Properties

Label 7225.2.a.bs.1.4
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,8,12,0,-8,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.747914\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.747914 q^{2} +3.07503 q^{3} -1.44062 q^{4} -2.29986 q^{6} +3.23262 q^{7} +2.57329 q^{8} +6.45581 q^{9} +2.73509 q^{11} -4.42996 q^{12} -4.31833 q^{13} -2.41772 q^{14} +0.956646 q^{16} -4.82839 q^{18} +1.26892 q^{19} +9.94040 q^{21} -2.04561 q^{22} -0.492367 q^{23} +7.91295 q^{24} +3.22974 q^{26} +10.6267 q^{27} -4.65699 q^{28} -0.444360 q^{29} -5.52836 q^{31} -5.86207 q^{32} +8.41047 q^{33} -9.30039 q^{36} +10.6999 q^{37} -0.949042 q^{38} -13.2790 q^{39} +2.17048 q^{41} -7.43457 q^{42} +2.16182 q^{43} -3.94023 q^{44} +0.368248 q^{46} +8.39597 q^{47} +2.94172 q^{48} +3.44983 q^{49} +6.22109 q^{52} +1.81698 q^{53} -7.94786 q^{54} +8.31847 q^{56} +3.90196 q^{57} +0.332343 q^{58} -3.01987 q^{59} +12.2233 q^{61} +4.13474 q^{62} +20.8692 q^{63} +2.47104 q^{64} -6.29031 q^{66} -4.21389 q^{67} -1.51404 q^{69} +3.89165 q^{71} +16.6127 q^{72} -6.47062 q^{73} -8.00263 q^{74} -1.82803 q^{76} +8.84149 q^{77} +9.93155 q^{78} -7.22150 q^{79} +13.3100 q^{81} -1.62333 q^{82} -0.227499 q^{83} -14.3204 q^{84} -1.61686 q^{86} -1.36642 q^{87} +7.03818 q^{88} -13.3408 q^{89} -13.9595 q^{91} +0.709315 q^{92} -16.9999 q^{93} -6.27946 q^{94} -18.0260 q^{96} +14.8075 q^{97} -2.58018 q^{98} +17.6572 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 8 q^{3} + 12 q^{4} - 8 q^{6} + 16 q^{7} + 12 q^{8} + 12 q^{9} - 16 q^{11} + 16 q^{12} + 8 q^{13} + 16 q^{14} + 12 q^{16} - 4 q^{18} + 16 q^{21} + 16 q^{22} + 16 q^{23} + 16 q^{26} + 32 q^{27}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.747914 −0.528855 −0.264428 0.964406i \(-0.585183\pi\)
−0.264428 + 0.964406i \(0.585183\pi\)
\(3\) 3.07503 1.77537 0.887684 0.460452i \(-0.152313\pi\)
0.887684 + 0.460452i \(0.152313\pi\)
\(4\) −1.44062 −0.720312
\(5\) 0 0
\(6\) −2.29986 −0.938913
\(7\) 3.23262 1.22182 0.610908 0.791702i \(-0.290805\pi\)
0.610908 + 0.791702i \(0.290805\pi\)
\(8\) 2.57329 0.909796
\(9\) 6.45581 2.15194
\(10\) 0 0
\(11\) 2.73509 0.824660 0.412330 0.911035i \(-0.364715\pi\)
0.412330 + 0.911035i \(0.364715\pi\)
\(12\) −4.42996 −1.27882
\(13\) −4.31833 −1.19769 −0.598845 0.800865i \(-0.704373\pi\)
−0.598845 + 0.800865i \(0.704373\pi\)
\(14\) −2.41772 −0.646164
\(15\) 0 0
\(16\) 0.956646 0.239162
\(17\) 0 0
\(18\) −4.82839 −1.13806
\(19\) 1.26892 0.291110 0.145555 0.989350i \(-0.453503\pi\)
0.145555 + 0.989350i \(0.453503\pi\)
\(20\) 0 0
\(21\) 9.94040 2.16917
\(22\) −2.04561 −0.436126
\(23\) −0.492367 −0.102666 −0.0513328 0.998682i \(-0.516347\pi\)
−0.0513328 + 0.998682i \(0.516347\pi\)
\(24\) 7.91295 1.61522
\(25\) 0 0
\(26\) 3.22974 0.633404
\(27\) 10.6267 2.04511
\(28\) −4.65699 −0.880088
\(29\) −0.444360 −0.0825156 −0.0412578 0.999149i \(-0.513137\pi\)
−0.0412578 + 0.999149i \(0.513137\pi\)
\(30\) 0 0
\(31\) −5.52836 −0.992923 −0.496462 0.868059i \(-0.665368\pi\)
−0.496462 + 0.868059i \(0.665368\pi\)
\(32\) −5.86207 −1.03628
\(33\) 8.41047 1.46408
\(34\) 0 0
\(35\) 0 0
\(36\) −9.30039 −1.55006
\(37\) 10.6999 1.75906 0.879529 0.475845i \(-0.157858\pi\)
0.879529 + 0.475845i \(0.157858\pi\)
\(38\) −0.949042 −0.153955
\(39\) −13.2790 −2.12634
\(40\) 0 0
\(41\) 2.17048 0.338972 0.169486 0.985533i \(-0.445789\pi\)
0.169486 + 0.985533i \(0.445789\pi\)
\(42\) −7.43457 −1.14718
\(43\) 2.16182 0.329675 0.164837 0.986321i \(-0.447290\pi\)
0.164837 + 0.986321i \(0.447290\pi\)
\(44\) −3.94023 −0.594012
\(45\) 0 0
\(46\) 0.368248 0.0542952
\(47\) 8.39597 1.22468 0.612339 0.790595i \(-0.290229\pi\)
0.612339 + 0.790595i \(0.290229\pi\)
\(48\) 2.94172 0.424600
\(49\) 3.44983 0.492833
\(50\) 0 0
\(51\) 0 0
\(52\) 6.22109 0.862710
\(53\) 1.81698 0.249581 0.124791 0.992183i \(-0.460174\pi\)
0.124791 + 0.992183i \(0.460174\pi\)
\(54\) −7.94786 −1.08157
\(55\) 0 0
\(56\) 8.31847 1.11160
\(57\) 3.90196 0.516827
\(58\) 0.332343 0.0436388
\(59\) −3.01987 −0.393153 −0.196577 0.980488i \(-0.562982\pi\)
−0.196577 + 0.980488i \(0.562982\pi\)
\(60\) 0 0
\(61\) 12.2233 1.56503 0.782514 0.622633i \(-0.213937\pi\)
0.782514 + 0.622633i \(0.213937\pi\)
\(62\) 4.13474 0.525113
\(63\) 20.8692 2.62927
\(64\) 2.47104 0.308880
\(65\) 0 0
\(66\) −6.29031 −0.774284
\(67\) −4.21389 −0.514808 −0.257404 0.966304i \(-0.582867\pi\)
−0.257404 + 0.966304i \(0.582867\pi\)
\(68\) 0 0
\(69\) −1.51404 −0.182269
\(70\) 0 0
\(71\) 3.89165 0.461854 0.230927 0.972971i \(-0.425824\pi\)
0.230927 + 0.972971i \(0.425824\pi\)
\(72\) 16.6127 1.95782
\(73\) −6.47062 −0.757329 −0.378664 0.925534i \(-0.623617\pi\)
−0.378664 + 0.925534i \(0.623617\pi\)
\(74\) −8.00263 −0.930287
\(75\) 0 0
\(76\) −1.82803 −0.209690
