(-0.414002\pi\)
0.266895 + 0.963726i \(0.414002\pi\)
\(200\) 0 0
\(201\) 7.10761 0.501332
\(202\) 4.61226 0.324518
\(203\) 9.41549 0.660838
\(204\) 0 0
\(205\) 0 0
\(206\) −4.45731 −0.310556
\(207\) 1.61336 0.112137
\(208\) 19.4345 1.34754
\(209\) 17.4395 1.20632
\(210\) 0 0
\(211\) −8.69248 −0.598415 −0.299207 0.954188i \(-0.596722\pi\)
−0.299207 + 0.954188i \(0.596722\pi\)
\(212\) 5.29695 0.363796
\(213\) −0.255456 −0.0175036
\(214\) −0.443714 −0.0303316
\(215\) 0 0
\(216\) 6.09887 0.414975
\(217\) −5.64043 −0.382897
\(218\) 2.84723 0.192839
\(219\) 6.85145 0.462978
\(220\) 0 0
\(221\) 0 0
\(222\) −1.63426 −0.109684
\(223\) −6.46310 −0.432801 −0.216401 0.976305i \(-0.569432\pi\)
−0.216401 + 0.976305i \(0.569432\pi\)
\(224\) 8.54117 0.570681
\(225\) 0 0
\(226\) −4.51355 −0.300237
\(227\) −3.06060 −0.203139 −0.101570 0.994828i \(-0.532386\pi\)
−0.101570 + 0.994828i \(0.532386\pi\)
\(228\) −14.4437 −0.956557
\(229\) −7.55923 −0.499528 −0.249764 0.968307i \(-0.580353\pi\)
−0.249764 + 0.968307i \(0.580353\pi\)
\(230\) 0 0
\(231\) −6.51250 −0.428491
\(232\) −4.42403 −0.290452
\(233\) −22.3478 −1.46406 −0.732028 0.681275i \(-0.761426\pi\)
−0.732028 + 0.681275i \(0.761426\pi\)
\(234\) 3.17400 0.207491
\(235\) 0 0
\(236\) −14.2060 −0.924735
\(237\) 15.6071 1.01379
\(238\) 0 0
\(239\) −3.45981 −0.223797 −0.111898 0.993720i \(-0.535693\pi\)
−0.111898 + 0.993720i \(0.535693\pi\)
\(240\) 0 0
\(241\) −18.0262 −1.16117 −0.580585 0.814199i \(-0.697176\pi\)
−0.580585 + 0.814199i \(0.697176\pi\)
\(242\) 1.51422 0.0973376
\(243\) −15.6588 −1.00451
\(244\) 1.73010 0.110758
\(245\) 0 0
\(246\) −3.95302 −0.252036
\(247\) −40.0292 −2.54700
\(248\) 2.65025 0.168291
\(249\) 14.7464 0.934516
\(250\) 0 0
\(251\) 24.0478 1.51788 0.758941 0.651159i \(-0.225717\pi\)
0.758941 + 0.651159i \(0.225717\pi\)
\(252\) −8.97999 −0.565686
\(253\) 2.10516 0.132350
\(254\) −1.79650 −0.112722
\(255\) 0 0
\(256\) 9.20534 0.575334
\(257\) 14.8017 0.923302 0.461651 0.887062i \(-0.347257\pi\)
0.461651 + 0.887062i \(0.347257\pi\)
\(258\) 0.838689 0.0522145
\(259\) 12.8142 0.796233
\(260\) 0 0
\(261\) 7.03113 0.435216
\(262\) 1.26325 0.0780440
\(263\) 24.5163 1.51174 0.755871 0.654720i \(-0.227214\pi\)
0.755871 + 0.654720i \(0.227214\pi\)
\(264\) 3.06000 0.188330
\(265\) 0 0
\(266\) −5.39954 −0.331067
\(267\) 0.419273 0.0256591
\(268\) 12.7881 0.781156
\(269\) −6.59468 −0.402085 −0.201042 0.979583i \(-0.564433\pi\)
−0.201042 + 0.979583i \(0.564433\pi\)
\(270\) 0 0
\(271\) 26.1956 1.59127 0.795634 0.605778i \(-0.207138\pi\)
0.795634 + 0.605778i \(0.207138\pi\)
\(272\) 0 0
\(273\) 14.9482 0.904707
\(274\) 2.19024 0.132317
\(275\) 0 0
\(276\) −1.74353 −0.104948
\(277\) 9.56504 0.574708 0.287354 0.957825i \(-0.407224\pi\)
0.287354 + 0.957825i \(0.407224\pi\)
\(278\) −3.13549 −0.188054
\(279\) −4.21205 −0.252169
\(280\) 0 0
\(281\) 12.4173 0.740755 0.370377 0.928881i \(-0.379228\pi\)
0.370377 + 0.928881i \(0.379228\pi\)
\(282\) 0.736580 0.0438627
\(283\) 16.8433 1.00123 0.500616 0.865670i \(-0.333107\pi\)
0.500616 + 0.865670i \(0.333107\pi\)
\(284\) −0.459619 −0.0272734
\(285\) 0 0
\(286\) 4.14152 0.244893
\(287\) 30.9954 1.82960
\(288\) 6.37822 0.375840
\(289\) 0 0
\(290\) 0 0
\(291\) 9.50586 0.557244
\(292\) 12.3272 0.721394
\(293\) 20.8806 1.21986 0.609930 0.792456i \(-0.291198\pi\)
0.609930 + 0.792456i \(0.291198\pi\)
\(294\) −0.224294 −0.0130811
\(295\) 0 0
\(296\) −6.02095 −0.349960
\(297\) −12.6476 −0.733890
\(298\) 1.81544 0.105166
\(299\) −4.83200 −0.279442
\(300\) 0 0
\(301\) −6.57612 −0.379041
\(302\) 3.14306 0.180863
