Properties

Label 7225.2.a.bq.1.7
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.962871\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.962871 q^{2} +2.64897 q^{3} -1.07288 q^{4} +2.55062 q^{6} -3.09463 q^{7} -2.95879 q^{8} +4.01706 q^{9} +6.13071 q^{11} -2.84203 q^{12} -1.16017 q^{13} -2.97973 q^{14} -0.703170 q^{16} +3.86791 q^{18} -5.42585 q^{19} -8.19759 q^{21} +5.90308 q^{22} +3.11745 q^{23} -7.83775 q^{24} -1.11710 q^{26} +2.69417 q^{27} +3.32016 q^{28} +4.99698 q^{29} +3.72804 q^{31} +5.24051 q^{32} +16.2401 q^{33} -4.30982 q^{36} +0.396716 q^{37} -5.22439 q^{38} -3.07327 q^{39} +1.70263 q^{41} -7.89322 q^{42} +0.0268304 q^{43} -6.57751 q^{44} +3.00170 q^{46} +5.43715 q^{47} -1.86268 q^{48} +2.57672 q^{49} +1.24473 q^{52} -0.345087 q^{53} +2.59413 q^{54} +9.15634 q^{56} -14.3729 q^{57} +4.81144 q^{58} +4.06060 q^{59} +12.4424 q^{61} +3.58962 q^{62} -12.4313 q^{63} +6.45228 q^{64} +15.6371 q^{66} -5.62508 q^{67} +8.25804 q^{69} +10.7794 q^{71} -11.8856 q^{72} +1.65433 q^{73} +0.381986 q^{74} +5.82128 q^{76} -18.9723 q^{77} -2.95916 q^{78} -5.27290 q^{79} -4.91441 q^{81} +1.63941 q^{82} +12.4258 q^{83} +8.79502 q^{84} +0.0258342 q^{86} +13.2369 q^{87} -18.1394 q^{88} -3.22930 q^{89} +3.59031 q^{91} -3.34465 q^{92} +9.87549 q^{93} +5.23528 q^{94} +13.8820 q^{96} +12.9349 q^{97} +2.48105 q^{98} +24.6274 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} - 8 q^{3} + 12 q^{4} + 8 q^{6} - 16 q^{7} + 12 q^{8} + 12 q^{9} + 16 q^{11} - 16 q^{12} + 8 q^{13} - 16 q^{14} + 12 q^{16} - 4 q^{18} + 16 q^{21} - 16 q^{22} - 16 q^{23} + 16 q^{26} - 32 q^{27}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.962871 0.680853 0.340426 0.940271i \(-0.389429\pi\)
0.340426 + 0.940271i \(0.389429\pi\)
\(3\) 2.64897 1.52939 0.764693 0.644395i \(-0.222891\pi\)
0.764693 + 0.644395i \(0.222891\pi\)
\(4\) −1.07288 −0.536440
\(5\) 0 0
\(6\) 2.55062 1.04129
\(7\) −3.09463 −1.16966 −0.584830 0.811156i \(-0.698839\pi\)
−0.584830 + 0.811156i \(0.698839\pi\)
\(8\) −2.95879 −1.04609
\(9\) 4.01706 1.33902
\(10\) 0 0
\(11\) 6.13071 1.84848 0.924239 0.381815i \(-0.124701\pi\)
0.924239 + 0.381815i \(0.124701\pi\)
\(12\) −2.84203 −0.820423
\(13\) −1.16017 −0.321775 −0.160887 0.986973i \(-0.551436\pi\)
−0.160887 + 0.986973i \(0.551436\pi\)
\(14\) −2.97973 −0.796366
\(15\) 0 0
\(16\) −0.703170 −0.175793
\(17\) 0 0
\(18\) 3.86791 0.911675
\(19\) −5.42585 −1.24477 −0.622387 0.782709i \(-0.713837\pi\)
−0.622387 + 0.782709i \(0.713837\pi\)
\(20\) 0 0
\(21\) −8.19759 −1.78886
\(22\) 5.90308 1.25854
\(23\) 3.11745 0.650033 0.325017 0.945708i \(-0.394630\pi\)
0.325017 + 0.945708i \(0.394630\pi\)
\(24\) −7.83775 −1.59987
\(25\) 0 0
\(26\) −1.11710 −0.219081
\(27\) 2.69417 0.518492
\(28\) 3.32016 0.627452
\(29\) 4.99698 0.927915 0.463958 0.885857i \(-0.346429\pi\)
0.463958 + 0.885857i \(0.346429\pi\)
\(30\) 0 0
\(31\) 3.72804 0.669576 0.334788 0.942293i \(-0.391335\pi\)
0.334788 + 0.942293i \(0.391335\pi\)
\(32\) 5.24051 0.926400
\(33\) 16.2401 2.82703
\(34\) 0 0
\(35\) 0 0
\(36\) −4.30982 −0.718304
\(37\) 0.396716 0.0652197 0.0326098 0.999468i \(-0.489618\pi\)
0.0326098 + 0.999468i \(0.489618\pi\)
\(38\) −5.22439 −0.847508
\(39\) −3.07327 −0.492117
\(40\) 0 0
\(41\) 1.70263 0.265906 0.132953 0.991122i \(-0.457554\pi\)
0.132953 + 0.991122i \(0.457554\pi\)
\(42\) −7.89322 −1.21795
\(43\) 0.0268304 0.00409160 0.00204580 0.999998i \(-0.499349\pi\)
0.00204580 + 0.999998i \(0.499349\pi\)
\(44\) −6.57751 −0.991597
\(45\) 0 0
\(46\) 3.00170 0.442577
\(47\) 5.43715 0.793090 0.396545 0.918015i \(-0.370209\pi\)
0.396545 + 0.918015i \(0.370209\pi\)
\(48\) −1.86268 −0.268855
\(49\) 2.57672 0.368103
\(50\) 0 0
\(51\) 0 0
\(52\) 1.24473 0.172613
\(53\) −0.345087 −0.0474014 −0.0237007 0.999719i \(-0.507545\pi\)
−0.0237007 + 0.999719i \(0.507545\pi\)
\(54\) 2.59413 0.353017
\(55\) 0 0
\(56\) 9.15634 1.22357
\(57\) −14.3729 −1.90374
\(58\) 4.81144 0.631773
\(59\) 4.06060 0.528645 0.264322 0.964434i \(-0.414852\pi\)
0.264322 + 0.964434i \(0.414852\pi\)
\(60\) 0 0
\(61\) 12.4424 1.59308 0.796541 0.604584i \(-0.206661\pi\)
0.796541 + 0.604584i \(0.206661\pi\)
\(62\) 3.58962 0.455883
\(63\) −12.4313 −1.56620
\(64\) 6.45228 0.806534
\(65\) 0 0
\(66\) 15.6371 1.92479
\(67\) −5.62508 −0.687213 −0.343607 0.939114i \(-0.611649\pi\)
−0.343607 + 0.939114i \(0.611649\pi\)
\(68\) 0 0
\(69\) 8.25804 0.994152
\(70\) 0 0
\(71\) 10.7794 1.27928 0.639640 0.768674i \(-0.279083\pi\)
0.639640 + 0.768674i \(0.279083\pi\)
\(72\) −11.8856 −1.40073
\(73\) 1.65433 0.193624 0.0968121 0.995303i \(-0.469135\pi\)
0.0968121 + 0.995303i \(0.469135\pi\)
\(74\) 0.381986 0.0444050
\(75\) 0 0
\(76\) 5.82128 0.667747
\(77\) −18.9723 −2.16209
\(78\) −2.95916 −0.335059