\(77\) 8.84149 1.00758
\(78\) 9.93155 1.12453
\(79\) −7.22150 −0.812482 −0.406241 0.913766i \(-0.633161\pi\)
−0.406241 + 0.913766i \(0.633161\pi\)
\(80\) 0 0
\(81\) 13.3100 1.47889
\(82\) −1.62333 −0.179267
\(83\) −0.227499 −0.0249713 −0.0124856 0.999922i \(-0.503974\pi\)
−0.0124856 + 0.999922i \(0.503974\pi\)
\(84\) −14.3204 −1.56248
\(85\) 0 0
\(86\) −1.61686 −0.174350
\(87\) −1.36642 −0.146496
\(88\) 7.03818 0.750272
\(89\) −13.3408 −1.41413 −0.707064 0.707150i \(-0.749981\pi\)
−0.707064 + 0.707150i \(0.749981\pi\)
\(90\) 0 0
\(91\) −13.9595 −1.46336
\(92\) 0.709315 0.0739512
\(93\) −16.9999 −1.76281
\(94\) −6.27946 −0.647677
\(95\) 0 0
\(96\) −18.0260 −1.83978
\(97\) 14.8075 1.50347 0.751734 0.659466i \(-0.229218\pi\)
0.751734 + 0.659466i \(0.229218\pi\)
\(98\) −2.58018 −0.260637
\(99\) 17.6572 1.77461
\(100\) 0 0
\(101\) 0.284213 0.0282803 0.0141401 0.999900i \(-0.495499\pi\)
0.0141401 + 0.999900i \(0.495499\pi\)
\(102\) 0 0
\(103\) 14.0842 1.38775 0.693877 0.720093i \(-0.255901\pi\)
0.693877 + 0.720093i \(0.255901\pi\)
\(104\) −11.1123 −1.08965
\(105\) 0 0
\(106\) −1.35894 −0.131992
\(107\) 18.7099 1.80875 0.904375 0.426738i \(-0.140337\pi\)
0.904375 + 0.426738i \(0.140337\pi\)
\(108\) −15.3091 −1.47312
\(109\) 3.53078 0.338187 0.169094 0.985600i \(-0.445916\pi\)
0.169094 + 0.985600i \(0.445916\pi\)
\(110\) 0 0
\(111\) 32.9026 3.12298
\(112\) 3.09247 0.292211
\(113\) −2.84155 −0.267310 −0.133655 0.991028i \(-0.542671\pi\)
−0.133655 + 0.991028i \(0.542671\pi\)
\(114\) −2.91833 −0.273327
\(115\) 0 0
\(116\) 0.640156 0.0594370
\(117\) −27.8783 −2.57735
\(118\) 2.25860 0.207921
\(119\) 0 0
\(120\) 0 0
\(121\) −3.51930 −0.319937
\(122\) −9.14195 −0.827673
\(123\) 6.67430 0.601801
\(124\) 7.96429 0.715215
\(125\) 0 0
\(126\) −15.6083 −1.39050
\(127\) −5.46515 −0.484954 −0.242477 0.970157i \(-0.577960\pi\)
−0.242477 + 0.970157i \(0.577960\pi\)
\(128\) 9.87602 0.872925
\(129\) 6.64767 0.585295
\(130\) 0 0
\(131\) 9.97951 0.871914 0.435957 0.899968i \(-0.356410\pi\)
0.435957 + 0.899968i \(0.356410\pi\)
\(132\) −12.1163 −1.05459
\(133\) 4.10193 0.355682
\(134\) 3.15163 0.272259
\(135\) 0 0
\(136\) 0 0
\(137\) 3.07772 0.262947 0.131474 0.991320i \(-0.458029\pi\)
0.131474 + 0.991320i \(0.458029\pi\)
\(138\) 1.13237 0.0963941
\(139\) 6.70991 0.569127 0.284564 0.958657i \(-0.408151\pi\)
0.284564 + 0.958657i \(0.408151\pi\)
\(140\) 0 0
\(141\) 25.8178 2.17425
\(142\) −2.91062 −0.244254
\(143\) −11.8110 −0.987686
\(144\) 6.17592 0.514660
\(145\) 0 0
\(146\) 4.83947 0.400517
\(147\) 10.6083 0.874960
\(148\) −15.4146 −1.26707
\(149\) −22.9914 −1.88353 −0.941764 0.336276i \(-0.890833\pi\)
−0.941764 + 0.336276i \(0.890833\pi\)
\(150\) 0 0
\(151\) 0.195743 0.0159294 0.00796468 0.999968i \(-0.497465\pi\)
0.00796468 + 0.999968i \(0.497465\pi\)
\(152\) 3.26530 0.264850
\(153\) 0 0
\(154\) −6.61268 −0.532865
\(155\) 0 0
\(156\) 19.1300 1.53163
\(157\) −11.8582 −0.946391 −0.473196 0.880957i \(-0.656900\pi\)
−0.473196 + 0.880957i \(0.656900\pi\)
\(158\) 5.40106 0.429685
\(159\) 5.58726 0.443099
\(160\) 0 0
\(161\) −1.59163 −0.125438
\(162\) −9.95474 −0.782118
\(163\) 5.34472 0.418631 0.209315 0.977848i \(-0.432877\pi\)
0.209315 + 0.977848i \(0.432877\pi\)
\(164\) −3.12685 −0.244166
\(165\) 0 0
\(166\) 0.170150 0.0132062
\(167\) 11.5900 0.896859 0.448429 0.893818i \(-0.351984\pi\)
0.448429 + 0.893818i \(0.351984\pi\)
\(168\) 25.5796 1.97351
\(169\) 5.64797 0.434459
\(170\) 0 0
\(171\) 8.19188 0.626449
\(172\) −3.11437 −0.237469
\(173\) 11.0271 0.838373 0.419187 0.907900i \(-0.362315\pi\)
0.419187 + 0.907900i \(0.362315\pi\)
\(174\) 1.02197 0.0774750
\(175\) 0 0
\(176\) 2.61651 0.197227
\(177\) −9.28618 −0.697992
\(178\) 9.97781 0.747869
\(179\) −21.0731 −1.57508 −0.787539 0.616265i \(-0.788645\pi\)
−0.787539 + 0.616265i \(0.788645\pi\)
\(180\) 0 0
\(181\) 22.6592 1.68425 0.842123 0.539285i \(-0.181305\pi\)
0.842123 + 0.539285i \(0.181305\pi\)
\(182\) 10.4405 0.773903
\(183\) 37.5869 2.77850
\(184\) −1.26700 −0.0934047
\(185\) 0 0
\(186\) 12.7145 0.932269
\(187\) 0 0
\(188\) −12.0954 −0.882150
\(189\) 34.3521 2.49875
\(190\) 0 0
\(191\) −3.50162 −0.253368 −0.126684 0.991943i \(-0.540433\pi\)
−0.126684 + 0.991943i \(0.540433\pi\)
\(192\) 7.59851 0.548375
\(193\) −12.2942 −0.884959 −0.442479 0.896779i \(-0.645901\pi\)
−0.442479 + 0.896779i \(0.645901\pi\)
\(194\) −11.0747 −0.795117
\(195\) 0 0
\(196\) −4.96991 −0.354993
\(197\) −16.9757 −1.20947 −0.604734 0.796427i \(-0.706721\pi\)
−0.604734 + 0.796427i \(0.706721\pi\)
\(198\) −13.2061 −0.938514
\(199\) 11.5779 0.820735 0.410367 0.911920i \(-0.365400\pi\)
0.410367 + 0.911920i \(0.365400\pi\)
\(200\) 0 0
\(201\) −12.9578 −0.913975
\(202\) −0.212567 −0.0149562