\(303\) 16.2210 0.931875
\(304\) −24.6891 −1.41602
\(305\) 0 0
\(306\) 0 0
\(307\) 29.9529 1.70950 0.854751 0.519038i \(-0.173710\pi\)
0.854751 + 0.519038i \(0.173710\pi\)
\(308\) −11.7173 −0.667657
\(309\) −15.6761 −0.891782
\(310\) 0 0
\(311\) −0.210323 −0.0119264 −0.00596318 0.999982i \(-0.501898\pi\)
−0.00596318 + 0.999982i \(0.501898\pi\)
\(312\) −7.02367 −0.397637
\(313\) −32.4242 −1.83273 −0.916363 0.400349i \(-0.868889\pi\)
−0.916363 + 0.400349i \(0.868889\pi\)
\(314\) 4.04479 0.228261
\(315\) 0 0
\(316\) 28.0804 1.57965
\(317\) −33.4391 −1.87813 −0.939063 0.343746i \(-0.888304\pi\)
−0.939063 + 0.343746i \(0.888304\pi\)
\(318\) −0.888180 −0.0498067
\(319\) 9.17441 0.513668
\(320\) 0 0
\(321\) −1.56051 −0.0870994
\(322\) −0.651789 −0.0363228
\(323\) 0 0
\(324\) −0.258783 −0.0143768
\(325\) 0 0
\(326\) 0.475197 0.0263187
\(327\) 10.0135 0.553750
\(328\) −14.5637 −0.804147
\(329\) −5.77548 −0.318413
\(330\) 0 0
\(331\) −0.885340 −0.0486627 −0.0243313 0.999704i \(-0.507746\pi\)
−0.0243313 + 0.999704i \(0.507746\pi\)
\(332\) 26.5319 1.45613
\(333\) 9.56912 0.524384
\(334\) 5.31117 0.290614
\(335\) 0 0
\(336\) 9.21973 0.502977
\(337\) 17.1565 0.934575 0.467287 0.884105i \(-0.345231\pi\)
0.467287 + 0.884105i \(0.345231\pi\)
\(338\) −5.58415 −0.303738
\(339\) −15.8739 −0.862150
\(340\) 0 0
\(341\) −5.49600 −0.297625
\(342\) −4.03216 −0.218034
\(343\) 19.3275 1.04359
\(344\) 3.08990 0.166596
\(345\) 0 0
\(346\) −5.68466 −0.305609
\(347\) 30.9101 1.65934 0.829671 0.558253i \(-0.188528\pi\)
0.829671 + 0.558253i \(0.188528\pi\)
\(348\) −7.59838 −0.407316
\(349\) 3.37170 0.180483 0.0902414 0.995920i \(-0.471236\pi\)
0.0902414 + 0.995920i \(0.471236\pi\)
\(350\) 0 0
\(351\) 29.0303 1.54952
\(352\) 8.32247 0.443589
\(353\) −23.7918 −1.26631 −0.633155 0.774025i \(-0.718240\pi\)
−0.633155 + 0.774025i \(0.718240\pi\)
\(354\) 2.38203 0.126604
\(355\) 0 0
\(356\) 0.754360 0.0399810
\(357\) 0 0
\(358\) −0.999743 −0.0528381
\(359\) 31.7129 1.67374 0.836871 0.547399i \(-0.184382\pi\)
0.836871 + 0.547399i \(0.184382\pi\)
\(360\) 0 0
\(361\) 31.8521 1.67643
\(362\) −4.78631 −0.251563
\(363\) 5.32541 0.279512
\(364\) 26.8950 1.40968
\(365\) 0 0
\(366\) −0.290098 −0.0151637
\(367\) 4.51687 0.235779 0.117889 0.993027i \(-0.462387\pi\)
0.117889 + 0.993027i \(0.462387\pi\)
\(368\) −2.98027 −0.155358
\(369\) 23.1462 1.20494
\(370\) 0 0
\(371\) 6.96417 0.361562
\(372\) 4.55187 0.236003
\(373\) −5.12748 −0.265491 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.71371 0.139949
\(377\) −21.0581 −1.08455
\(378\) 3.91589 0.201412
\(379\) −5.53013 −0.284064 −0.142032 0.989862i \(-0.545364\pi\)
−0.142032 + 0.989862i \(0.545364\pi\)
\(380\) 0 0
\(381\) −6.31816 −0.323689
\(382\) −8.29466 −0.424391
\(383\) −20.4344 −1.04415 −0.522075 0.852899i \(-0.674842\pi\)
−0.522075 + 0.852899i \(0.674842\pi\)
\(384\) −9.10925 −0.464854
\(385\) 0 0
\(386\) 4.45328 0.226666
\(387\) −4.91079 −0.249629
\(388\) 17.1030 0.868275
\(389\) 5.18629 0.262955 0.131478 0.991319i \(-0.458028\pi\)
0.131478 + 0.991319i \(0.458028\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.826343 −0.0417366
\(393\) 4.44278 0.224109
\(394\) −0.113557 −0.00572091
\(395\) 0 0
\(396\) −8.75005 −0.439707
\(397\) 6.17353 0.309841 0.154920 0.987927i \(-0.450488\pi\)
0.154920 + 0.987927i \(0.450488\pi\)
\(398\) −2.27171 −0.113871
\(399\) −18.9898 −0.950681
\(400\) 0 0
\(401\) −9.49644 −0.474229 −0.237115 0.971482i \(-0.576202\pi\)
−0.237115 + 0.971482i \(0.576202\pi\)
\(402\) −2.14427 −0.106947
\(403\) 12.6150 0.628400