\(79\) −5.27290 −0.593248 −0.296624 0.954994i \(-0.595861\pi\)
−0.296624 + 0.954994i \(0.595861\pi\)
\(80\) 0 0
\(81\) −4.91441 −0.546045
\(82\) 1.63941 0.181043
\(83\) 12.4258 1.36391 0.681955 0.731394i \(-0.261130\pi\)
0.681955 + 0.731394i \(0.261130\pi\)
\(84\) 8.79502 0.959616
\(85\) 0 0
\(86\) 0.0258342 0.00278577
\(87\) 13.2369 1.41914
\(88\) −18.1394 −1.93367
\(89\) −3.22930 −0.342305 −0.171152 0.985245i \(-0.554749\pi\)
−0.171152 + 0.985245i \(0.554749\pi\)
\(90\) 0 0
\(91\) 3.59031 0.376367
\(92\) −3.34465 −0.348704
\(93\) 9.87549 1.02404
\(94\) 5.23528 0.539978
\(95\) 0 0
\(96\) 13.8820 1.41682
\(97\) 12.9349 1.31334 0.656668 0.754180i \(-0.271965\pi\)
0.656668 + 0.754180i \(0.271965\pi\)
\(98\) 2.48105 0.250624
\(99\) 24.6274 2.47515
\(100\) 0 0
\(101\) −1.46947 −0.146218 −0.0731088 0.997324i \(-0.523292\pi\)
−0.0731088 + 0.997324i \(0.523292\pi\)
\(102\) 0 0
\(103\) −9.80978 −0.966586 −0.483293 0.875459i \(-0.660559\pi\)
−0.483293 + 0.875459i \(0.660559\pi\)
\(104\) 3.43271 0.336605
\(105\) 0 0
\(106\) −0.332275 −0.0322734
\(107\) 2.88742 0.279137 0.139569 0.990212i \(-0.455428\pi\)
0.139569 + 0.990212i \(0.455428\pi\)
\(108\) −2.89052 −0.278140
\(109\) 5.76330 0.552024 0.276012 0.961154i \(-0.410987\pi\)
0.276012 + 0.961154i \(0.410987\pi\)
\(110\) 0 0
\(111\) 1.05089 0.0997460
\(112\) 2.17605 0.205617
\(113\) 9.02043 0.848571 0.424285 0.905529i \(-0.360525\pi\)
0.424285 + 0.905529i \(0.360525\pi\)
\(114\) −13.8393 −1.29617
\(115\) 0 0
\(116\) −5.36115 −0.497771
\(117\) −4.66049 −0.430863
\(118\) 3.90983 0.359929
\(119\) 0 0
\(120\) 0 0
\(121\) 26.5856 2.41687
\(122\) 11.9804 1.08465
\(123\) 4.51022 0.406673
\(124\) −3.99974 −0.359187
\(125\) 0 0
\(126\) −11.9697 −1.06635
\(127\) 13.9992 1.24223 0.621114 0.783720i \(-0.286681\pi\)
0.621114 + 0.783720i \(0.286681\pi\)
\(128\) −4.26831 −0.377269
\(129\) 0.0710730 0.00625763
\(130\) 0 0
\(131\) −12.6704 −1.10702 −0.553509 0.832843i \(-0.686712\pi\)
−0.553509 + 0.832843i \(0.686712\pi\)
\(132\) −17.4236 −1.51653
\(133\) 16.7910 1.45596
\(134\) −5.41623 −0.467891
\(135\) 0 0
\(136\) 0 0
\(137\) −2.97888 −0.254503 −0.127251 0.991870i \(-0.540616\pi\)
−0.127251 + 0.991870i \(0.540616\pi\)
\(138\) 7.95143 0.676871
\(139\) 19.6413 1.66595 0.832977 0.553308i \(-0.186635\pi\)
0.832977 + 0.553308i \(0.186635\pi\)
\(140\) 0 0
\(141\) 14.4029 1.21294
\(142\) 10.3792 0.871002
\(143\) −7.11269 −0.594793
\(144\) −2.82468 −0.235390
\(145\) 0 0
\(146\) 1.59290 0.131830
\(147\) 6.82567 0.562972
\(148\) −0.425628 −0.0349864
\(149\) 2.95573 0.242143 0.121072 0.992644i \(-0.461367\pi\)
0.121072 + 0.992644i \(0.461367\pi\)
\(150\) 0 0
\(151\) 22.0403 1.79361 0.896807 0.442422i \(-0.145881\pi\)
0.896807 + 0.442422i \(0.145881\pi\)
\(152\) 16.0539 1.30214
\(153\) 0 0
\(154\) −18.2678 −1.47206
\(155\) 0 0
\(156\) 3.29725 0.263991
\(157\) −12.8666 −1.02686 −0.513432 0.858130i \(-0.671626\pi\)
−0.513432 + 0.858130i \(0.671626\pi\)
\(158\) −5.07713 −0.403914
\(159\) −0.914127 −0.0724950
\(160\) 0 0
\(161\) −9.64735 −0.760318
\(162\) −4.73194 −0.371776
\(163\) −19.2925 −1.51110 −0.755551 0.655089i \(-0.772631\pi\)
−0.755551 + 0.655089i \(0.772631\pi\)
\(164\) −1.82672 −0.142643
\(165\) 0 0
\(166\) 11.9645 0.928622
\(167\) −18.8591 −1.45936 −0.729681 0.683787i \(-0.760332\pi\)
−0.729681 + 0.683787i \(0.760332\pi\)
\(168\) 24.2549 1.87131
\(169\) −11.6540 −0.896461
\(170\) 0 0
\(171\) −21.7960 −1.66678
\(172\) −0.0287858 −0.00219490
\(173\) 22.5770 1.71650 0.858249 0.513233i \(-0.171552\pi\)
0.858249 + 0.513233i \(0.171552\pi\)
\(174\) 12.7454 0.966225
\(175\) 0 0
\(176\) −4.31093 −0.324949
\(177\) 10.7564 0.808502
\(178\) −3.10940 −0.233059
\(179\) 1.96068 0.146548 0.0732740 0.997312i \(-0.476655\pi\)
0.0732740 + 0.997312i \(0.476655\pi\)
\(180\) 0 0
\(181\) −0.711719 −0.0529016 −0.0264508 0.999650i \(-0.508421\pi\)
−0.0264508 + 0.999650i \(0.508421\pi\)
\(182\) 3.45700 0.256250
\(183\) 32.9595 2.43644
\(184\) −9.22387 −0.679993
\(185\) 0 0
\(186\) 9.50882 0.697220
\(187\) 0 0
\(188\) −5.83341 −0.425445
\(189\) −8.33744 −0.606460
\(190\) 0 0
\(191\) −5.26341 −0.380847 −0.190423 0.981702i \(-0.560986\pi\)
−0.190423 + 0.981702i \(0.560986\pi\)
\(192\) 17.0919 1.23350
\(193\) −14.9301 −1.07469 −0.537347 0.843361i \(-0.680574\pi\)
−0.537347 + 0.843361i \(0.680574\pi\)
\(194\) 12.4546 0.894188
\(195\) 0 0
\(196\) −2.76451 −0.197465
\(197\) 6.33014 0.451004 0.225502 0.974243i \(-0.427598\pi\)
0.225502 + 0.974243i \(0.427598\pi\)
\(198\) 23.7130 1.68521
\(199\) 14.9149 1.05729 0.528645 0.848843i \(-0.322700\pi\)
0.528645 + 0.848843i \(0.322700\pi\)
\(200\) 0 0
\(201\) −14.9007 −1.05101
\(202\) −1.41491 −0.0995526
\(203\) −15.4638 −1.08534
\(204\) 0 0
\(205\) 0 0