\(203\) −1.43645 −0.100819
\(204\) 0 0
\(205\) 0 0
\(206\) −10.5338 −0.733921
\(207\) −3.17862 −0.220930
\(208\) −4.13111 −0.286441
\(209\) 3.47060 0.240066
\(210\) 0 0
\(211\) −6.66380 −0.458755 −0.229378 0.973338i \(-0.573669\pi\)
−0.229378 + 0.973338i \(0.573669\pi\)
\(212\) −2.61758 −0.179776
\(213\) 11.9669 0.819962
\(214\) −13.9934 −0.956567
\(215\) 0 0
\(216\) 27.3456 1.86063
\(217\) −17.8711 −1.21317
\(218\) −2.64072 −0.178852
\(219\) −19.8973 −1.34454
\(220\) 0 0
\(221\) 0 0
\(222\) −24.6083 −1.65160
\(223\) 12.5928 0.843273 0.421637 0.906765i \(-0.361456\pi\)
0.421637 + 0.906765i \(0.361456\pi\)
\(224\) −18.9499 −1.26614
\(225\) 0 0
\(226\) 2.12523 0.141368
\(227\) 8.04265 0.533809 0.266905 0.963723i \(-0.413999\pi\)
0.266905 + 0.963723i \(0.413999\pi\)
\(228\) −5.62126 −0.372277
\(229\) −21.6295 −1.42932 −0.714658 0.699474i \(-0.753418\pi\)
−0.714658 + 0.699474i \(0.753418\pi\)
\(230\) 0 0
\(231\) 27.1879 1.78883
\(232\) −1.14347 −0.0750724
\(233\) 21.9506 1.43803 0.719014 0.694995i \(-0.244594\pi\)
0.719014 + 0.694995i \(0.244594\pi\)
\(234\) 20.8506 1.36304
\(235\) 0 0
\(236\) 4.35050 0.283193
\(237\) −22.2063 −1.44246
\(238\) 0 0
\(239\) 5.90132 0.381725 0.190862 0.981617i \(-0.438872\pi\)
0.190862 + 0.981617i \(0.438872\pi\)
\(240\) 0 0
\(241\) −13.3115 −0.857466 −0.428733 0.903431i \(-0.641040\pi\)
−0.428733 + 0.903431i \(0.641040\pi\)
\(242\) 2.63214 0.169200
\(243\) 9.04855 0.580464
\(244\) −17.6091 −1.12731
\(245\) 0 0
\(246\) −4.99180 −0.318266
\(247\) −5.47960 −0.348659
\(248\) −14.2261 −0.903358
\(249\) −0.699566 −0.0443332
\(250\) 0 0
\(251\) 3.59367 0.226831 0.113415 0.993548i \(-0.463821\pi\)
0.113415 + 0.993548i \(0.463821\pi\)
\(252\) −30.0646 −1.89389
\(253\) −1.34667 −0.0846641
\(254\) 4.08746 0.256470
\(255\) 0 0
\(256\) −12.3285 −0.770531
\(257\) −24.5491 −1.53133 −0.765665 0.643239i \(-0.777590\pi\)
−0.765665 + 0.643239i \(0.777590\pi\)
\(258\) −4.97189 −0.309536
\(259\) 34.5888 2.14924
\(260\) 0 0
\(261\) −2.86870 −0.177568
\(262\) −7.46382 −0.461116
\(263\) −14.6401 −0.902749 −0.451375 0.892335i \(-0.649066\pi\)
−0.451375 + 0.892335i \(0.649066\pi\)
\(264\) 21.6426 1.33201
\(265\) 0 0
\(266\) −3.06789 −0.188104
\(267\) −41.0235 −2.51060
\(268\) 6.07063 0.370823
\(269\) −18.7597 −1.14380 −0.571900 0.820323i \(-0.693794\pi\)
−0.571900 + 0.820323i \(0.693794\pi\)
\(270\) 0 0
\(271\) −5.76388 −0.350131 −0.175065 0.984557i \(-0.556014\pi\)
−0.175065 + 0.984557i \(0.556014\pi\)
\(272\) 0 0
\(273\) −42.9259 −2.59800
\(274\) −2.30187 −0.139061
\(275\) 0 0
\(276\) 2.18117 0.131291
\(277\) 0.123252 0.00740547 0.00370273 0.999993i \(-0.498821\pi\)
0.00370273 + 0.999993i \(0.498821\pi\)
\(278\) −5.01844 −0.300986
\(279\) −35.6900 −2.13671
\(280\) 0 0
\(281\) 1.82363 0.108789 0.0543944 0.998520i \(-0.482677\pi\)
0.0543944 + 0.998520i \(0.482677\pi\)
\(282\) −19.3095 −1.14987
\(283\) −28.6278 −1.70174 −0.850872 0.525373i \(-0.823926\pi\)
−0.850872 + 0.525373i \(0.823926\pi\)
\(284\) −5.60641 −0.332679
\(285\) 0 0
\(286\) 8.83362 0.522343
\(287\) 7.01634 0.414162
\(288\) −37.8444 −2.23000
\(289\) 0 0
\(290\) 0 0
\(291\) 45.5333 2.66921
\(292\) 9.32173 0.545513
\(293\) 1.41607 0.0827278 0.0413639 0.999144i \(-0.486830\pi\)
0.0413639 + 0.999144i \(0.486830\pi\)
\(294\) −7.93412 −0.462727
\(295\) 0 0
\(296\) 27.5340 1.60038
\(297\) 29.0649 1.68652
\(298\) 17.1956 0.996113
\(299\) 2.12620 0.122961
\(300\) 0 0
\(301\) 6.98835 0.402802
\(302\) −0.146399 −0.00842433
\(303\) 0.873965 0.0502080
\(304\) 1.21391 0.0696222
\(305\) 0 0
\(306\) 0 0
\(307\) 21.7364 1.24056 0.620281 0.784379i \(-0.287018\pi\)
0.620281 + 0.784379i \(0.287018\pi\)
\(308\) −12.7373 −0.725773
\(309\) 43.3092 2.46378
\(310\) 0 0
\(311\) −8.65102 −0.490554 −0.245277 0.969453i \(-0.578879\pi\)
−0.245277 + 0.969453i \(0.578879\pi\)
\(312\) −34.1707 −1.93454
\(313\) 10.2820 0.581175 0.290587 0.956848i \(-0.406149\pi\)
0.290587 + 0.956848i \(0.406149\pi\)
\(314\) 8.86896 0.500504
\(315\) 0 0
\(316\) 10.4035 0.585241
\(317\) 1.12766 0.0633359 0.0316680 0.999498i \(-0.489918\pi\)
0.0316680 + 0.999498i \(0.489918\pi\)
\(318\) −4.17879 −0.234335
\(319\) −1.21536 −0.0680473
\(320\) 0 0
\(321\) 57.5334 3.21120
\(322\) 1.19041 0.0663387
\(323\) 0 0
\(324\) −19.1747 −1.06526
\(325\) 0 0
\(326\) −3.99739 −0.221395
\(327\) 10.8573 0.600407
\(328\) 5.58528 0.308396
\(329\) 27.1410 1.49633
\(330\) 0 0
\(331\) −34.2599 −1.88310 −0.941548 0.336878i \(-0.890629\pi\)
−0.941548 + 0.336878i \(0.890629\pi\)
\(332\) 0.327741 0.0179871
\(333\) 69.0767 3.78538
\(334\) −8.66830 −0.474309
\(335\) 0 0
\(336\) 9.50945 0.518783
\(337\) 13.7463 0.748806 0.374403 0.927266i \(-0.377848\pi\)
0.374403 + 0.927266i \(0.377848\pi\)
\(338\) −4.22420 −0.229766