\(404\) 29.1850 1.45201
\(405\) 0 0
\(406\) −2.84053 −0.140973
\(407\) 12.4860 0.618910
\(408\) 0 0
\(409\) 14.3886 0.711469 0.355734 0.934587i \(-0.384231\pi\)
0.355734 + 0.934587i \(0.384231\pi\)
\(410\) 0 0
\(411\) 7.70294 0.379958
\(412\) −28.2046 −1.38954
\(413\) −18.6774 −0.919055
\(414\) −0.486730 −0.0239215
\(415\) 0 0
\(416\) −19.1027 −0.936586
\(417\) −11.0273 −0.540011
\(418\) −5.26128 −0.257338
\(419\) −21.2233 −1.03683 −0.518413 0.855130i \(-0.673477\pi\)
−0.518413 + 0.855130i \(0.673477\pi\)
\(420\) 0 0
\(421\) −20.1672 −0.982887 −0.491444 0.870909i \(-0.663531\pi\)
−0.491444 + 0.870909i \(0.663531\pi\)
\(422\) 2.62241 0.127657
\(423\) −4.31290 −0.209701
\(424\) −3.27223 −0.158914
\(425\) 0 0
\(426\) 0.0770678 0.00373395
\(427\) 2.27464 0.110078
\(428\) −2.80769 −0.135715
\(429\) 14.5655 0.703227
\(430\) 0 0
\(431\) −19.9686 −0.961851 −0.480926 0.876761i \(-0.659699\pi\)
−0.480926 + 0.876761i \(0.659699\pi\)
\(432\) 17.9052 0.861466
\(433\) 18.2236 0.875770 0.437885 0.899031i \(-0.355728\pi\)
0.437885 + 0.899031i \(0.355728\pi\)
\(434\) 1.70164 0.0816815
\(435\) 0 0
\(436\) 18.0165 0.862832
\(437\) 6.13846 0.293642
\(438\) −2.06699 −0.0987648
\(439\) −14.7332 −0.703178 −0.351589 0.936155i \(-0.614358\pi\)
−0.351589 + 0.936155i \(0.614358\pi\)
\(440\) 0 0
\(441\) 1.31331 0.0625386
\(442\) 0 0
\(443\) 23.3335 1.10861 0.554305 0.832314i \(-0.312984\pi\)
0.554305 + 0.832314i \(0.312984\pi\)
\(444\) −10.3411 −0.490768
\(445\) 0 0
\(446\) 1.94983 0.0923272
\(447\) 6.38481 0.301991
\(448\) 14.8023 0.699345
\(449\) 1.71162 0.0807764 0.0403882 0.999184i \(-0.487141\pi\)
0.0403882 + 0.999184i \(0.487141\pi\)
\(450\) 0 0
\(451\) 30.2018 1.42215
\(452\) −28.5604 −1.34337
\(453\) 11.0539 0.519359
\(454\) 0.923344 0.0433347
\(455\) 0 0
\(456\) 8.92269 0.417843
\(457\) 13.2168 0.618258 0.309129 0.951020i \(-0.399963\pi\)
0.309129 + 0.951020i \(0.399963\pi\)
\(458\) 2.28052 0.106562
\(459\) 0 0
\(460\) 0 0
\(461\) −29.2906 −1.36420 −0.682099 0.731260i \(-0.738933\pi\)
−0.682099 + 0.731260i \(0.738933\pi\)
\(462\) 1.96473 0.0914077
\(463\) −9.80371 −0.455617 −0.227808 0.973706i \(-0.573156\pi\)
−0.227808 + 0.973706i \(0.573156\pi\)
\(464\) −12.9882 −0.602962
\(465\) 0 0
\(466\) 6.74205 0.312319
\(467\) −13.6819 −0.633125 −0.316562 0.948572i \(-0.602529\pi\)
−0.316562 + 0.948572i \(0.602529\pi\)
\(468\) 20.0841 0.928388
\(469\) 16.8131 0.776358
\(470\) 0 0
\(471\) 14.2253 0.655466
\(472\) 8.77589 0.403943
\(473\) −6.40773 −0.294628
\(474\) −4.70845 −0.216266
\(475\) 0 0
\(476\) 0 0
\(477\) 5.20057 0.238118
\(478\) 1.04378 0.0477414
\(479\) −11.0100 −0.503060 −0.251530 0.967850i \(-0.580934\pi\)
−0.251530 + 0.967850i \(0.580934\pi\)
\(480\) 0 0
\(481\) −28.6594 −1.30676
\(482\) 5.43827 0.247707
\(483\) −2.29230 −0.104303
\(484\) 9.58153 0.435524
\(485\) 0 0
\(486\) 4.72404 0.214287
\(487\) 10.0942 0.457413 0.228707 0.973495i \(-0.426550\pi\)
0.228707 + 0.973495i \(0.426550\pi\)
\(488\) −1.06878 −0.0483813
\(489\) 1.67124 0.0755760
\(490\) 0 0
\(491\) 17.0827 0.770933 0.385466 0.922722i \(-0.374041\pi\)
0.385466 + 0.922722i \(0.374041\pi\)
\(492\) −25.0136 −1.12770
\(493\) 0 0
\(494\) 12.0763 0.543338
\(495\) 0 0
\(496\) 7.78068 0.349363
\(497\) −0.604284 −0.0271059
\(498\) −4.44880 −0.199356
\(499\) −31.3595 −1.40384 −0.701921 0.712254i \(-0.747674\pi\)
−0.701921 + 0.712254i \(0.747674\pi\)
\(500\) 0 0
\(501\) 18.6791 0.834519
\(502\) −7.25490 −0.323802
\(503\) 8.67535 0.386815 0.193407 0.981119i \(-0.438046\pi\)
0.193407 + 0.981119i \(0.438046\pi\)
\(504\) 5.54745 0.247103