\(206\) −9.44555 −0.658103
\(207\) 12.5230 0.870408
\(208\) 0.815800 0.0565656
\(209\) −33.2643 −2.30094
\(210\) 0 0
\(211\) 13.3987 0.922404 0.461202 0.887295i \(-0.347418\pi\)
0.461202 + 0.887295i \(0.347418\pi\)
\(212\) 0.370237 0.0254280
\(213\) 28.5544 1.95651
\(214\) 2.78021 0.190051
\(215\) 0 0
\(216\) −7.97146 −0.542389
\(217\) −11.5369 −0.783176
\(218\) 5.54932 0.375847
\(219\) 4.38227 0.296126
\(220\) 0 0
\(221\) 0 0
\(222\) 1.01187 0.0679123
\(223\) 2.11298 0.141496 0.0707478 0.997494i \(-0.477461\pi\)
0.0707478 + 0.997494i \(0.477461\pi\)
\(224\) −16.2174 −1.08357
\(225\) 0 0
\(226\) 8.68551 0.577752
\(227\) −14.5595 −0.966348 −0.483174 0.875524i \(-0.660516\pi\)
−0.483174 + 0.875524i \(0.660516\pi\)
\(228\) 15.4204 1.02124
\(229\) −2.65040 −0.175143 −0.0875716 0.996158i \(-0.527911\pi\)
−0.0875716 + 0.996158i \(0.527911\pi\)
\(230\) 0 0
\(231\) −50.2570 −3.30667
\(232\) −14.7850 −0.970682
\(233\) −3.13924 −0.205658 −0.102829 0.994699i \(-0.532790\pi\)
−0.102829 + 0.994699i \(0.532790\pi\)
\(234\) −4.48745 −0.293354
\(235\) 0 0
\(236\) −4.35653 −0.283586
\(237\) −13.9678 −0.907305
\(238\) 0 0
\(239\) 13.7090 0.886760 0.443380 0.896334i \(-0.353779\pi\)
0.443380 + 0.896334i \(0.353779\pi\)
\(240\) 0 0
\(241\) −12.4877 −0.804404 −0.402202 0.915551i \(-0.631755\pi\)
−0.402202 + 0.915551i \(0.631755\pi\)
\(242\) 25.5985 1.64553
\(243\) −21.1006 −1.35361
\(244\) −13.3492 −0.854593
\(245\) 0 0
\(246\) 4.34276 0.276884
\(247\) 6.29493 0.400537
\(248\) −11.0305 −0.700436
\(249\) 32.9157 2.08595
\(250\) 0 0
\(251\) 17.4413 1.10088 0.550441 0.834874i \(-0.314459\pi\)
0.550441 + 0.834874i \(0.314459\pi\)
\(252\) 13.3373 0.840171
\(253\) 19.1122 1.20157
\(254\) 13.4794 0.845774
\(255\) 0 0
\(256\) −17.0144 −1.06340
\(257\) −6.88101 −0.429226 −0.214613 0.976699i \(-0.568849\pi\)
−0.214613 + 0.976699i \(0.568849\pi\)
\(258\) 0.0684341 0.00426052
\(259\) −1.22769 −0.0762848
\(260\) 0 0
\(261\) 20.0732 1.24250
\(262\) −12.2000 −0.753716
\(263\) −6.23809 −0.384657 −0.192329 0.981331i \(-0.561604\pi\)
−0.192329 + 0.981331i \(0.561604\pi\)
\(264\) −48.0509 −2.95733
\(265\) 0 0
\(266\) 16.1675 0.991296
\(267\) −8.55432 −0.523516
\(268\) 6.03504 0.368648
\(269\) −1.29087 −0.0787059 −0.0393530 0.999225i \(-0.512530\pi\)
−0.0393530 + 0.999225i \(0.512530\pi\)
\(270\) 0 0
\(271\) 10.2849 0.624764 0.312382 0.949957i \(-0.398873\pi\)
0.312382 + 0.949957i \(0.398873\pi\)
\(272\) 0 0
\(273\) 9.51063 0.575610
\(274\) −2.86828 −0.173279
\(275\) 0 0
\(276\) −8.85989 −0.533302
\(277\) −25.3802 −1.52495 −0.762474 0.647019i \(-0.776015\pi\)
−0.762474 + 0.647019i \(0.776015\pi\)
\(278\) 18.9120 1.13427
\(279\) 14.9758 0.896576
\(280\) 0 0
\(281\) 5.89557 0.351700 0.175850 0.984417i \(-0.443733\pi\)
0.175850 + 0.984417i \(0.443733\pi\)
\(282\) 13.8681 0.825834
\(283\) −18.4663 −1.09771 −0.548854 0.835918i \(-0.684936\pi\)
−0.548854 + 0.835918i \(0.684936\pi\)
\(284\) −11.5650 −0.686257
\(285\) 0 0
\(286\) −6.84860 −0.404966
\(287\) −5.26901 −0.311020
\(288\) 21.0514 1.24047
\(289\) 0 0
\(290\) 0 0
\(291\) 34.2641 2.00860
\(292\) −1.77489 −0.103868
\(293\) −8.31894 −0.485998 −0.242999 0.970027i \(-0.578131\pi\)
−0.242999 + 0.970027i \(0.578131\pi\)
\(294\) 6.57224 0.383301
\(295\) 0 0
\(296\) −1.17380 −0.0682256
\(297\) 16.5171 0.958422
\(298\) 2.84599 0.164864
\(299\) −3.61679 −0.209164
\(300\) 0 0
\(301\) −0.0830301 −0.00478577
\(302\) 21.2220 1.22119
\(303\) −3.89258 −0.223623
\(304\) 3.81529 0.218822
\(305\) 0 0
\(306\) 0 0
\(307\) 12.2369 0.698398 0.349199 0.937049i \(-0.386454\pi\)
0.349199 + 0.937049i \(0.386454\pi\)
\(308\) 20.3549 1.15983
\(309\) −25.9858 −1.47828
\(310\) 0 0
\(311\) −32.6368 −1.85066 −0.925331 0.379160i \(-0.876213\pi\)
−0.925331 + 0.379160i \(0.876213\pi\)
\(312\) 9.09315 0.514799
\(313\) 13.4290 0.759053 0.379526 0.925181i \(-0.376087\pi\)
0.379526 + 0.925181i \(0.376087\pi\)
\(314\) −12.3889 −0.699143
\(315\) 0 0
\(316\) 5.65719 0.318242
\(317\) −9.87357 −0.554555 −0.277278 0.960790i \(-0.589432\pi\)
−0.277278 + 0.960790i \(0.589432\pi\)
\(318\) −0.880187 −0.0493584
\(319\) 30.6350 1.71523
\(320\) 0 0
\(321\) 7.64869 0.426909
\(322\) −9.28915 −0.517664
\(323\) 0 0
\(324\) 5.27257 0.292920
\(325\) 0 0
\(326\) −18.5762 −1.02884
\(327\) 15.2668 0.844258
\(328\) −5.03772 −0.278162
\(329\) −16.8260 −0.927646
\(330\) 0 0
\(331\) −5.64305 −0.310170 −0.155085 0.987901i \(-0.549565\pi\)
−0.155085 + 0.987901i \(0.549565\pi\)
\(332\) −13.3314 −0.731656
\(333\) 1.59363 0.0873304
\(334\) −18.1589 −0.993611
\(335\) 0 0
\(336\) 5.76430 0.314468
\(337\) 16.5925 0.903853 0.451927 0.892055i \(-0.350737\pi\)
0.451927 + 0.892055i \(0.350737\pi\)
\(338\) −11.2213 −0.610358
\(339\) 23.8949 1.29779
\(340\) 0 0