\(339\) −8.73784 −0.474574
\(340\) 0 0
\(341\) −15.1206 −0.818824
\(342\) −6.12683 −0.331301
\(343\) −11.4763 −0.619665
\(344\) 5.56300 0.299937
\(345\) 0 0
\(346\) −8.24731 −0.443378
\(347\) 18.8786 1.01346 0.506728 0.862106i \(-0.330855\pi\)
0.506728 + 0.862106i \(0.330855\pi\)
\(348\) 1.96850 0.105523
\(349\) −7.04988 −0.377371 −0.188686 0.982038i \(-0.560423\pi\)
−0.188686 + 0.982038i \(0.560423\pi\)
\(350\) 0 0
\(351\) −45.8896 −2.44941
\(352\) −16.0333 −0.854577
\(353\) −8.60779 −0.458146 −0.229073 0.973409i \(-0.573569\pi\)
−0.229073 + 0.973409i \(0.573569\pi\)
\(354\) 6.94527 0.369137
\(355\) 0 0
\(356\) 19.2191 1.01861
\(357\) 0 0
\(358\) 15.7609 0.832988
\(359\) 9.18100 0.484555 0.242277 0.970207i \(-0.422106\pi\)
0.242277 + 0.970207i \(0.422106\pi\)
\(360\) 0 0
\(361\) −17.3898 −0.915255
\(362\) −16.9472 −0.890723
\(363\) −10.8220 −0.568005
\(364\) 20.1104 1.05407
\(365\) 0 0
\(366\) −28.1118 −1.46943
\(367\) 6.81607 0.355796 0.177898 0.984049i \(-0.443070\pi\)
0.177898 + 0.984049i \(0.443070\pi\)
\(368\) −0.471021 −0.0245537
\(369\) 14.0122 0.729446
\(370\) 0 0
\(371\) 5.87360 0.304942
\(372\) 24.4904 1.26977
\(373\) 10.4647 0.541841 0.270920 0.962602i \(-0.412672\pi\)
0.270920 + 0.962602i \(0.412672\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 21.6053 1.11421
\(377\) 1.91889 0.0988281
\(378\) −25.6924 −1.32148
\(379\) −25.3419 −1.30173 −0.650864 0.759195i \(-0.725593\pi\)
−0.650864 + 0.759195i \(0.725593\pi\)
\(380\) 0 0
\(381\) −16.8055 −0.860972
\(382\) 2.61891 0.133995
\(383\) −7.69048 −0.392965 −0.196483 0.980507i \(-0.562952\pi\)
−0.196483 + 0.980507i \(0.562952\pi\)
\(384\) 30.3691 1.54976
\(385\) 0 0
\(386\) 9.19504 0.468015
\(387\) 13.9563 0.709439
\(388\) −21.3320 −1.08297
\(389\) 15.8379 0.803013 0.401506 0.915856i \(-0.368487\pi\)
0.401506 + 0.915856i \(0.368487\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 8.87742 0.448377
\(393\) 30.6873 1.54797
\(394\) 12.6964 0.639634
\(395\) 0 0
\(396\) −25.4374 −1.27828
\(397\) 29.1640 1.46370 0.731850 0.681466i \(-0.238657\pi\)
0.731850 + 0.681466i \(0.238657\pi\)
\(398\) −8.65927 −0.434050
\(399\) 12.6135 0.631467
\(400\) 0 0
\(401\) −16.3859 −0.818271 −0.409136 0.912474i \(-0.634170\pi\)
−0.409136 + 0.912474i \(0.634170\pi\)
\(402\) 9.69135 0.483360
\(403\) 23.8733 1.18921
\(404\) −0.409445 −0.0203706
\(405\) 0 0
\(406\) 1.07434 0.0533186
\(407\) 29.2652 1.45062
\(408\) 0 0
\(409\) 33.9971 1.68105 0.840525 0.541772i \(-0.182247\pi\)
0.840525 + 0.541772i \(0.182247\pi\)
\(410\) 0 0
\(411\) 9.46408 0.466829
\(412\) −20.2900 −0.999616
\(413\) −9.76209 −0.480361
\(414\) 2.37734 0.116840
\(415\) 0 0
\(416\) 25.3144 1.24114
\(417\) 20.6332 1.01041
\(418\) −2.59571 −0.126960
\(419\) 0.892935 0.0436227 0.0218114 0.999762i \(-0.493057\pi\)
0.0218114 + 0.999762i \(0.493057\pi\)
\(420\) 0 0
\(421\) 33.6725 1.64110 0.820550 0.571575i \(-0.193668\pi\)
0.820550 + 0.571575i \(0.193668\pi\)
\(422\) 4.98395 0.242615
\(423\) 54.2027 2.63543
\(424\) 4.67562 0.227068
\(425\) 0 0
\(426\) −8.95025 −0.433641
\(427\) 39.5131 1.91218
\(428\) −26.9539 −1.30286
\(429\) −36.3192 −1.75351
\(430\) 0 0
\(431\) 16.2970 0.784997 0.392498 0.919753i \(-0.371611\pi\)
0.392498 + 0.919753i \(0.371611\pi\)
\(432\) 10.1660 0.489112
\(433\) 34.9947 1.68174 0.840869 0.541239i \(-0.182044\pi\)
0.840869 + 0.541239i \(0.182044\pi\)
\(434\) 13.3660 0.641591
\(435\) 0 0
\(436\) −5.08653 −0.243600
\(437\) −0.624773 −0.0298869
\(438\) 14.8815 0.711066
\(439\) 22.2777 1.06326 0.531628 0.846978i \(-0.321580\pi\)
0.531628 + 0.846978i \(0.321580\pi\)
\(440\) 0 0
\(441\) 22.2714 1.06054
\(442\) 0 0
\(443\) 8.79907 0.418056 0.209028 0.977910i \(-0.432970\pi\)
0.209028 + 0.977910i \(0.432970\pi\)
\(444\) −47.4003 −2.24952
\(445\) 0 0
\(446\) −9.41830 −0.445970
\(447\) −70.6992 −3.34396
\(448\) 7.98792 0.377394
\(449\) 8.86683 0.418452 0.209226 0.977867i \(-0.432906\pi\)
0.209226 + 0.977867i \(0.432906\pi\)
\(450\) 0 0
\(451\) 5.93646 0.279537
\(452\) 4.09360 0.192547
\(453\) 0.601916 0.0282805
\(454\) −6.01521 −0.282308
\(455\) 0 0
\(456\) 10.0409 0.470207
\(457\) 18.4756 0.864254 0.432127 0.901813i \(-0.357763\pi\)
0.432127 + 0.901813i \(0.357763\pi\)
\(458\) 16.1770 0.755902
\(459\) 0 0
\(460\) 0 0
\(461\) −24.5700 −1.14434 −0.572169 0.820136i \(-0.693898\pi\)
−0.572169 + 0.820136i \(0.693898\pi\)
\(462\) −20.3342 −0.946032
\(463\) 9.90931 0.460525 0.230262 0.973129i \(-0.426042\pi\)
0.230262 + 0.973129i \(0.426042\pi\)
\(464\) −0.425096 −0.0197346
\(465\) 0 0
\(466\) −16.4171 −0.760509
\(467\) 29.4041 1.36066 0.680329 0.732907i \(-0.261837\pi\)
0.680329 + 0.732907i \(0.261837\pi\)
\(468\) 40.1621 1.85650
\(469\) −13.6219 −0.629001
\(470\) 0 0
\(471\) −36.4645 −1.68019