\(505\) 0 0
\(506\) −0.635099 −0.0282336
\(507\) −19.6391 −0.872203
\(508\) −11.3677 −0.504360
\(509\) 14.1196 0.625840 0.312920 0.949780i \(-0.398693\pi\)
0.312920 + 0.949780i \(0.398693\pi\)
\(510\) 0 0
\(511\) 16.2072 0.716963
\(512\) −19.9480 −0.881584
\(513\) −36.8794 −1.62826
\(514\) −4.46546 −0.196963
\(515\) 0 0
\(516\) 5.30698 0.233627
\(517\) −5.62760 −0.247501
\(518\) −3.86586 −0.169856
\(519\) −19.9926 −0.877577
\(520\) 0 0
\(521\) 17.6222 0.772044 0.386022 0.922490i \(-0.373849\pi\)
0.386022 + 0.922490i \(0.373849\pi\)
\(522\) −2.12120 −0.0928423
\(523\) 26.3853 1.15375 0.576875 0.816833i \(-0.304272\pi\)
0.576875 + 0.816833i \(0.304272\pi\)
\(524\) 7.99349 0.349197
\(525\) 0 0
\(526\) −7.39626 −0.322492
\(527\) 0 0
\(528\) 8.98366 0.390963
\(529\) −22.2590 −0.967783
\(530\) 0 0
\(531\) −13.9476 −0.605272
\(532\) −34.1667 −1.48131
\(533\) −69.3226 −3.00269
\(534\) −0.126489 −0.00547372
\(535\) 0 0
\(536\) −7.89992 −0.341225
\(537\) −3.51603 −0.151728
\(538\) 1.98953 0.0857746
\(539\) 1.71364 0.0738118
\(540\) 0 0
\(541\) 4.40821 0.189524 0.0947620 0.995500i \(-0.469791\pi\)
0.0947620 + 0.995500i \(0.469791\pi\)
\(542\) −7.90286 −0.339457
\(543\) −16.8331 −0.722379
\(544\) 0 0
\(545\) 0 0
\(546\) −4.50968 −0.192996
\(547\) 22.6638 0.969034 0.484517 0.874782i \(-0.338995\pi\)
0.484517 + 0.874782i \(0.338995\pi\)
\(548\) 13.8592 0.592035
\(549\) 1.69861 0.0724951
\(550\) 0 0
\(551\) 26.7517 1.13966
\(552\) 1.07708 0.0458434
\(553\) 36.9187 1.56994
\(554\) −2.88565 −0.122599
\(555\) 0 0
\(556\) −19.8405 −0.841423
\(557\) −11.4954 −0.487076 −0.243538 0.969891i \(-0.578308\pi\)
−0.243538 + 0.969891i \(0.578308\pi\)
\(558\) 1.27072 0.0537939
\(559\) 14.7078 0.622072
\(560\) 0 0
\(561\) 0 0
\(562\) −3.74614 −0.158021
\(563\) −13.5441 −0.570817 −0.285409 0.958406i \(-0.592129\pi\)
−0.285409 + 0.958406i \(0.592129\pi\)
\(564\) 4.66086 0.196258
\(565\) 0 0
\(566\) −5.08141 −0.213587
\(567\) −0.340234 −0.0142885
\(568\) 0.283933 0.0119136
\(569\) 15.8764 0.665574 0.332787 0.943002i \(-0.392011\pi\)
0.332787 + 0.943002i \(0.392011\pi\)
\(570\) 0 0
\(571\) 3.54043 0.148162 0.0740812 0.997252i \(-0.476398\pi\)
0.0740812 + 0.997252i \(0.476398\pi\)
\(572\) 26.2063 1.09574
\(573\) −29.1718 −1.21867
\(574\) −9.35092 −0.390300
\(575\) 0 0
\(576\) 11.0538 0.460575
\(577\) 18.5078 0.770492 0.385246 0.922814i \(-0.374117\pi\)
0.385246 + 0.922814i \(0.374117\pi\)
\(578\) 0 0
\(579\) 15.6619 0.650887
\(580\) 0 0
\(581\) 34.8828 1.44718
\(582\) −2.86779 −0.118874
\(583\) 6.78585 0.281041
\(584\) −7.61521 −0.315120
\(585\) 0 0
\(586\) −6.29941 −0.260226
\(587\) 13.7261 0.566535 0.283268 0.959041i \(-0.408582\pi\)
0.283268 + 0.959041i \(0.408582\pi\)
\(588\) −1.41926 −0.0585295
\(589\) −16.0258 −0.660333
\(590\) 0 0
\(591\) −0.399372 −0.0164280
\(592\) −17.6765 −0.726499
\(593\) −20.3238 −0.834598 −0.417299 0.908769i \(-0.637023\pi\)
−0.417299 + 0.908769i \(0.637023\pi\)
\(594\) 3.81563 0.156557
\(595\) 0 0
\(596\) 11.4876 0.470550
\(597\) −7.98948 −0.326988
\(598\) 1.45775 0.0596119
\(599\) −26.7277 −1.09206 −0.546032 0.837764i \(-0.683862\pi\)
−0.546032 + 0.837764i \(0.683862\pi\)
\(600\) 0 0
\(601\) 27.6591 1.12824 0.564119 0.825693i \(-0.309216\pi\)
0.564119 + 0.825693i \(0.309216\pi\)
\(602\) 1.98393 0.0808588
\(603\) 12.5554 0.511295
\(604\) 19.8883 0.809245
\(605\) 0 0
\(606\) −4.89367 −0.198792
\(607\) 23.6186 0.958649 0.479325 0.877638i \(-0.340882\pi\)
0.479325 + 0.877638i \(0.340882\pi\)
\(608\) 24.2676 0.984180
\(609\) −9.98997 −0.404814
\(610\) 0 0
\(611\) 12.9171 0.522570