\(341\) 22.8555 1.23770
\(342\) −20.9867 −1.13483
\(343\) 13.6884 0.739104
\(344\) −0.0793854 −0.00428017
\(345\) 0 0
\(346\) 21.7387 1.16868
\(347\) −9.24424 −0.496257 −0.248129 0.968727i \(-0.579816\pi\)
−0.248129 + 0.968727i \(0.579816\pi\)
\(348\) −14.2016 −0.761283
\(349\) 26.9273 1.44139 0.720694 0.693254i \(-0.243823\pi\)
0.720694 + 0.693254i \(0.243823\pi\)
\(350\) 0 0
\(351\) −3.12570 −0.166838
\(352\) 32.1280 1.71243
\(353\) 22.9722 1.22269 0.611343 0.791366i \(-0.290630\pi\)
0.611343 + 0.791366i \(0.290630\pi\)
\(354\) 10.3570 0.550470
\(355\) 0 0
\(356\) 3.46465 0.183626
\(357\) 0 0
\(358\) 1.88788 0.0997775
\(359\) 34.1089 1.80020 0.900101 0.435682i \(-0.143493\pi\)
0.900101 + 0.435682i \(0.143493\pi\)
\(360\) 0 0
\(361\) 10.4398 0.549463
\(362\) −0.685293 −0.0360182
\(363\) 70.4244 3.69632
\(364\) −3.85197 −0.201898
\(365\) 0 0
\(366\) 31.7358 1.65885
\(367\) 9.27610 0.484209 0.242104 0.970250i \(-0.422162\pi\)
0.242104 + 0.970250i \(0.422162\pi\)
\(368\) −2.19210 −0.114271
\(369\) 6.83957 0.356054
\(370\) 0 0
\(371\) 1.06792 0.0554435
\(372\) −10.5952 −0.549336
\(373\) 3.06857 0.158884 0.0794422 0.996839i \(-0.474686\pi\)
0.0794422 + 0.996839i \(0.474686\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −16.0874 −0.829643
\(377\) −5.79736 −0.298579
\(378\) −8.02788 −0.412910
\(379\) 36.5339 1.87662 0.938310 0.345795i \(-0.112391\pi\)
0.938310 + 0.345795i \(0.112391\pi\)
\(380\) 0 0
\(381\) 37.0835 1.89984
\(382\) −5.06798 −0.259301
\(383\) 9.32150 0.476306 0.238153 0.971228i \(-0.423458\pi\)
0.238153 + 0.971228i \(0.423458\pi\)
\(384\) −11.3066 −0.576990
\(385\) 0 0
\(386\) −14.3758 −0.731709
\(387\) 0.107779 0.00547873
\(388\) −13.8775 −0.704525
\(389\) 33.1623 1.68139 0.840697 0.541507i \(-0.182146\pi\)
0.840697 + 0.541507i \(0.182146\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −7.62397 −0.385069
\(393\) −33.5636 −1.69306
\(394\) 6.09511 0.307067
\(395\) 0 0
\(396\) −26.4223 −1.32777
\(397\) 8.82540 0.442934 0.221467 0.975168i \(-0.428915\pi\)
0.221467 + 0.975168i \(0.428915\pi\)
\(398\) 14.3611 0.719859
\(399\) 44.4789 2.22673
\(400\) 0 0
\(401\) −19.5190 −0.974732 −0.487366 0.873198i \(-0.662042\pi\)
−0.487366 + 0.873198i \(0.662042\pi\)
\(402\) −14.3474 −0.715585
\(403\) −4.32518 −0.215453
\(404\) 1.57656 0.0784369
\(405\) 0 0
\(406\) −14.8896 −0.738960
\(407\) 2.43215 0.120557
\(408\) 0 0
\(409\) 10.4152 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(410\) 0 0
\(411\) −7.89097 −0.389233
\(412\) 10.5247 0.518515
\(413\) −12.5660 −0.618334
\(414\) 12.0580 0.592619
\(415\) 0 0
\(416\) −6.07991 −0.298092
\(417\) 52.0293 2.54789
\(418\) −32.0292 −1.56660
\(419\) −35.3206 −1.72552 −0.862762 0.505610i \(-0.831267\pi\)
−0.862762 + 0.505610i \(0.831267\pi\)
\(420\) 0 0
\(421\) −15.0205 −0.732052 −0.366026 0.930605i \(-0.619282\pi\)
−0.366026 + 0.930605i \(0.619282\pi\)
\(422\) 12.9012 0.628021
\(423\) 21.8414 1.06196
\(424\) 1.02104 0.0495861
\(425\) 0 0
\(426\) 27.4942 1.33210
\(427\) −38.5045 −1.86336
\(428\) −3.09785 −0.149740
\(429\) −18.8413 −0.909668
\(430\) 0 0
\(431\) −23.3518 −1.12481 −0.562407 0.826860i \(-0.690125\pi\)
−0.562407 + 0.826860i \(0.690125\pi\)
\(432\) −1.89446 −0.0911471
\(433\) 18.3077 0.879811 0.439906 0.898044i \(-0.355012\pi\)
0.439906 + 0.898044i \(0.355012\pi\)
\(434\) −11.1086 −0.533228
\(435\) 0 0
\(436\) −6.18333 −0.296128
\(437\) −16.9148 −0.809145
\(438\) 4.21956 0.201618
\(439\) −20.2697 −0.967421 −0.483711 0.875228i \(-0.660711\pi\)
−0.483711 + 0.875228i \(0.660711\pi\)
\(440\) 0 0
\(441\) 10.3509 0.492898
\(442\) 0 0
\(443\) −29.3849 −1.39612 −0.698058 0.716041i \(-0.745952\pi\)
−0.698058 + 0.716041i \(0.745952\pi\)
\(444\) −1.12748 −0.0535077
\(445\) 0 0
\(446\) 2.03453 0.0963376
\(447\) 7.82966 0.370330
\(448\) −19.9674 −0.943371
\(449\) −32.6419 −1.54047 −0.770234 0.637761i \(-0.779861\pi\)
−0.770234 + 0.637761i \(0.779861\pi\)
\(450\) 0 0
\(451\) 10.4383 0.491522
\(452\) −9.67784 −0.455207
\(453\) 58.3842 2.74313
\(454\) −14.0189 −0.657940
\(455\) 0 0
\(456\) 42.5264 1.99148
\(457\) 8.45112 0.395327 0.197663 0.980270i \(-0.436665\pi\)
0.197663 + 0.980270i \(0.436665\pi\)
\(458\) −2.55199 −0.119247
\(459\) 0 0
\(460\) 0 0
\(461\) −38.2583 −1.78187 −0.890933 0.454134i \(-0.849949\pi\)
−0.890933 + 0.454134i \(0.849949\pi\)
\(462\) −48.3910 −2.25135
\(463\) −27.1761 −1.26298 −0.631491 0.775383i \(-0.717557\pi\)
−0.631491 + 0.775383i \(0.717557\pi\)
\(464\) −3.51373 −0.163121
\(465\) 0 0
\(466\) −3.02268 −0.140023
\(467\) −3.44525 −0.159427 −0.0797136 0.996818i \(-0.525401\pi\)
−0.0797136 + 0.996818i \(0.525401\pi\)
\(468\) 5.00015 0.231132
\(469\) 17.4075 0.803805
\(470\) 0 0
\(471\) −34.0832 −1.57047
\(472\) −12.0144 −0.553009
