Properties

Label 7225.2.a.bq.1.10
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(1.80583\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80583 q^{2} +0.687917 q^{3} +1.26102 q^{4} +1.24226 q^{6} -4.34193 q^{7} -1.33447 q^{8} -2.52677 q^{9} +0.0525004 q^{11} +0.867478 q^{12} -3.02508 q^{13} -7.84078 q^{14} -4.93187 q^{16} -4.56292 q^{18} +7.82043 q^{19} -2.98689 q^{21} +0.0948069 q^{22} +1.04197 q^{23} -0.918004 q^{24} -5.46278 q^{26} -3.80196 q^{27} -5.47526 q^{28} +0.420754 q^{29} -1.38429 q^{31} -6.23717 q^{32} +0.0361159 q^{33} -3.18631 q^{36} +0.336949 q^{37} +14.1224 q^{38} -2.08100 q^{39} +6.59268 q^{41} -5.39381 q^{42} +9.99466 q^{43} +0.0662042 q^{44} +1.88162 q^{46} +6.13168 q^{47} -3.39272 q^{48} +11.8523 q^{49} -3.81469 q^{52} +12.0629 q^{53} -6.86569 q^{54} +5.79417 q^{56} +5.37981 q^{57} +0.759811 q^{58} -5.09779 q^{59} +5.97063 q^{61} -2.49979 q^{62} +10.9711 q^{63} -1.39954 q^{64} +0.0652192 q^{66} +0.916040 q^{67} +0.716788 q^{69} -4.17986 q^{71} +3.37190 q^{72} -5.39059 q^{73} +0.608473 q^{74} +9.86173 q^{76} -0.227953 q^{77} -3.75794 q^{78} +9.98296 q^{79} +4.96488 q^{81} +11.9053 q^{82} -6.53008 q^{83} -3.76653 q^{84} +18.0487 q^{86} +0.289444 q^{87} -0.0700602 q^{88} +10.2159 q^{89} +13.1347 q^{91} +1.31395 q^{92} -0.952278 q^{93} +11.0728 q^{94} -4.29066 q^{96} -19.2238 q^{97} +21.4033 q^{98} -0.132657 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} - 8 q^{3} + 12 q^{4} + 8 q^{6} - 16 q^{7} + 12 q^{8} + 12 q^{9} + 16 q^{11} - 16 q^{12} + 8 q^{13} - 16 q^{14} + 12 q^{16} - 4 q^{18} + 16 q^{21} - 16 q^{22} - 16 q^{23} + 16 q^{26} - 32 q^{27}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80583 1.27691 0.638457 0.769657i \(-0.279573\pi\)
0.638457 + 0.769657i \(0.279573\pi\)
\(3\) 0.687917 0.397169 0.198585 0.980084i \(-0.436366\pi\)
0.198585 + 0.980084i \(0.436366\pi\)
\(4\) 1.26102 0.630511
\(5\) 0 0
\(6\) 1.24226 0.507151
\(7\) −4.34193 −1.64109 −0.820547 0.571579i \(-0.806331\pi\)
−0.820547 + 0.571579i \(0.806331\pi\)
\(8\) −1.33447 −0.471806
\(9\) −2.52677 −0.842257
\(10\) 0 0
\(11\) 0.0525004 0.0158295 0.00791474 0.999969i \(-0.497481\pi\)
0.00791474 + 0.999969i \(0.497481\pi\)
\(12\) 0.867478 0.250419
\(13\) −3.02508 −0.839006 −0.419503 0.907754i \(-0.637796\pi\)
−0.419503 + 0.907754i \(0.637796\pi\)
\(14\) −7.84078 −2.09554
\(15\) 0 0
\(16\) −4.93187 −1.23297
\(17\) 0 0
\(18\) −4.56292 −1.07549
\(19\) 7.82043 1.79413 0.897065 0.441898i \(-0.145695\pi\)
0.897065 + 0.441898i \(0.145695\pi\)
\(20\) 0 0
\(21\) −2.98689 −0.651792
\(22\) 0.0948069 0.0202129
\(23\) 1.04197 0.217266 0.108633 0.994082i \(-0.465353\pi\)
0.108633 + 0.994082i \(0.465353\pi\)
\(24\) −0.918004 −0.187387
\(25\) 0 0
\(26\) −5.46278 −1.07134
\(27\) −3.80196 −0.731687
\(28\) −5.47526 −1.03473
\(29\) 0.420754 0.0781321 0.0390661 0.999237i \(-0.487562\pi\)
0.0390661 + 0.999237i \(0.487562\pi\)
\(30\) 0 0
\(31\) −1.38429 −0.248626 −0.124313 0.992243i \(-0.539673\pi\)
−0.124313 + 0.992243i \(0.539673\pi\)
\(32\) −6.23717 −1.10259
\(33\) 0.0361159 0.00628698
\(34\) 0 0
\(35\) 0 0
\(36\) −3.18631 −0.531052
\(37\) 0.336949 0.0553941 0.0276971 0.999616i \(-0.491183\pi\)
0.0276971 + 0.999616i \(0.491183\pi\)
\(38\) 14.1224 2.29095
\(39\) −2.08100 −0.333227
\(40\) 0 0
\(41\) 6.59268 1.02960 0.514802 0.857309i \(-0.327865\pi\)
0.514802 + 0.857309i \(0.327865\pi\)
\(42\) −5.39381 −0.832283
\(43\) 9.99466 1.52417 0.762086 0.647476i \(-0.224175\pi\)
0.762086 + 0.647476i \(0.224175\pi\)