\(612\) 0 0
\(613\) −12.0396 −0.486275 −0.243137 0.969992i \(-0.578177\pi\)
−0.243137 + 0.969992i \(0.578177\pi\)
\(614\) −9.03639 −0.364679
\(615\) 0 0
\(616\) 7.23847 0.291646
\(617\) 15.5478 0.625931 0.312966 0.949764i \(-0.398678\pi\)
0.312966 + 0.949764i \(0.398678\pi\)
\(618\) 4.72927 0.190239
\(619\) −33.4929 −1.34619 −0.673097 0.739554i \(-0.735036\pi\)
−0.673097 + 0.739554i \(0.735036\pi\)
\(620\) 0 0
\(621\) −4.45178 −0.178644
\(622\) 0.0634518 0.00254419
\(623\) 0.991795 0.0397354
\(624\) −20.6203 −0.825473
\(625\) 0 0
\(626\) 9.78196 0.390966
\(627\) −18.5036 −0.738963
\(628\) 25.5942 1.02132
\(629\) 0 0
\(630\) 0 0
\(631\) −0.544614 −0.0216807 −0.0108404 0.999941i \(-0.503451\pi\)
−0.0108404 + 0.999941i \(0.503451\pi\)
\(632\) −17.3469 −0.690021
\(633\) 9.22284 0.366575
\(634\) 10.0881 0.400651
\(635\) 0 0
\(636\) −5.62014 −0.222853
\(637\) −3.93335 −0.155845
\(638\) −2.76780 −0.109578
\(639\) −0.451256 −0.0178514
\(640\) 0 0
\(641\) 12.4241 0.490723 0.245361 0.969432i \(-0.421093\pi\)
0.245361 + 0.969432i \(0.421093\pi\)
\(642\) 0.470786 0.0185805
\(643\) 38.3641 1.51293 0.756467 0.654032i \(-0.226924\pi\)
0.756467 + 0.654032i \(0.226924\pi\)
\(644\) −4.12433 −0.162521
\(645\) 0 0
\(646\) 0 0
\(647\) −19.6602 −0.772923 −0.386462 0.922305i \(-0.626303\pi\)
−0.386462 + 0.922305i \(0.626303\pi\)
\(648\) 0.159865 0.00628008
\(649\) −18.1992 −0.714379
\(650\) 0 0
\(651\) 5.98457 0.234554
\(652\) 3.00691 0.117760
\(653\) 31.1272 1.21810 0.609051 0.793131i \(-0.291551\pi\)
0.609051 + 0.793131i \(0.291551\pi\)
\(654\) −3.02095 −0.118129
\(655\) 0 0
\(656\) −42.7566 −1.66937
\(657\) 12.1029 0.472179
\(658\) 1.74239 0.0679253
\(659\) −4.15956 −0.162033 −0.0810167 0.996713i \(-0.525817\pi\)
−0.0810167 + 0.996713i \(0.525817\pi\)
\(660\) 0 0
\(661\) −6.86044 −0.266840 −0.133420 0.991060i \(-0.542596\pi\)
−0.133420 + 0.991060i \(0.542596\pi\)
\(662\) 0.267095 0.0103810
\(663\) 0 0
\(664\) −16.3903 −0.636066
\(665\) 0 0
\(666\) −2.88688 −0.111864
\(667\) 3.22925 0.125037
\(668\) 33.6075 1.30031
\(669\) 6.85744 0.265124
\(670\) 0 0
\(671\) 2.21640 0.0855632
\(672\) −9.06230 −0.349586
\(673\) 17.2806 0.666116 0.333058 0.942906i \(-0.391919\pi\)
0.333058 + 0.942906i \(0.391919\pi\)
\(674\) −5.17589 −0.199368
\(675\) 0 0
\(676\) −35.3348 −1.35903
\(677\) 8.13384 0.312609 0.156304 0.987709i \(-0.450042\pi\)
0.156304 + 0.987709i \(0.450042\pi\)
\(678\) 4.78894 0.183918
\(679\) 22.4862 0.862942
\(680\) 0 0
\(681\) 3.24734 0.124438
\(682\) 1.65807 0.0634908
\(683\) 29.1370 1.11489 0.557447 0.830212i \(-0.311781\pi\)
0.557447 + 0.830212i \(0.311781\pi\)
\(684\) −25.5143 −0.975566
\(685\) 0 0
\(686\) −5.83086 −0.222623
\(687\) 8.02044 0.305999
\(688\) 9.07142 0.345845
\(689\) −15.5756 −0.593385
\(690\) 0 0
\(691\) −37.3851 −1.42219 −0.711097 0.703093i \(-0.751802\pi\)
−0.711097 + 0.703093i \(0.751802\pi\)
\(692\) −35.9708 −1.36741
\(693\) −11.5041 −0.437006
\(694\) −9.32517 −0.353979
\(695\) 0 0
\(696\) 4.69395 0.177924
\(697\) 0 0
\(698\) −1.01720 −0.0385015
\(699\) 23.7114 0.896846
\(700\) 0 0
\(701\) 14.6423 0.553031 0.276515 0.961009i \(-0.410820\pi\)
0.276515 + 0.961009i \(0.410820\pi\)
\(702\) −8.75805 −0.330551
\(703\) 36.4082 1.37316
\(704\) 14.4233 0.543599
\(705\) 0 0
\(706\) 7.17767 0.270135
\(707\) 38.3710 1.44309
\(708\) 15.0728 0.566471
\(709\) −28.3593 −1.06506 −0.532528 0.846413i \(-0.678758\pi\)
−0.532528 + 0.846413i \(0.678758\pi\)
\(710\) 0 0
\(711\) 27.5694 1.03393
\(712\) −0.466011 −0.0174645
\(713\) −1.93451 −0.0724480
\(714\) 0 0
\(715\) 0 0