\(473\) 0.164489 0.00756322
\(474\) −13.4492 −0.617741
\(475\) 0 0
\(476\) 0 0
\(477\) −1.38624 −0.0634714
\(478\) 13.2000 0.603753
\(479\) 15.3593 0.701785 0.350893 0.936416i \(-0.385878\pi\)
0.350893 + 0.936416i \(0.385878\pi\)
\(480\) 0 0
\(481\) −0.460260 −0.0209860
\(482\) −12.0241 −0.547681
\(483\) −25.5556 −1.16282
\(484\) −28.5231 −1.29650
\(485\) 0 0
\(486\) −20.3172 −0.921606
\(487\) −26.3095 −1.19220 −0.596099 0.802911i \(-0.703283\pi\)
−0.596099 + 0.802911i \(0.703283\pi\)
\(488\) −36.8143 −1.66651
\(489\) −51.1052 −2.31106
\(490\) 0 0
\(491\) −29.0366 −1.31040 −0.655202 0.755454i \(-0.727417\pi\)
−0.655202 + 0.755454i \(0.727417\pi\)
\(492\) −4.83893 −0.218156
\(493\) 0 0
\(494\) 6.06120 0.272706
\(495\) 0 0
\(496\) −2.62145 −0.117707
\(497\) −33.3583 −1.49632
\(498\) 31.6935 1.42022
\(499\) 32.5905 1.45895 0.729475 0.684007i \(-0.239764\pi\)
0.729475 + 0.684007i \(0.239764\pi\)
\(500\) 0 0
\(501\) −49.9573 −2.23193
\(502\) 16.7937 0.749539
\(503\) 23.5391 1.04956 0.524779 0.851239i \(-0.324148\pi\)
0.524779 + 0.851239i \(0.324148\pi\)
\(504\) 36.7816 1.63838
\(505\) 0 0
\(506\) 18.4026 0.818093
\(507\) −30.8711 −1.37103
\(508\) −15.0194 −0.666380
\(509\) −17.5818 −0.779300 −0.389650 0.920963i \(-0.627404\pi\)
−0.389650 + 0.920963i \(0.627404\pi\)
\(510\) 0 0
\(511\) −5.11953 −0.226474
\(512\) −7.84603 −0.346749
\(513\) −14.6181 −0.645406
\(514\) −6.62553 −0.292239
\(515\) 0 0
\(516\) −0.0762528 −0.00335684
\(517\) 33.3336 1.46601
\(518\) −1.18210 −0.0519387
\(519\) 59.8059 2.62519
\(520\) 0 0
\(521\) 20.5061 0.898388 0.449194 0.893434i \(-0.351711\pi\)
0.449194 + 0.893434i \(0.351711\pi\)
\(522\) 19.3279 0.845957
\(523\) −9.19853 −0.402224 −0.201112 0.979568i \(-0.564455\pi\)
−0.201112 + 0.979568i \(0.564455\pi\)
\(524\) 13.5938 0.593849
\(525\) 0 0
\(526\) −6.00648 −0.261895
\(527\) 0 0
\(528\) −11.4195 −0.496972
\(529\) −13.2815 −0.577457
\(530\) 0 0
\(531\) 16.3117 0.707866
\(532\) −18.0147 −0.781036
\(533\) −1.97535 −0.0855618
\(534\) −8.23671 −0.356437
\(535\) 0 0
\(536\) 16.6434 0.718886
\(537\) 5.19378 0.224128
\(538\) −1.24294 −0.0535871
\(539\) 15.7971 0.680431
\(540\) 0 0
\(541\) 14.2880 0.614291 0.307145 0.951663i \(-0.400626\pi\)
0.307145 + 0.951663i \(0.400626\pi\)
\(542\) 9.90305 0.425372
\(543\) −1.88532 −0.0809070
\(544\) 0 0
\(545\) 0 0
\(546\) 9.15751 0.391905
\(547\) −23.7010 −1.01338 −0.506691 0.862128i \(-0.669131\pi\)
−0.506691 + 0.862128i \(0.669131\pi\)
\(548\) 3.19598 0.136525
\(549\) 49.9818 2.13317
\(550\) 0 0
\(551\) −27.1128 −1.15505
\(552\) −24.4338 −1.03997
\(553\) 16.3177 0.693898
\(554\) −24.4378 −1.03826
\(555\) 0 0
\(556\) −21.0728 −0.893684
\(557\) −0.399812 −0.0169406 −0.00847028 0.999964i \(-0.502696\pi\)
−0.00847028 + 0.999964i \(0.502696\pi\)
\(558\) 14.4197 0.610436
\(559\) −0.0311279 −0.00131657
\(560\) 0 0
\(561\) 0 0
\(562\) 5.67668 0.239456
\(563\) −9.26358 −0.390413 −0.195207 0.980762i \(-0.562538\pi\)
−0.195207 + 0.980762i \(0.562538\pi\)
\(564\) −15.4525 −0.650670
\(565\) 0 0
\(566\) −17.7807 −0.747377
\(567\) 15.2083 0.638687
\(568\) −31.8940 −1.33824
\(569\) 5.75650 0.241325 0.120662 0.992694i \(-0.461498\pi\)
0.120662 + 0.992694i \(0.461498\pi\)
\(570\) 0 0
\(571\) 13.9987 0.585825 0.292913 0.956139i \(-0.405375\pi\)
0.292913 + 0.956139i \(0.405375\pi\)
\(572\) 7.63106 0.319071
\(573\) −13.9426 −0.582462
\(574\) −5.07337 −0.211759
\(575\) 0 0
\(576\) 25.9192 1.07997
\(577\) −18.4417 −0.767736 −0.383868 0.923388i \(-0.625408\pi\)
−0.383868 + 0.923388i \(0.625408\pi\)
\(578\) 0 0
\(579\) −39.5495 −1.64362
\(580\) 0 0
\(581\) −38.4533 −1.59531
\(582\) 32.9919 1.36756
\(583\) −2.11563 −0.0876204
\(584\) −4.89480 −0.202548
\(585\) 0 0
\(586\) −8.01007 −0.330893
\(587\) −4.03167 −0.166405 −0.0832024 0.996533i \(-0.526515\pi\)
−0.0832024 + 0.996533i \(0.526515\pi\)
\(588\) −7.32312 −0.302001
\(589\) −20.2278 −0.833471
\(590\) 0 0
\(591\) 16.7684 0.689758
\(592\) −0.278959 −0.0114651
\(593\) 6.52416 0.267915 0.133958 0.990987i \(-0.457231\pi\)
0.133958 + 0.990987i \(0.457231\pi\)
\(594\) 15.9039 0.652544
\(595\) 0 0
\(596\) −3.17114 −0.129895
\(597\) 39.5092 1.61700
\(598\) −3.48250 −0.142410
\(599\) 6.81189 0.278326 0.139163 0.990269i \(-0.455559\pi\)
0.139163 + 0.990269i \(0.455559\pi\)
\(600\) 0 0
\(601\) 38.1591 1.55654 0.778272 0.627927i \(-0.216096\pi\)
0.778272 + 0.627927i \(0.216096\pi\)
\(602\) −0.0799473 −0.00325841
\(603\) −22.5963 −0.920192
\(604\) −23.6466 −0.962166
\(605\) 0 0
\(606\) −3.74805 −0.152254
\(607\) −27.1567 −1.10226 −0.551129 0.834420i \(-0.685803\pi\)
−0.551129 + 0.834420i \(0.685803\pi\)
\(608\) −28.4342 −1.15316
\(609\) −40.9632 −1.65991
\(610\) 0 0
\(611\) −6.30805 −0.255196
\(612\) 0 0