\(472\) −7.77100 −0.357689
\(473\) 5.91277 0.271870
\(474\) 16.6084 0.762850
\(475\) 0 0
\(476\) 0 0
\(477\) 11.7301 0.537083
\(478\) −4.41369 −0.201877
\(479\) 28.6003 1.30678 0.653391 0.757021i \(-0.273346\pi\)
0.653391 + 0.757021i \(0.273346\pi\)
\(480\) 0 0
\(481\) −46.2058 −2.10680
\(482\) 9.95583 0.453476
\(483\) −4.89432 −0.222699
\(484\) 5.06999 0.230454
\(485\) 0 0
\(486\) −6.76754 −0.306982
\(487\) 0.617883 0.0279990 0.0139995 0.999902i \(-0.495544\pi\)
0.0139995 + 0.999902i \(0.495544\pi\)
\(488\) 31.4540 1.42386
\(489\) 16.4352 0.743224
\(490\) 0 0
\(491\) 25.4667 1.14930 0.574648 0.818401i \(-0.305139\pi\)
0.574648 + 0.818401i \(0.305139\pi\)
\(492\) −9.61515 −0.433485
\(493\) 0 0
\(494\) 4.09827 0.184390
\(495\) 0 0
\(496\) −5.28869 −0.237469
\(497\) 12.5802 0.564301
\(498\) 0.523216 0.0234459
\(499\) −36.4603 −1.63219 −0.816093 0.577921i \(-0.803864\pi\)
−0.816093 + 0.577921i \(0.803864\pi\)
\(500\) 0 0
\(501\) 35.6395 1.59226
\(502\) −2.68776 −0.119961
\(503\) −30.1881 −1.34602 −0.673011 0.739632i \(-0.734999\pi\)
−0.673011 + 0.739632i \(0.734999\pi\)
\(504\) 53.7025 2.39210
\(505\) 0 0
\(506\) 1.00719 0.0447751
\(507\) 17.3677 0.771326
\(508\) 7.87323 0.349318
\(509\) 40.1857 1.78120 0.890600 0.454787i \(-0.150285\pi\)
0.890600 + 0.454787i \(0.150285\pi\)
\(510\) 0 0
\(511\) −20.9171 −0.925316
\(512\) −10.5314 −0.465426
\(513\) 13.4844 0.595351
\(514\) 18.3606 0.809852
\(515\) 0 0
\(516\) −9.57679 −0.421595
\(517\) 22.9637 1.00994
\(518\) −25.8695 −1.13664
\(519\) 33.9086 1.48842
\(520\) 0 0
\(521\) −35.3560 −1.54897 −0.774487 0.632590i \(-0.781992\pi\)
−0.774487 + 0.632590i \(0.781992\pi\)
\(522\) 2.14554 0.0939079
\(523\) −24.5035 −1.07146 −0.535732 0.844388i \(-0.679964\pi\)
−0.535732 + 0.844388i \(0.679964\pi\)
\(524\) −14.3767 −0.628050
\(525\) 0 0
\(526\) 10.9496 0.477424
\(527\) 0 0
\(528\) 8.04585 0.350150
\(529\) −22.7576 −0.989460
\(530\) 0 0
\(531\) −19.4957 −0.846041
\(532\) −5.90934 −0.256202
\(533\) −9.37286 −0.405984
\(534\) 30.6821 1.32774
\(535\) 0 0
\(536\) −10.8436 −0.468371
\(537\) −64.8004 −2.79634
\(538\) 14.0307 0.604905
\(539\) 9.43558 0.406419
\(540\) 0 0
\(541\) 25.5508 1.09851 0.549257 0.835653i \(-0.314911\pi\)
0.549257 + 0.835653i \(0.314911\pi\)
\(542\) 4.31089 0.185169
\(543\) 69.6778 2.99016
\(544\) 0 0
\(545\) 0 0
\(546\) 32.1049 1.37396
\(547\) −11.7618 −0.502896 −0.251448 0.967871i \(-0.580907\pi\)
−0.251448 + 0.967871i \(0.580907\pi\)
\(548\) −4.43384 −0.189404
\(549\) 78.9110 3.36784
\(550\) 0 0
\(551\) −0.563857 −0.0240211
\(552\) −3.89607 −0.165828
\(553\) −23.3444 −0.992703
\(554\) −0.0921816 −0.00391642
\(555\) 0 0
\(556\) −9.66646 −0.409949
\(557\) 35.6812 1.51186 0.755931 0.654651i \(-0.227184\pi\)
0.755931 + 0.654651i \(0.227184\pi\)
\(558\) 26.6931 1.13001
\(559\) −9.33546 −0.394848
\(560\) 0 0
\(561\) 0 0
\(562\) −1.36392 −0.0575335
\(563\) −30.1232 −1.26954 −0.634771 0.772700i \(-0.718906\pi\)
−0.634771 + 0.772700i \(0.718906\pi\)
\(564\) −37.1938 −1.56614
\(565\) 0 0
\(566\) 21.4111 0.899976
\(567\) 43.0262 1.80693
\(568\) 10.0144 0.420193
\(569\) −24.3985 −1.02284 −0.511420 0.859331i \(-0.670880\pi\)
−0.511420 + 0.859331i \(0.670880\pi\)
\(570\) 0 0
\(571\) −33.2818 −1.39280 −0.696399 0.717654i \(-0.745216\pi\)
−0.696399 + 0.717654i \(0.745216\pi\)
\(572\) 17.0152 0.711442
\(573\) −10.7676 −0.449822
\(574\) −5.24762 −0.219032
\(575\) 0 0
\(576\) 15.9525 0.664689
\(577\) −18.0611 −0.751895 −0.375947 0.926641i \(-0.622683\pi\)
−0.375947 + 0.926641i \(0.622683\pi\)
\(578\) 0 0
\(579\) −37.8051 −1.57113
\(580\) 0 0
\(581\) −0.735418 −0.0305103
\(582\) −34.0550 −1.41163
\(583\) 4.96959 0.205820
\(584\) −16.6508 −0.689015
\(585\) 0 0
\(586\) −1.05910 −0.0437510
\(587\) −41.8303 −1.72652 −0.863261 0.504758i \(-0.831582\pi\)
−0.863261 + 0.504758i \(0.831582\pi\)
\(588\) −15.2826 −0.630244
\(589\) −7.01504 −0.289050
\(590\) 0 0
\(591\) −52.2008 −2.14725
\(592\) 10.2360 0.420699
\(593\) −20.6659 −0.848648 −0.424324 0.905510i \(-0.639488\pi\)
−0.424324 + 0.905510i \(0.639488\pi\)
\(594\) −21.7381 −0.891925
\(595\) 0 0
\(596\) 33.1219 1.35673
\(597\) 35.6023 1.45711
\(598\) −1.59022 −0.0650288
\(599\) 9.21817 0.376644 0.188322 0.982107i \(-0.439695\pi\)
0.188322 + 0.982107i \(0.439695\pi\)
\(600\) 0 0
\(601\) 1.62070 0.0661098 0.0330549 0.999454i \(-0.489476\pi\)
0.0330549 + 0.999454i \(0.489476\pi\)
\(602\) −5.22669 −0.213024
\(603\) −27.2040 −1.10783
\(604\) −0.281993 −0.0114741
\(605\) 0 0
\(606\) −0.653651 −0.0265527
\(607\) −25.0157 −1.01536 −0.507679 0.861547i \(-0.669496\pi\)
−0.507679 + 0.861547i \(0.669496\pi\)
\(608\) −7.43849 −0.301671
\(609\) −4.41712 −0.178991
\(610\) 0 0
\(611\) −36.2566 −1.46678
\(612\) 0 0