\(716\) −6.32608 −0.236417
\(717\) 3.67091 0.137093
\(718\) −9.56736 −0.357051
\(719\) 12.6354 0.471222 0.235611 0.971848i \(-0.424291\pi\)
0.235611 + 0.971848i \(0.424291\pi\)
\(720\) 0 0
\(721\) −37.0819 −1.38100
\(722\) −9.60936 −0.357624
\(723\) 19.1261 0.711306
\(724\) −30.2863 −1.12558
\(725\) 0 0
\(726\) −1.60661 −0.0596268
\(727\) 15.0242 0.557218 0.278609 0.960405i \(-0.410127\pi\)
0.278609 + 0.960405i \(0.410127\pi\)
\(728\) −16.6145 −0.615776
\(729\) 16.2075 0.600277
\(730\) 0 0
\(731\) 0 0
\(732\) −1.83566 −0.0678478
\(733\) 1.76679 0.0652578 0.0326289 0.999468i \(-0.489612\pi\)
0.0326289 + 0.999468i \(0.489612\pi\)
\(734\) −1.36268 −0.0502974
\(735\) 0 0
\(736\) 2.92939 0.107979
\(737\) 16.3826 0.603461
\(738\) −6.98290 −0.257044
\(739\) 19.7149 0.725225 0.362613 0.931940i \(-0.381885\pi\)
0.362613 + 0.931940i \(0.381885\pi\)
\(740\) 0 0
\(741\) 42.4715 1.56023
\(742\) −2.10100 −0.0771301
\(743\) 28.3615 1.04048 0.520242 0.854019i \(-0.325842\pi\)
0.520242 + 0.854019i \(0.325842\pi\)
\(744\) −2.81195 −0.103091
\(745\) 0 0
\(746\) 1.54689 0.0566357
\(747\) 26.0491 0.953087
\(748\) 0 0
\(749\) −3.69141 −0.134881
\(750\) 0 0
\(751\) 17.9518 0.655072 0.327536 0.944839i \(-0.393782\pi\)
0.327536 + 0.944839i \(0.393782\pi\)
\(752\) 7.96698 0.290526
\(753\) −25.5150 −0.929819
\(754\) 6.35296 0.231361
\(755\) 0 0
\(756\) 24.7786 0.901190
\(757\) 43.9323 1.59675 0.798374 0.602162i \(-0.205694\pi\)
0.798374 + 0.602162i \(0.205694\pi\)
\(758\) 1.66837 0.0605978
\(759\) −2.23361 −0.0810748
\(760\) 0 0
\(761\) 13.2781 0.481331 0.240666 0.970608i \(-0.422634\pi\)
0.240666 + 0.970608i \(0.422634\pi\)
\(762\) 1.90611 0.0690510
\(763\) 23.6871 0.857532
\(764\) −52.4861 −1.89888
\(765\) 0 0
\(766\) 6.16480 0.222743
\(767\) 41.7728 1.50833
\(768\) −9.76700 −0.352436
\(769\) 24.8906 0.897578 0.448789 0.893638i \(-0.351856\pi\)
0.448789 + 0.893638i \(0.351856\pi\)
\(770\) 0 0
\(771\) −15.7048 −0.565593
\(772\) 28.1790 1.01419
\(773\) −53.7048 −1.93163 −0.965813 0.259238i \(-0.916529\pi\)
−0.965813 + 0.259238i \(0.916529\pi\)
\(774\) 1.48152 0.0532521
\(775\) 0 0
\(776\) −10.5655 −0.379280
\(777\) −13.5960 −0.487754
\(778\) −1.56463 −0.0560949
\(779\) 88.0657 3.15528
\(780\) 0 0
\(781\) −0.588811 −0.0210693
\(782\) 0 0
\(783\) −19.4011 −0.693339
\(784\) −2.42600 −0.0866429
\(785\) 0 0
\(786\) −1.34033 −0.0478079
\(787\) 51.4777 1.83498 0.917491 0.397757i \(-0.130211\pi\)
0.917491 + 0.397757i \(0.130211\pi\)
\(788\) −0.718554 −0.0255974
\(789\) −26.0122 −0.926058
\(790\) 0 0
\(791\) −37.5498 −1.33512
\(792\) 5.40541 0.192073
\(793\) −5.08733 −0.180656
\(794\) −1.86247 −0.0660967
\(795\) 0 0
\(796\) −14.3747 −0.509499
\(797\) 18.9183 0.670119 0.335059 0.942197i \(-0.391244\pi\)
0.335059 + 0.942197i \(0.391244\pi\)
\(798\) 5.72898 0.202804
\(799\) 0 0
\(800\) 0 0
\(801\) 0.740634 0.0261690
\(802\) 2.86495 0.101165
\(803\) 15.7922 0.557294
\(804\) −13.5683 −0.478518
\(805\) 0 0
\(806\) −3.80579 −0.134053
\(807\) 6.99705 0.246308
\(808\) −18.0293 −0.634267
\(809\) 30.2347 1.06300 0.531498 0.847059i \(-0.321629\pi\)
0.531498 + 0.847059i \(0.321629\pi\)
\(810\) 0 0
\(811\) −17.1714 −0.602969 −0.301484 0.953471i \(-0.597482\pi\)
−0.301484 + 0.953471i \(0.597482\pi\)
\(812\) −17.9740 −0.630765
\(813\) −27.7939 −0.974773
\(814\) −3.76688 −0.132029
\(815\) 0 0
\(816\) 0 0
\(817\) −18.6844 −0.653683
\(818\) −4.34084 −0.151774
\(819\) 26.4056 0.922686
\(820\) 0 0
\(821\) 43.7843 1.52808 0.764041 0.645168i \(-0.223213\pi\)
0.764041 + 0.645168i \(0.223213\pi\)
\(822\) −2.32388 −0.0810545