\(613\) −2.48591 −0.100405 −0.0502025 0.998739i \(-0.515987\pi\)
−0.0502025 + 0.998739i \(0.515987\pi\)
\(614\) 11.7826 0.475506
\(615\) 0 0
\(616\) 56.1349 2.26174
\(617\) −43.1941 −1.73893 −0.869465 0.493994i \(-0.835536\pi\)
−0.869465 + 0.493994i \(0.835536\pi\)
\(618\) −25.0210 −1.00649
\(619\) −1.37692 −0.0553430 −0.0276715 0.999617i \(-0.508809\pi\)
−0.0276715 + 0.999617i \(0.508809\pi\)
\(620\) 0 0
\(621\) 8.39893 0.337037
\(622\) −31.4250 −1.26003
\(623\) 9.99347 0.400380
\(624\) 2.16103 0.0865106
\(625\) 0 0
\(626\) 12.9304 0.516803
\(627\) −88.1162 −3.51902
\(628\) 13.8043 0.550851
\(629\) 0 0
\(630\) 0 0
\(631\) −32.4351 −1.29122 −0.645611 0.763667i \(-0.723397\pi\)
−0.645611 + 0.763667i \(0.723397\pi\)
\(632\) 15.6014 0.620590
\(633\) 35.4928 1.41071
\(634\) −9.50698 −0.377570
\(635\) 0 0
\(636\) 0.980749 0.0388892
\(637\) −2.98945 −0.118446
\(638\) 29.4975 1.16782
\(639\) 43.3015 1.71298
\(640\) 0 0
\(641\) −22.2992 −0.880764 −0.440382 0.897811i \(-0.645157\pi\)
−0.440382 + 0.897811i \(0.645157\pi\)
\(642\) 7.36471 0.290662
\(643\) −11.7260 −0.462430 −0.231215 0.972903i \(-0.574270\pi\)
−0.231215 + 0.972903i \(0.574270\pi\)
\(644\) 10.3504 0.407865
\(645\) 0 0
\(646\) 0 0
\(647\) 37.3217 1.46727 0.733634 0.679544i \(-0.237823\pi\)
0.733634 + 0.679544i \(0.237823\pi\)
\(648\) 14.5407 0.571212
\(649\) 24.8943 0.977188
\(650\) 0 0
\(651\) −30.5610 −1.19778
\(652\) 20.6985 0.810616
\(653\) 1.75573 0.0687071 0.0343535 0.999410i \(-0.489063\pi\)
0.0343535 + 0.999410i \(0.489063\pi\)
\(654\) 14.7000 0.574815
\(655\) 0 0
\(656\) −1.19724 −0.0467443
\(657\) 6.64553 0.259267
\(658\) −16.2012 −0.631590
\(659\) 6.02834 0.234831 0.117415 0.993083i \(-0.462539\pi\)
0.117415 + 0.993083i \(0.462539\pi\)
\(660\) 0 0
\(661\) 32.0199 1.24543 0.622715 0.782449i \(-0.286030\pi\)
0.622715 + 0.782449i \(0.286030\pi\)
\(662\) −5.43353 −0.211180
\(663\) 0 0
\(664\) −36.7653 −1.42677
\(665\) 0 0
\(666\) 1.53446 0.0594592
\(667\) 15.5778 0.603176
\(668\) 20.2336 0.782860
\(669\) 5.59723 0.216401
\(670\) 0 0
\(671\) 76.2805 2.94478
\(672\) −42.9595 −1.65720
\(673\) −39.5902 −1.52609 −0.763044 0.646346i \(-0.776296\pi\)
−0.763044 + 0.646346i \(0.776296\pi\)
\(674\) 15.9765 0.615391
\(675\) 0 0
\(676\) 12.5033 0.480897
\(677\) 6.99467 0.268827 0.134413 0.990925i \(-0.457085\pi\)
0.134413 + 0.990925i \(0.457085\pi\)
\(678\) 23.0077 0.883605
\(679\) −40.0286 −1.53616
\(680\) 0 0
\(681\) −38.5677 −1.47792
\(682\) 22.0069 0.842689
\(683\) −37.2155 −1.42401 −0.712005 0.702174i \(-0.752213\pi\)
−0.712005 + 0.702174i \(0.752213\pi\)
\(684\) 23.3844 0.894126
\(685\) 0 0
\(686\) 13.1802 0.503221
\(687\) −7.02084 −0.267862
\(688\) −0.0188663 −0.000719272 0
\(689\) 0.400362 0.0152526
\(690\) 0 0
\(691\) 15.6482 0.595286 0.297643 0.954677i \(-0.403800\pi\)
0.297643 + 0.954677i \(0.403800\pi\)
\(692\) −24.2224 −0.920798
\(693\) −76.2127 −2.89508
\(694\) −8.90101 −0.337878
\(695\) 0 0
\(696\) −39.1650 −1.48455
\(697\) 0 0
\(698\) 25.9276 0.981372
\(699\) −8.31576 −0.314531
\(700\) 0 0
\(701\) −6.08551 −0.229847 −0.114923 0.993374i \(-0.536662\pi\)
−0.114923 + 0.993374i \(0.536662\pi\)
\(702\) −3.00965 −0.113592
\(703\) −2.15252 −0.0811838
\(704\) 39.5570 1.49086
\(705\) 0 0
\(706\) 22.1193 0.832469
\(707\) 4.54746 0.171025
\(708\) −11.5403 −0.433712
\(709\) −19.7081 −0.740154 −0.370077 0.929001i \(-0.620669\pi\)
−0.370077 + 0.929001i \(0.620669\pi\)
\(710\) 0 0
\(711\) −21.1816 −0.794371
\(712\) 9.55480 0.358081
\(713\) 11.6220 0.435247
\(714\) 0 0
\(715\) 0 0
\(716\) −2.10357 −0.0786141
\(717\) 36.3147 1.35620
\(718\) 32.8425 1.22567
\(719\) −15.9164 −0.593583 −0.296791 0.954942i \(-0.595917\pi\)
−0.296791 + 0.954942i \(0.595917\pi\)
\(720\) 0 0
\(721\) 30.3576 1.13058
\(722\) 10.0522 0.374104
\(723\) −33.0796 −1.23024
\(724\) 0.763588 0.0283785
\(725\) 0 0
\(726\) 67.8096 2.51665
\(727\) −22.2643 −0.825736 −0.412868 0.910791i \(-0.635473\pi\)
−0.412868 + 0.910791i \(0.635473\pi\)
\(728\) −10.6230 −0.393713
\(729\) −41.1518 −1.52414
\(730\) 0 0
\(731\) 0 0
\(732\) −35.3616 −1.30700
\(733\) 5.67351 0.209556 0.104778 0.994496i \(-0.466587\pi\)
0.104778 + 0.994496i \(0.466587\pi\)
\(734\) 8.93169 0.329675
\(735\) 0 0
\(736\) 16.3370 0.602191
\(737\) −34.4857 −1.27030
\(738\) 6.58562 0.242420
\(739\) −39.7975 −1.46397 −0.731987 0.681319i \(-0.761407\pi\)
−0.731987 + 0.681319i \(0.761407\pi\)
\(740\) 0 0
\(741\) 16.6751 0.612575
\(742\) 1.02827 0.0377488
\(743\) −10.6500 −0.390709 −0.195355 0.980733i \(-0.562586\pi\)
−0.195355 + 0.980733i \(0.562586\pi\)
\(744\) −29.2195 −1.07124
\(745\) 0 0
\(746\) 2.95464 0.108177
\(747\) 49.9153 1.82630
\(748\) 0 0
\(749\) −8.93549 −0.326496
\(750\) 0 0
\(751\) 18.1195 0.661190 0.330595 0.943773i \(-0.392751\pi\)