\(613\) −4.83538 −0.195299 −0.0976495 0.995221i \(-0.531132\pi\)
−0.0976495 + 0.995221i \(0.531132\pi\)
\(614\) −16.2570 −0.656078
\(615\) 0 0
\(616\) 22.7517 0.916694
\(617\) 16.8134 0.676883 0.338441 0.940987i \(-0.390100\pi\)
0.338441 + 0.940987i \(0.390100\pi\)
\(618\) −32.3916 −1.30298
\(619\) −12.7224 −0.511356 −0.255678 0.966762i \(-0.582299\pi\)
−0.255678 + 0.966762i \(0.582299\pi\)
\(620\) 0 0
\(621\) −5.23223 −0.209962
\(622\) 6.47022 0.259432
\(623\) −43.1259 −1.72780
\(624\) −12.7033 −0.508539
\(625\) 0 0
\(626\) −7.69008 −0.307357
\(627\) 10.6722 0.426206
\(628\) 17.0833 0.681697
\(629\) 0 0
\(630\) 0 0
\(631\) 4.23998 0.168791 0.0843955 0.996432i \(-0.473104\pi\)
0.0843955 + 0.996432i \(0.473104\pi\)
\(632\) −18.5830 −0.739193
\(633\) −20.4914 −0.814459
\(634\) −0.843396 −0.0334955
\(635\) 0 0
\(636\) −8.04915 −0.319169
\(637\) −14.8975 −0.590261
\(638\) 0.908988 0.0359872
\(639\) 25.1238 0.993880
\(640\) 0 0
\(641\) 21.2203 0.838151 0.419075 0.907951i \(-0.362354\pi\)
0.419075 + 0.907951i \(0.362354\pi\)
\(642\) −43.0300 −1.69826
\(643\) 8.16667 0.322062 0.161031 0.986949i \(-0.448518\pi\)
0.161031 + 0.986949i \(0.448518\pi\)
\(644\) 2.29295 0.0903548
\(645\) 0 0
\(646\) 0 0
\(647\) −23.4331 −0.921249 −0.460624 0.887595i \(-0.652374\pi\)
−0.460624 + 0.887595i \(0.652374\pi\)
\(648\) 34.2505 1.34549
\(649\) −8.25960 −0.324218
\(650\) 0 0
\(651\) −54.9541 −2.15382
\(652\) −7.69973 −0.301545
\(653\) 16.8073 0.657721 0.328860 0.944379i \(-0.393335\pi\)
0.328860 + 0.944379i \(0.393335\pi\)
\(654\) −8.12029 −0.317529
\(655\) 0 0
\(656\) 2.07638 0.0810692
\(657\) −41.7731 −1.62972
\(658\) −20.2991 −0.791342
\(659\) 14.0972 0.549150 0.274575 0.961566i \(-0.411463\pi\)
0.274575 + 0.961566i \(0.411463\pi\)
\(660\) 0 0
\(661\) −10.3907 −0.404152 −0.202076 0.979370i \(-0.564769\pi\)
−0.202076 + 0.979370i \(0.564769\pi\)
\(662\) 25.6235 0.995886
\(663\) 0 0
\(664\) −0.585422 −0.0227188
\(665\) 0 0
\(666\) −51.6634 −2.00192
\(667\) 0.218788 0.00847151
\(668\) −16.6968 −0.646018
\(669\) 38.7231 1.49712
\(670\) 0 0
\(671\) 33.4317 1.29062
\(672\) −58.2714 −2.24787
\(673\) 19.8244 0.764174 0.382087 0.924126i \(-0.375205\pi\)
0.382087 + 0.924126i \(0.375205\pi\)
\(674\) −10.2810 −0.396010
\(675\) 0 0
\(676\) −8.13660 −0.312946
\(677\) −3.34594 −0.128595 −0.0642974 0.997931i \(-0.520481\pi\)
−0.0642974 + 0.997931i \(0.520481\pi\)
\(678\) 6.53516 0.250981
\(679\) 47.8669 1.83696
\(680\) 0 0
\(681\) 24.7314 0.947709
\(682\) 11.3089 0.433039
\(683\) 50.2828 1.92402 0.962009 0.273017i \(-0.0880215\pi\)
0.962009 + 0.273017i \(0.0880215\pi\)
\(684\) −11.8014 −0.451239
\(685\) 0 0
\(686\) 8.58333 0.327713
\(687\) −66.5113 −2.53756
\(688\) 2.06810 0.0788456
\(689\) −7.84631 −0.298921
\(690\) 0 0
\(691\) −38.9162 −1.48044 −0.740221 0.672364i \(-0.765279\pi\)
−0.740221 + 0.672364i \(0.765279\pi\)
\(692\) −15.8859 −0.603890
\(693\) 57.0790 2.16825
\(694\) −14.1196 −0.535972
\(695\) 0 0
\(696\) −3.51620 −0.133281
\(697\) 0 0
\(698\) 5.27270 0.199575
\(699\) 67.4986 2.55303
\(700\) 0 0
\(701\) −37.5419 −1.41794 −0.708969 0.705239i \(-0.750840\pi\)
−0.708969 + 0.705239i \(0.750840\pi\)
\(702\) 34.3215 1.29538
\(703\) 13.5773 0.512079
\(704\) 6.75850 0.254721
\(705\) 0 0
\(706\) 6.43789 0.242293
\(707\) 0.918754 0.0345533
\(708\) 13.3779 0.502772
\(709\) 13.7546 0.516566 0.258283 0.966069i \(-0.416843\pi\)
0.258283 + 0.966069i \(0.416843\pi\)
\(710\) 0 0
\(711\) −46.6206 −1.74841
\(712\) −34.3299 −1.28657
\(713\) 2.72198 0.101939
\(714\) 0 0
\(715\) 0 0
\(716\) 30.3584 1.13455
\(717\) 18.1467 0.677703
\(718\) −6.86660 −0.256259
\(719\) 0.528983 0.0197278 0.00986388 0.999951i \(-0.496860\pi\)
0.00986388 + 0.999951i \(0.496860\pi\)
\(720\) 0 0
\(721\) 45.5288 1.69558
\(722\) 13.0061 0.484038
\(723\) −40.9331 −1.52232
\(724\) −32.6434 −1.21318
\(725\) 0 0
\(726\) 8.09390 0.300393
\(727\) −26.7632 −0.992591 −0.496296 0.868154i \(-0.665307\pi\)
−0.496296 + 0.868154i \(0.665307\pi\)
\(728\) −35.9219 −1.33135
\(729\) −12.1055 −0.448351
\(730\) 0 0
\(731\) 0 0
\(732\) −54.1486 −2.00139
\(733\) −17.3486 −0.640787 −0.320393 0.947285i \(-0.603815\pi\)
−0.320393 + 0.947285i \(0.603815\pi\)
\(734\) −5.09783 −0.188164
\(735\) 0 0
\(736\) 2.88629 0.106390
\(737\) −11.5253 −0.424542
\(738\) −10.4799 −0.385772
\(739\) 30.2467 1.11264 0.556321 0.830967i \(-0.312212\pi\)
0.556321 + 0.830967i \(0.312212\pi\)
\(740\) 0 0
\(741\) −16.8499 −0.618998
\(742\) −4.39295 −0.161270
\(743\) −7.18076 −0.263437 −0.131718 0.991287i \(-0.542049\pi\)
−0.131718 + 0.991287i \(0.542049\pi\)
\(744\) −43.7457 −1.60379
\(745\) 0 0
\(746\) −7.82669 −0.286555
\(747\) −1.46869 −0.0537366
\(748\) 0 0
\(749\) 60.4819 2.20996
\(750\) 0 0
\(751\) −31.2967 −1.14203 −0.571016 0.820939i \(-0.693451\pi\)