\(823\) 25.2696 0.880842 0.440421 0.897791i \(-0.354829\pi\)
0.440421 + 0.897791i \(0.354829\pi\)
\(824\) 17.4236 0.606979
\(825\) 0 0
\(826\) 5.63472 0.196057
\(827\) −22.0678 −0.767371 −0.383686 0.923464i \(-0.625345\pi\)
−0.383686 + 0.923464i \(0.625345\pi\)
\(828\) −3.07989 −0.107033
\(829\) −20.9555 −0.727816 −0.363908 0.931435i \(-0.618558\pi\)
−0.363908 + 0.931435i \(0.618558\pi\)
\(830\) 0 0
\(831\) −10.1486 −0.352052
\(832\) −33.1060 −1.14774
\(833\) 0 0
\(834\) 3.32680 0.115198
\(835\) 0 0
\(836\) −33.2918 −1.15142
\(837\) 11.6224 0.401728
\(838\) 6.40279 0.221181
\(839\) 20.2251 0.698247 0.349123 0.937077i \(-0.386479\pi\)
0.349123 + 0.937077i \(0.386479\pi\)
\(840\) 0 0
\(841\) −14.9267 −0.514715
\(842\) 6.08417 0.209674
\(843\) −13.1749 −0.453769
\(844\) 16.5938 0.571182
\(845\) 0 0
\(846\) 1.30115 0.0447343
\(847\) 12.5973 0.432849
\(848\) −9.60672 −0.329896
\(849\) −17.8710 −0.613331
\(850\) 0 0
\(851\) 4.39490 0.150655
\(852\) 0.487662 0.0167070
\(853\) −11.4942 −0.393553 −0.196776 0.980448i \(-0.563047\pi\)
−0.196776 + 0.980448i \(0.563047\pi\)
\(854\) −0.686230 −0.0234823
\(855\) 0 0
\(856\) 1.73447 0.0592830
\(857\) −28.0863 −0.959411 −0.479705 0.877430i \(-0.659256\pi\)
−0.479705 + 0.877430i \(0.659256\pi\)
\(858\) −4.39421 −0.150016
\(859\) −3.15015 −0.107482 −0.0537409 0.998555i \(-0.517115\pi\)
−0.0537409 + 0.998555i \(0.517115\pi\)
\(860\) 0 0
\(861\) −32.8866 −1.12077
\(862\) 6.02425 0.205187
\(863\) 34.5368 1.17565 0.587823 0.808989i \(-0.299985\pi\)
0.587823 + 0.808989i \(0.299985\pi\)
\(864\) −17.5995 −0.598747
\(865\) 0 0
\(866\) −5.49781 −0.186823
\(867\) 0 0
\(868\) 10.7675 0.365473
\(869\) 35.9734 1.22031
\(870\) 0 0
\(871\) −37.6032 −1.27414
\(872\) −11.1298 −0.376902
\(873\) 16.7918 0.568317
\(874\) −1.85189 −0.0626412
\(875\) 0 0
\(876\) −13.0793 −0.441909
\(877\) 15.8248 0.534367 0.267184 0.963646i \(-0.413907\pi\)
0.267184 + 0.963646i \(0.413907\pi\)
\(878\) 4.44481 0.150005
\(879\) −22.1546 −0.747257
\(880\) 0 0
\(881\) −31.5651 −1.06346 −0.531728 0.846915i \(-0.678457\pi\)
−0.531728 + 0.846915i \(0.678457\pi\)
\(882\) −0.396208 −0.0133410
\(883\) −20.2779 −0.682406 −0.341203 0.939990i \(-0.610834\pi\)
−0.341203 + 0.939990i \(0.610834\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −7.03942 −0.236494
\(887\) −48.8392 −1.63986 −0.819930 0.572465i \(-0.805987\pi\)
−0.819930 + 0.572465i \(0.805987\pi\)
\(888\) 6.38831 0.214378
\(889\) −14.9457 −0.501262
\(890\) 0 0
\(891\) −0.331523 −0.0111064
\(892\) 12.3380 0.413106
\(893\) −16.4096 −0.549125
\(894\) −1.92621 −0.0644222
\(895\) 0 0
\(896\) −21.5480 −0.719869
\(897\) 5.12682 0.171180
\(898\) −0.516374 −0.0172316
\(899\) −8.43070 −0.281180
\(900\) 0 0
\(901\) 0 0
\(902\) −9.11148 −0.303379
\(903\) 6.97735 0.232192
\(904\) 17.6434 0.586810
\(905\) 0 0
\(906\) −3.33483 −0.110792
\(907\) 41.7064 1.38484 0.692419 0.721495i \(-0.256545\pi\)
0.692419 + 0.721495i \(0.256545\pi\)
\(908\) 5.84265 0.193895
\(909\) 28.6540 0.950393
\(910\) 0 0
\(911\) 6.40146 0.212090 0.106045 0.994361i \(-0.466181\pi\)
0.106045 + 0.994361i \(0.466181\pi\)
\(912\) 26.1955 0.867420
\(913\) 33.9896 1.12489
\(914\) −3.98735 −0.131890
\(915\) 0 0
\(916\) 14.4305 0.476796
\(917\) 10.5094 0.347052
\(918\) 0 0
\(919\) −23.6812 −0.781170 −0.390585 0.920567i \(-0.627727\pi\)
−0.390585 + 0.920567i \(0.627727\pi\)
\(920\) 0 0
\(921\) −31.7804 −1.04720
\(922\) 8.83658 0.291017
\(923\) 1.35151 0.0444854
\(924\) 12.4323 0.408991
\(925\) 0 0
\(926\) 2.95765 0.0971944
\(927\) −27.6914 −0.909503
\(928\) 12.7664 0.419078