0.330595 + 0.943773i \(0.392751\pi\)
\(752\) −3.82324 −0.139419
\(753\) 46.2014 1.68367
\(754\) −5.58211 −0.203289
\(755\) 0 0
\(756\) 8.94507 0.325329
\(757\) 17.0771 0.620676 0.310338 0.950626i \(-0.399558\pi\)
0.310338 + 0.950626i \(0.399558\pi\)
\(758\) 35.1774 1.27770
\(759\) 50.6276 1.83767
\(760\) 0 0
\(761\) −31.9719 −1.15898 −0.579491 0.814979i \(-0.696749\pi\)
−0.579491 + 0.814979i \(0.696749\pi\)
\(762\) 35.7066 1.29351
\(763\) −17.8353 −0.645681
\(764\) 5.64701 0.204301
\(765\) 0 0
\(766\) 8.97540 0.324294
\(767\) −4.71100 −0.170104
\(768\) −45.0707 −1.62635
\(769\) −34.9147 −1.25906 −0.629529 0.776977i \(-0.716752\pi\)
−0.629529 + 0.776977i \(0.716752\pi\)
\(770\) 0 0
\(771\) −18.2276 −0.656452
\(772\) 16.0182 0.576509
\(773\) −4.49160 −0.161552 −0.0807758 0.996732i \(-0.525740\pi\)
−0.0807758 + 0.996732i \(0.525740\pi\)
\(774\) 0.103778 0.00373021
\(775\) 0 0
\(776\) −38.2715 −1.37387
\(777\) −3.25211 −0.116669
\(778\) 31.9310 1.14478
\(779\) −9.23821 −0.330993
\(780\) 0 0
\(781\) 66.0854 2.36472
\(782\) 0 0
\(783\) 13.4627 0.481117
\(784\) −1.81188 −0.0647098
\(785\) 0 0
\(786\) −32.3174 −1.15272
\(787\) 8.65141 0.308390 0.154195 0.988040i \(-0.450722\pi\)
0.154195 + 0.988040i \(0.450722\pi\)
\(788\) −6.79148 −0.241936
\(789\) −16.5245 −0.588289
\(790\) 0 0
\(791\) −27.9149 −0.992539
\(792\) −72.8673 −2.58923
\(793\) −14.4353 −0.512613
\(794\) 8.49772 0.301573
\(795\) 0 0
\(796\) −16.0019 −0.567173
\(797\) −19.0137 −0.673500 −0.336750 0.941594i \(-0.609328\pi\)
−0.336750 + 0.941594i \(0.609328\pi\)
\(798\) 42.8274 1.51607
\(799\) 0 0
\(800\) 0 0
\(801\) −12.9723 −0.458353
\(802\) −18.7943 −0.663649
\(803\) 10.1422 0.357910
\(804\) 15.9866 0.563806
\(805\) 0 0
\(806\) −4.16459 −0.146691
\(807\) −3.41949 −0.120372
\(808\) 4.34784 0.152957
\(809\) 22.6712 0.797077 0.398538 0.917152i \(-0.369518\pi\)
0.398538 + 0.917152i \(0.369518\pi\)
\(810\) 0 0
\(811\) 24.1167 0.846850 0.423425 0.905931i \(-0.360828\pi\)
0.423425 + 0.905931i \(0.360828\pi\)
\(812\) 16.5908 0.582222
\(813\) 27.2445 0.955505
\(814\) 2.34184 0.0820816
\(815\) 0 0
\(816\) 0 0
\(817\) −0.145578 −0.00509311
\(818\) 10.0285 0.350638
\(819\) 14.4225 0.503963
\(820\) 0 0
\(821\) −0.114687 −0.00400260 −0.00200130 0.999998i \(-0.500637\pi\)
−0.00200130 + 0.999998i \(0.500637\pi\)
\(822\) −7.59799 −0.265010
\(823\) 33.8610 1.18032 0.590161 0.807286i \(-0.299064\pi\)
0.590161 + 0.807286i \(0.299064\pi\)
\(824\) 29.0250 1.01114
\(825\) 0 0
\(826\) −12.0995 −0.420995
\(827\) −20.5646 −0.715102 −0.357551 0.933894i \(-0.616388\pi\)
−0.357551 + 0.933894i \(0.616388\pi\)
\(828\) −13.4357 −0.466921
\(829\) 26.7935 0.930576 0.465288 0.885159i \(-0.345951\pi\)
0.465288 + 0.885159i \(0.345951\pi\)
\(830\) 0 0
\(831\) −67.2314 −2.33223
\(832\) −7.48577 −0.259522
\(833\) 0 0
\(834\) 50.0975 1.73473
\(835\) 0 0
\(836\) 35.6886 1.23431
\(837\) 10.0440 0.347170
\(838\) −34.0092 −1.17483
\(839\) 13.8332 0.477575 0.238788 0.971072i \(-0.423250\pi\)
0.238788 + 0.971072i \(0.423250\pi\)
\(840\) 0 0
\(841\) −4.03023 −0.138973
\(842\) −14.4628 −0.498419
\(843\) 15.6172 0.537886
\(844\) −14.3752 −0.494814
\(845\) 0 0
\(846\) 21.0304 0.723041
\(847\) −82.2724 −2.82691
\(848\) 0.242655 0.00833281
\(849\) −48.9168 −1.67882
\(850\) 0 0
\(851\) 1.23674 0.0423950
\(852\) −30.6354 −1.04955
\(853\) −12.7815 −0.437631 −0.218816 0.975766i \(-0.570219\pi\)
−0.218816 + 0.975766i \(0.570219\pi\)
\(854\) −37.0749 −1.26868
\(855\) 0 0
\(856\) −8.54325 −0.292002
\(857\) −6.31557 −0.215736 −0.107868 0.994165i \(-0.534402\pi\)
−0.107868 + 0.994165i \(0.534402\pi\)
\(858\) −18.1418 −0.619350
\(859\) −35.1334 −1.19874 −0.599369 0.800473i \(-0.704582\pi\)
−0.599369 + 0.800473i \(0.704582\pi\)
\(860\) 0 0
\(861\) −13.9575 −0.475669
\(862\) −22.4847 −0.765833
\(863\) 44.2102 1.50493 0.752466 0.658632i \(-0.228864\pi\)
0.752466 + 0.658632i \(0.228864\pi\)
\(864\) 14.1188 0.480331
\(865\) 0 0
\(866\) 17.6279 0.599022
\(867\) 0 0
\(868\) 12.3777 0.420127
\(869\) −32.3266 −1.09661
\(870\) 0 0
\(871\) 6.52608 0.221128
\(872\) −17.0524 −0.577467
\(873\) 51.9601 1.75858
\(874\) −16.2868 −0.550908
\(875\) 0 0
\(876\) −4.70164 −0.158854
\(877\) 23.6073 0.797164 0.398582 0.917133i \(-0.369503\pi\)
0.398582 + 0.917133i \(0.369503\pi\)
\(878\) −19.5171 −0.658671
\(879\) −22.0367 −0.743278
\(880\) 0 0
\(881\) 33.0624 1.11390 0.556950 0.830546i \(-0.311971\pi\)
0.556950 + 0.830546i \(0.311971\pi\)
\(882\) 9.96654 0.335591
\(883\) −58.1141 −1.95569 −0.977847 0.209320i \(-0.932875\pi\)
−0.977847 + 0.209320i \(0.932875\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −28.2938 −0.950550
\(887\) 28.0097 0.940474 0.470237 0.882540i \(-0.344168\pi\)
0.470237 + 0.882540i \(0.344168\pi\)