−0.571016 + 0.820939i \(0.693451\pi\)
\(752\) 8.03197 0.292896
\(753\) 11.0506 0.402708
\(754\) −1.43517 −0.0522658
\(755\) 0 0
\(756\) −49.4884 −1.79988
\(757\) −10.7757 −0.391649 −0.195824 0.980639i \(-0.562738\pi\)
−0.195824 + 0.980639i \(0.562738\pi\)
\(758\) 18.9536 0.688425
\(759\) −4.14104 −0.150310
\(760\) 0 0
\(761\) 33.1409 1.20136 0.600678 0.799491i \(-0.294898\pi\)
0.600678 + 0.799491i \(0.294898\pi\)
\(762\) 12.5691 0.455329
\(763\) 11.4137 0.413203
\(764\) 5.04452 0.182504
\(765\) 0 0
\(766\) 5.75182 0.207822
\(767\) 13.0408 0.470876
\(768\) −37.9105 −1.36798
\(769\) −11.4864 −0.414210 −0.207105 0.978319i \(-0.566404\pi\)
−0.207105 + 0.978319i \(0.566404\pi\)
\(770\) 0 0
\(771\) −75.4892 −2.71868
\(772\) 17.7114 0.637446
\(773\) 3.20903 0.115421 0.0577104 0.998333i \(-0.481620\pi\)
0.0577104 + 0.998333i \(0.481620\pi\)
\(774\) −10.4381 −0.375191
\(775\) 0 0
\(776\) 38.1039 1.36785
\(777\) 106.362 3.81570
\(778\) −11.8454 −0.424678
\(779\) 2.75416 0.0986781
\(780\) 0 0
\(781\) 10.6440 0.380873
\(782\) 0 0
\(783\) −4.72208 −0.168754
\(784\) 3.30027 0.117867
\(785\) 0 0
\(786\) −22.9515 −0.818651
\(787\) 3.37029 0.120138 0.0600690 0.998194i \(-0.480868\pi\)
0.0600690 + 0.998194i \(0.480868\pi\)
\(788\) 24.4556 0.871195
\(789\) −45.0188 −1.60271
\(790\) 0 0
\(791\) −9.18564 −0.326604
\(792\) 45.4371 1.61454
\(793\) −52.7841 −1.87442
\(794\) −21.8122 −0.774085
\(795\) 0 0
\(796\) −16.6794 −0.591185
\(797\) 21.3498 0.756247 0.378124 0.925755i \(-0.376569\pi\)
0.378124 + 0.925755i \(0.376569\pi\)
\(798\) −9.43385 −0.333955
\(799\) 0 0
\(800\) 0 0
\(801\) −86.1259 −3.04311
\(802\) 12.2552 0.432747
\(803\) −17.6977 −0.624538
\(804\) 18.6674 0.658347
\(805\) 0 0
\(806\) −17.8552 −0.628922
\(807\) −57.6867 −2.03067
\(808\) 0.731364 0.0257293
\(809\) −2.72968 −0.0959705 −0.0479852 0.998848i \(-0.515280\pi\)
−0.0479852 + 0.998848i \(0.515280\pi\)
\(810\) 0 0
\(811\) −37.3353 −1.31102 −0.655510 0.755187i \(-0.727546\pi\)
−0.655510 + 0.755187i \(0.727546\pi\)
\(812\) 2.06938 0.0726211
\(813\) −17.7241 −0.621611
\(814\) −21.8879 −0.767170
\(815\) 0 0
\(816\) 0 0
\(817\) 2.74317 0.0959715
\(818\) −25.4269 −0.889032
\(819\) −90.1199 −3.14905
\(820\) 0 0
\(821\) 42.2293 1.47381 0.736906 0.675995i \(-0.236286\pi\)
0.736906 + 0.675995i \(0.236286\pi\)
\(822\) −7.07832 −0.246885
\(823\) 20.7606 0.723668 0.361834 0.932243i \(-0.382151\pi\)
0.361834 + 0.932243i \(0.382151\pi\)
\(824\) 36.2427 1.26257
\(825\) 0 0
\(826\) 7.30120 0.254041
\(827\) 11.5073 0.400149 0.200075 0.979781i \(-0.435881\pi\)
0.200075 + 0.979781i \(0.435881\pi\)
\(828\) 4.57920 0.159138
\(829\) −11.7508 −0.408121 −0.204060 0.978958i \(-0.565414\pi\)
−0.204060 + 0.978958i \(0.565414\pi\)
\(830\) 0 0
\(831\) 0.379002 0.0131474
\(832\) −10.6708 −0.369942
\(833\) 0 0
\(834\) −15.4318 −0.534361
\(835\) 0 0
\(836\) −4.99983 −0.172923
\(837\) −58.7483 −2.03064
\(838\) −0.667839 −0.0230701
\(839\) 36.5993 1.26355 0.631775 0.775152i \(-0.282327\pi\)
0.631775 + 0.775152i \(0.282327\pi\)
\(840\) 0 0
\(841\) −28.8025 −0.993191
\(842\) −25.1842 −0.867904
\(843\) 5.60772 0.193140
\(844\) 9.60003 0.330447
\(845\) 0 0
\(846\) −40.5390 −1.39376
\(847\) −11.3766 −0.390903
\(848\) 1.73821 0.0596902
\(849\) −88.0312 −3.02122
\(850\) 0 0
\(851\) −5.26829 −0.180595
\(852\) −17.2399 −0.590628
\(853\) 38.0771 1.30374 0.651868 0.758332i \(-0.273986\pi\)
0.651868 + 0.758332i \(0.273986\pi\)
\(854\) −29.5524 −1.01126
\(855\) 0 0
\(856\) 48.1459 1.64559
\(857\) −20.2277 −0.690965 −0.345482 0.938425i \(-0.612285\pi\)
−0.345482 + 0.938425i \(0.612285\pi\)
\(858\) 27.1636 0.927351
\(859\) −2.60725 −0.0889581 −0.0444790 0.999010i \(-0.514163\pi\)
−0.0444790 + 0.999010i \(0.514163\pi\)
\(860\) 0 0
\(861\) 21.5755 0.735290
\(862\) −12.1887 −0.415150
\(863\) −11.2563 −0.383169 −0.191584 0.981476i \(-0.561363\pi\)
−0.191584 + 0.981476i \(0.561363\pi\)
\(864\) −62.2945 −2.11930
\(865\) 0 0
\(866\) −26.1730 −0.889396
\(867\) 0 0
\(868\) 25.7455 0.873860
\(869\) −19.7514 −0.670021
\(870\) 0 0
\(871\) 18.1970 0.616580
\(872\) 9.08573 0.307682
\(873\) 95.5940 3.23537
\(874\) 0.467276 0.0158059
\(875\) 0 0
\(876\) 28.6646 0.968487
\(877\) 6.00107 0.202642 0.101321 0.994854i \(-0.467693\pi\)
0.101321 + 0.994854i \(0.467693\pi\)
\(878\) −16.6618 −0.562309
\(879\) 4.35446 0.146872
\(880\) 0 0
\(881\) 34.3314 1.15665 0.578327 0.815805i \(-0.303706\pi\)
0.578327 + 0.815805i \(0.303706\pi\)
\(882\) −16.6571 −0.560874
\(883\) −11.8244 −0.397921 −0.198961 0.980007i \(-0.563757\pi\)
−0.198961 + 0.980007i \(0.563757\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.58095 −0.221091
\(887\) −24.2352 −0.813738 −0.406869 0.913487i \(-0.633379\pi\)