\(929\) −54.8951 −1.80105 −0.900524 0.434805i \(-0.856817\pi\)
−0.900524 + 0.434805i \(0.856817\pi\)
\(930\) 0 0
\(931\) 4.99683 0.163764
\(932\) 42.6617 1.39743
\(933\) 0.223156 0.00730580
\(934\) 4.12766 0.135061
\(935\) 0 0
\(936\) −12.4071 −0.405539
\(937\) −6.77360 −0.221284 −0.110642 0.993860i \(-0.535291\pi\)
−0.110642 + 0.993860i \(0.535291\pi\)
\(938\) −5.07230 −0.165616
\(939\) 34.4025 1.12268
\(940\) 0 0
\(941\) −25.2189 −0.822111 −0.411056 0.911610i \(-0.634840\pi\)
−0.411056 + 0.911610i \(0.634840\pi\)
\(942\) −4.29158 −0.139827
\(943\) 10.6306 0.346179
\(944\) 25.7645 0.838564
\(945\) 0 0
\(946\) 1.93313 0.0628514
\(947\) −24.5012 −0.796183 −0.398091 0.917346i \(-0.630327\pi\)
−0.398091 + 0.917346i \(0.630327\pi\)
\(948\) −29.7937 −0.967654
\(949\) −36.2480 −1.17666
\(950\) 0 0
\(951\) 35.4793 1.15050
\(952\) 0 0
\(953\) −30.3936 −0.984545 −0.492272 0.870441i \(-0.663834\pi\)
−0.492272 + 0.870441i \(0.663834\pi\)
\(954\) −1.56894 −0.0507964
\(955\) 0 0
\(956\) 6.60473 0.213612
\(957\) −9.73417 −0.314661
\(958\) 3.32157 0.107315
\(959\) 18.2214 0.588399
\(960\) 0 0
\(961\) −25.9495 −0.837081
\(962\) 8.64616 0.278763
\(963\) −2.75660 −0.0888302
\(964\) 34.4118 1.10833
\(965\) 0 0
\(966\) 0.691557 0.0222505
\(967\) −43.9516 −1.41339 −0.706694 0.707520i \(-0.749814\pi\)
−0.706694 + 0.707520i \(0.749814\pi\)
\(968\) −5.91906 −0.190246
\(969\) 0 0
\(970\) 0 0
\(971\) 42.3938 1.36048 0.680241 0.732989i \(-0.261875\pi\)
0.680241 + 0.732989i \(0.261875\pi\)
\(972\) 29.8924 0.958798
\(973\) −26.0853 −0.836255
\(974\) −3.04530 −0.0975776
\(975\) 0 0
\(976\) −3.13775 −0.100437
\(977\) 23.7293 0.759168 0.379584 0.925157i \(-0.376067\pi\)
0.379584 + 0.925157i \(0.376067\pi\)
\(978\) −0.504191 −0.0161222
\(979\) 0.966400 0.0308863
\(980\) 0 0
\(981\) 17.6886 0.564754
\(982\) −5.15363 −0.164459
\(983\) −28.0626 −0.895057 −0.447529 0.894270i \(-0.647696\pi\)
−0.447529 + 0.894270i \(0.647696\pi\)
\(984\) 15.4523 0.492602
\(985\) 0 0
\(986\) 0 0
\(987\) 6.12786 0.195052
\(988\) 76.4152 2.43109
\(989\) −2.25543 −0.0717184
\(990\) 0 0
\(991\) −44.5466 −1.41507 −0.707535 0.706679i \(-0.750193\pi\)
−0.707535 + 0.706679i \(0.750193\pi\)
\(992\) −7.64783 −0.242819
\(993\) 0.939358 0.0298096
\(994\) 0.182305 0.00578235
\(995\) 0 0
\(996\) −28.1507 −0.891989
\(997\) −20.5479 −0.650757 −0.325379 0.945584i \(-0.605492\pi\)
−0.325379 + 0.945584i \(0.605492\pi\)
\(998\) 9.46074 0.299474
\(999\) −26.4042 −0.835392
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bs.1.6 12
5.4 even 2 1445.2.a.p.1.7 12
17.3 odd 16 425.2.m.b.26.3 24
17.6 odd 16 425.2.m.b.376.3 24
17.16 even 2 7225.2.a.bq.1.6 12
85.3 even 16 425.2.n.f.349.4 24
85.4 even 4 1445.2.d.j.866.11 24
85.23 even 16 425.2.n.c.274.3 24
85.37 even 16 425.2.n.c.349.3 24
85.54 odd 16 85.2.l.a.26.4 24
85.57 even 16 425.2.n.f.274.4 24
85.64 even 4 1445.2.d.j.866.12 24
85.74 odd 16 85.2.l.a.36.4 yes 24
85.84 even 2 1445.2.a.q.1.7 12
255.74 even 16 765.2.be.b.631.3 24
255.224 even 16 765.2.be.b.451.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.4 24 85.54 odd 16
85.2.l.a.36.4 yes 24 85.74 odd 16
425.2.m.b.26.3 24 17.3 odd 16
425.2.m.b.376.3 24 17.6 odd 16
425.2.n.c.274.3 24 85.23 even 16
425.2.n.c.349.3 24 85.37 even 16
425.2.n.f.274.4 24 85.57 even 16
425.2.n.f.349.4 24 85.3 even 16
765.2.be.b.451.3 24 255.224 even 16
765.2.be.b.631.3 24 255.74 even 16
1445.2.a.p.1.7 12 5.4 even 2
1445.2.a.q.1.7 12 85.84 even 2
1445.2.d.j.866.11 24 85.4 even 4
1445.2.d.j.866.12 24 85.64 even 4
7225.2.a.bq.1.6 12 17.16 even 2
7225.2.a.bs.1.6 12 1.1 even 1 trivial