\(888\) −3.10936 −0.104343
\(889\) −43.3223 −1.45298
\(890\) 0 0
\(891\) −30.1288 −1.00935
\(892\) −2.26697 −0.0759039
\(893\) −29.5012 −0.987219
\(894\) 7.53895 0.252140
\(895\) 0 0
\(896\) 13.2088 0.441276
\(897\) −9.58077 −0.319893
\(898\) −31.4300 −1.04883
\(899\) 18.6289 0.621310
\(900\) 0 0
\(901\) 0 0
\(902\) 10.0508 0.334654
\(903\) −0.219944 −0.00731929
\(904\) −26.6895 −0.887680
\(905\) 0 0
\(906\) 56.2164 1.86766
\(907\) −49.9204 −1.65758 −0.828790 0.559560i \(-0.810970\pi\)
−0.828790 + 0.559560i \(0.810970\pi\)
\(908\) 15.6206 0.518387
\(909\) −5.90294 −0.195788
\(910\) 0 0
\(911\) 21.8797 0.724908 0.362454 0.932002i \(-0.381939\pi\)
0.362454 + 0.932002i \(0.381939\pi\)
\(912\) 10.1066 0.334663
\(913\) 76.1790 2.52116
\(914\) 8.13734 0.269159
\(915\) 0 0
\(916\) 2.84356 0.0939538
\(917\) 39.2102 1.29483
\(918\) 0 0
\(919\) −11.0529 −0.364600 −0.182300 0.983243i \(-0.558354\pi\)
−0.182300 + 0.983243i \(0.558354\pi\)
\(920\) 0 0
\(921\) 32.4153 1.06812
\(922\) −36.8378 −1.21319
\(923\) −12.5060 −0.411640
\(924\) 53.9197 1.77383
\(925\) 0 0
\(926\) −26.1671 −0.859905
\(927\) −39.4065 −1.29428
\(928\) 26.1867 0.859621
\(929\) −33.1333 −1.08707 −0.543534 0.839387i \(-0.682914\pi\)
−0.543534 + 0.839387i \(0.682914\pi\)
\(930\) 0 0
\(931\) −13.9809 −0.458206
\(932\) 3.36803 0.110323
\(933\) −86.4540 −2.83038
\(934\) −3.31733 −0.108546
\(935\) 0 0
\(936\) 13.7894 0.450721
\(937\) 58.3815 1.90724 0.953621 0.301011i \(-0.0973241\pi\)
0.953621 + 0.301011i \(0.0973241\pi\)
\(938\) 16.7612 0.547273
\(939\) 35.5731 1.16088
\(940\) 0 0
\(941\) −6.09945 −0.198836 −0.0994181 0.995046i \(-0.531698\pi\)
−0.0994181 + 0.995046i \(0.531698\pi\)
\(942\) −32.8177 −1.06926
\(943\) 5.30787 0.172848
\(944\) −2.85529 −0.0929318
\(945\) 0 0
\(946\) 0.158382 0.00514944
\(947\) 47.1485 1.53212 0.766060 0.642769i \(-0.222215\pi\)
0.766060 + 0.642769i \(0.222215\pi\)
\(948\) 14.9857 0.486714
\(949\) −1.91931 −0.0623034
\(950\) 0 0
\(951\) −26.1548 −0.848129
\(952\) 0 0
\(953\) −26.8459 −0.869625 −0.434812 0.900521i \(-0.643185\pi\)
−0.434812 + 0.900521i \(0.643185\pi\)
\(954\) −1.33477 −0.0432147
\(955\) 0 0
\(956\) −14.7081 −0.475694
\(957\) 81.1513 2.62325
\(958\) 14.7890 0.477812
\(959\) 9.21852 0.297682
\(960\) 0 0
\(961\) −17.1017 −0.551668
\(962\) −0.443171 −0.0142884
\(963\) 11.5989 0.373770
\(964\) 13.3978 0.431514
\(965\) 0 0
\(966\) −24.6067 −0.791708
\(967\) 34.1142 1.09704 0.548519 0.836138i \(-0.315192\pi\)
0.548519 + 0.836138i \(0.315192\pi\)
\(968\) −78.6610 −2.52826
\(969\) 0 0
\(970\) 0 0
\(971\) 22.9516 0.736551 0.368276 0.929717i \(-0.379948\pi\)
0.368276 + 0.929717i \(0.379948\pi\)
\(972\) 22.6384 0.726128
\(973\) −60.7825 −1.94860
\(974\) −25.3327 −0.811711
\(975\) 0 0
\(976\) −8.74911 −0.280052
\(977\) −19.8739 −0.635823 −0.317912 0.948120i \(-0.602982\pi\)
−0.317912 + 0.948120i \(0.602982\pi\)
\(978\) −49.2077 −1.57349
\(979\) −19.7979 −0.632743
\(980\) 0 0
\(981\) 23.1515 0.739172
\(982\) −27.9585 −0.892192
\(983\) −59.0708 −1.88407 −0.942034 0.335518i \(-0.891089\pi\)
−0.942034 + 0.335518i \(0.891089\pi\)
\(984\) −13.3448 −0.425416
\(985\) 0 0
\(986\) 0 0
\(987\) −44.5715 −1.41873
\(988\) −6.75370 −0.214864
\(989\) 0.0836424 0.00265967
\(990\) 0 0
\(991\) −10.5941 −0.336534 −0.168267 0.985741i \(-0.553817\pi\)
−0.168267 + 0.985741i \(0.553817\pi\)
\(992\) 19.5368 0.620296
\(993\) −14.9483 −0.474370
\(994\) −32.1197 −1.01878
\(995\) 0 0
\(996\) −35.3145 −1.11898
\(997\) 40.7864 1.29172 0.645860 0.763456i \(-0.276499\pi\)
0.645860 + 0.763456i \(0.276499\pi\)
\(998\) 31.3804 0.993331
\(999\) 1.06882 0.0338159
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bq.1.7 12
5.4 even 2 1445.2.a.q.1.6 12
17.10 odd 16 425.2.m.b.151.3 24
17.12 odd 16 425.2.m.b.76.3 24
17.16 even 2 7225.2.a.bs.1.7 12
85.4 even 4 1445.2.d.j.866.14 24
85.12 even 16 425.2.n.c.399.3 24
85.27 even 16 425.2.n.f.49.4 24
85.29 odd 16 85.2.l.a.76.4 yes 24
85.44 odd 16 85.2.l.a.66.4 24
85.63 even 16 425.2.n.f.399.4 24
85.64 even 4 1445.2.d.j.866.13 24
85.78 even 16 425.2.n.c.49.3 24
85.84 even 2 1445.2.a.p.1.6 12
255.29 even 16 765.2.be.b.586.3 24
255.44 even 16 765.2.be.b.406.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.4 24 85.44 odd 16
85.2.l.a.76.4 yes 24 85.29 odd 16
425.2.m.b.76.3 24 17.12 odd 16
425.2.m.b.151.3 24 17.10 odd 16
425.2.n.c.49.3 24 85.78 even 16
425.2.n.c.399.3 24 85.12 even 16
425.2.n.f.49.4 24 85.27 even 16
425.2.n.f.399.4 24 85.63 even 16
765.2.be.b.406.3 24 255.44 even 16
765.2.be.b.586.3 24 255.29 even 16
1445.2.a.p.1.6 12 85.84 even 2
1445.2.a.q.1.6 12 5.4 even 2
1445.2.d.j.866.13 24 85.64 even 4
1445.2.d.j.866.14 24 85.4 even 4
7225.2.a.bq.1.7 12 1.1 even 1 trivial
7225.2.a.bs.1.7 12 17.16 even 2