−0.406869 + 0.913487i \(0.633379\pi\)
\(888\) 84.6680 2.84127
\(889\) −17.6668 −0.592524
\(890\) 0 0
\(891\) 36.4040 1.21958
\(892\) −18.1414 −0.607420
\(893\) 10.6538 0.356515
\(894\) 52.8769 1.76847
\(895\) 0 0
\(896\) 31.9254 1.06655
\(897\) 6.53813 0.218302
\(898\) −6.63163 −0.221300
\(899\) 2.45659 0.0819317
\(900\) 0 0
\(901\) 0 0
\(902\) −4.43996 −0.147835
\(903\) 21.4894 0.715122
\(904\) −7.31213 −0.243198
\(905\) 0 0
\(906\) −0.450182 −0.0149563
\(907\) −44.7796 −1.48688 −0.743441 0.668802i \(-0.766808\pi\)
−0.743441 + 0.668802i \(0.766808\pi\)
\(908\) −11.5864 −0.384509
\(909\) 1.83483 0.0608574
\(910\) 0 0
\(911\) 9.94858 0.329611 0.164806 0.986326i \(-0.447300\pi\)
0.164806 + 0.986326i \(0.447300\pi\)
\(912\) 3.73279 0.123605
\(913\) −0.622230 −0.0205928
\(914\) −13.8182 −0.457066
\(915\) 0 0
\(916\) 31.1600 1.02955
\(917\) 32.2600 1.06532
\(918\) 0 0
\(919\) −33.3601 −1.10045 −0.550224 0.835017i \(-0.685458\pi\)
−0.550224 + 0.835017i \(0.685458\pi\)
\(920\) 0 0
\(921\) 66.8401 2.20246
\(922\) 18.3762 0.605189
\(923\) −16.8054 −0.553158
\(924\) −39.1675 −1.28852
\(925\) 0 0
\(926\) −7.41132 −0.243551
\(927\) 90.9247 2.98636
\(928\) 2.60487 0.0855091
\(929\) −24.8961 −0.816813 −0.408407 0.912800i \(-0.633915\pi\)
−0.408407 + 0.912800i \(0.633915\pi\)
\(930\) 0 0
\(931\) 4.37755 0.143468
\(932\) −31.6225 −1.03583
\(933\) −26.6021 −0.870915
\(934\) −21.9917 −0.719592
\(935\) 0 0
\(936\) −71.7390 −2.34486
\(937\) −31.2460 −1.02076 −0.510381 0.859948i \(-0.670496\pi\)
−0.510381 + 0.859948i \(0.670496\pi\)
\(938\) 10.1880 0.332650
\(939\) 31.6176 1.03180
\(940\) 0 0
\(941\) 1.73372 0.0565177 0.0282589 0.999601i \(-0.491004\pi\)
0.0282589 + 0.999601i \(0.491004\pi\)
\(942\) 27.2723 0.888579
\(943\) −1.06867 −0.0348008
\(944\) −2.88895 −0.0940272
\(945\) 0 0
\(946\) −4.42225 −0.143780
\(947\) −10.8513 −0.352619 −0.176309 0.984335i \(-0.556416\pi\)
−0.176309 + 0.984335i \(0.556416\pi\)
\(948\) 31.9910 1.03902
\(949\) 27.9423 0.907044
\(950\) 0 0
\(951\) 3.46760 0.112445
\(952\) 0 0
\(953\) 16.9007 0.547466 0.273733 0.961806i \(-0.411742\pi\)
0.273733 + 0.961806i \(0.411742\pi\)
\(954\) −8.77308 −0.284039
\(955\) 0 0
\(956\) −8.50159 −0.274961
\(957\) −3.73728 −0.120809
\(958\) −21.3906 −0.691098
\(959\) 9.94910 0.321273
\(960\) 0 0
\(961\) −0.437196 −0.0141031
\(962\) 34.5580 1.11419
\(963\) 120.787 3.89231
\(964\) 19.1768 0.617643
\(965\) 0 0
\(966\) 3.66053 0.117776
\(967\) −31.2356 −1.00447 −0.502234 0.864732i \(-0.667489\pi\)
−0.502234 + 0.864732i \(0.667489\pi\)
\(968\) −9.05619 −0.291077
\(969\) 0 0
\(970\) 0 0
\(971\) 17.3888 0.558033 0.279016 0.960286i \(-0.409992\pi\)
0.279016 + 0.960286i \(0.409992\pi\)
\(972\) −13.0356 −0.418116
\(973\) 21.6906 0.695368
\(974\) −0.462124 −0.0148074
\(975\) 0 0
\(976\) 11.6933 0.374294
\(977\) 9.17338 0.293482 0.146741 0.989175i \(-0.453122\pi\)
0.146741 + 0.989175i \(0.453122\pi\)
\(978\) −12.2921 −0.393058
\(979\) −36.4884 −1.16617
\(980\) 0 0
\(981\) 22.7940 0.727757
\(982\) −19.0469 −0.607811
\(983\) −37.2969 −1.18959 −0.594793 0.803879i \(-0.702766\pi\)
−0.594793 + 0.803879i \(0.702766\pi\)
\(984\) 17.1749 0.547516
\(985\) 0 0
\(986\) 0 0
\(987\) 83.4593 2.65654
\(988\) 7.89405 0.251143
\(989\) −1.06441 −0.0338463
\(990\) 0 0
\(991\) 35.0682 1.11398 0.556990 0.830519i \(-0.311956\pi\)
0.556990 + 0.830519i \(0.311956\pi\)
\(992\) 32.4077 1.02894
\(993\) −105.350 −3.34319
\(994\) −9.40894 −0.298433
\(995\) 0 0
\(996\) 1.00781 0.0319338
\(997\) −37.3576 −1.18313 −0.591563 0.806259i \(-0.701489\pi\)
−0.591563 + 0.806259i \(0.701489\pi\)
\(998\) 27.2692 0.863190
\(999\) 113.705 3.59747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bs.1.4 12
5.4 even 2 1445.2.a.p.1.9 12
17.5 odd 16 425.2.m.b.76.5 24
17.7 odd 16 425.2.m.b.151.5 24
17.16 even 2 7225.2.a.bq.1.4 12
85.4 even 4 1445.2.d.j.866.7 24
85.7 even 16 425.2.n.f.49.2 24
85.22 even 16 425.2.n.c.399.5 24
85.24 odd 16 85.2.l.a.66.2 24
85.39 odd 16 85.2.l.a.76.2 yes 24
85.58 even 16 425.2.n.c.49.5 24
85.64 even 4 1445.2.d.j.866.8 24
85.73 even 16 425.2.n.f.399.2 24
85.84 even 2 1445.2.a.q.1.9 12
255.194 even 16 765.2.be.b.406.5 24
255.209 even 16 765.2.be.b.586.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.2 24 85.24 odd 16
85.2.l.a.76.2 yes 24 85.39 odd 16
425.2.m.b.76.5 24 17.5 odd 16
425.2.m.b.151.5 24 17.7 odd 16
425.2.n.c.49.5 24 85.58 even 16
425.2.n.c.399.5 24 85.22 even 16
425.2.n.f.49.2 24 85.7 even 16
425.2.n.f.399.2 24 85.73 even 16
765.2.be.b.406.5 24 255.194 even 16
765.2.be.b.586.5 24 255.209 even 16
1445.2.a.p.1.9 12 5.4 even 2
1445.2.a.q.1.9 12 85.84 even 2
1445.2.d.j.866.7 24 85.4 even 4
1445.2.d.j.866.8 24 85.64 even 4
7225.2.a.bq.1.4 12 17.16 even 2
7225.2.a.bs.1.4 12 1.1 even 1 trivial