\(44\) 0.0662042 0.00998065
\(45\) 0 0
\(46\) 1.88162 0.277430
\(47\) 6.13168 0.894398 0.447199 0.894435i \(-0.352422\pi\)
0.447199 + 0.894435i \(0.352422\pi\)
\(48\) −3.39272 −0.489696
\(49\) 11.8523 1.69319
\(50\) 0 0
\(51\) 0 0
\(52\) −3.81469 −0.529002
\(53\) 12.0629 1.65696 0.828482 0.560016i \(-0.189205\pi\)
0.828482 + 0.560016i \(0.189205\pi\)
\(54\) −6.86569 −0.934302
\(55\) 0 0
\(56\) 5.79417 0.774279
\(57\) 5.37981 0.712573
\(58\) 0.759811 0.0997681
\(59\) −5.09779 −0.663676 −0.331838 0.943336i \(-0.607669\pi\)
−0.331838 + 0.943336i \(0.607669\pi\)
\(60\) 0 0
\(61\) 5.97063 0.764461 0.382230 0.924067i \(-0.375156\pi\)
0.382230 + 0.924067i \(0.375156\pi\)
\(62\) −2.49979 −0.317474
\(63\) 10.9711 1.38222
\(64\) −1.39954 −0.174943
\(65\) 0 0
\(66\) 0.0652192 0.00802793
\(67\) 0.916040 0.111912 0.0559561 0.998433i \(-0.482179\pi\)
0.0559561 + 0.998433i \(0.482179\pi\)
\(68\) 0 0
\(69\) 0.716788 0.0862912
\(70\) 0 0
\(71\) −4.17986 −0.496058 −0.248029 0.968753i \(-0.579783\pi\)
−0.248029 + 0.968753i \(0.579783\pi\)
\(72\) 3.37190 0.397382
\(73\) −5.39059 −0.630920 −0.315460 0.948939i \(-0.602159\pi\)
−0.315460 + 0.948939i \(0.602159\pi\)
\(74\) 0.608473 0.0707336
\(75\) 0 0
\(76\) 9.86173 1.13122
\(77\) −0.227953 −0.0259777
\(78\) −3.75794 −0.425503
\(79\) 9.98296 1.12317 0.561585 0.827419i \(-0.310192\pi\)
0.561585 + 0.827419i \(0.310192\pi\)
\(80\) 0 0
\(81\) 4.96488 0.551653
\(82\) 11.9053 1.31472
\(83\) −6.53008 −0.716770 −0.358385 0.933574i \(-0.616672\pi\)
−0.358385 + 0.933574i \(0.616672\pi\)
\(84\) −3.76653 −0.410962
\(85\) 0 0
\(86\) 18.0487 1.94624
\(87\) 0.289444 0.0310317
\(88\) −0.0700602 −0.00746845
\(89\) 10.2159 1.08289 0.541443 0.840738i \(-0.317878\pi\)
0.541443 + 0.840738i \(0.317878\pi\)
\(90\) 0 0
\(91\) 13.1347 1.37689
\(92\) 1.31395 0.136988
\(93\) −0.952278 −0.0987466
\(94\) 11.0728 1.14207
\(95\) 0 0
\(96\) −4.29066 −0.437914
\(97\) −19.2238 −1.95188 −0.975940 0.218037i \(-0.930035\pi\)
−0.975940 + 0.218037i \(0.930035\pi\)
\(98\) 21.4033 2.16206
\(99\) −0.132657 −0.0133325
\(100\) 0 0
\(101\) 13.2926 1.32266 0.661331 0.750094i \(-0.269992\pi\)
0.661331 + 0.750094i \(0.269992\pi\)
\(102\) 0 0
\(103\) 6.91299 0.681157 0.340579 0.940216i \(-0.389377\pi\)
0.340579 + 0.940216i \(0.389377\pi\)
\(104\) 4.03687 0.395848
\(105\) 0 0
\(106\) 21.7835 2.11580
\(107\) −14.7407 −1.42504 −0.712520 0.701651i \(-0.752446\pi\)
−0.712520 + 0.701651i \(0.752446\pi\)
\(108\) −4.79435 −0.461337
\(109\) −4.74828 −0.454803 −0.227402 0.973801i \(-0.573023\pi\)
−0.227402 + 0.973801i \(0.573023\pi\)
\(110\) 0 0
\(111\) 0.231793 0.0220008
\(112\) 21.4138 2.02342
\(113\) −3.01331 −0.283468 −0.141734 0.989905i \(-0.545268\pi\)
−0.141734 + 0.989905i \(0.545268\pi\)
\(114\) 9.71502 0.909895
\(115\) 0 0
\(116\) 0.530580 0.0492631
\(117\) 7.64368 0.706658
\(118\) −9.20574 −0.847457
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9972 −0.999749
\(122\) 10.7819 0.976151
\(123\) 4.53522 0.408927
\(124\) −1.74562 −0.156761
\(125\) 0 0
\(126\) 19.8119 1.76498
\(127\) 0.00828706 0.000735358 0 0.000367679 1.00000i \(-0.499883\pi\)
0.000367679 1.00000i \(0.499883\pi\)
\(128\) 9.94702 0.879200
\(129\) 6.87550 0.605354
\(130\) 0 0
\(131\) −8.18458 −0.715090 −0.357545 0.933896i \(-0.616386\pi\)
−0.357545 + 0.933896i \(0.616386\pi\)
\(132\) 0.0455430 0.00396401
\(133\) −33.9558 −2.94434
\(134\) 1.65421 0.142902
\(135\) 0 0
\(136\) 0 0
\(137\) 2.23387 0.190852 0.0954260 0.995437i \(-0.469579\pi\)
0.0954260 + 0.995437i \(0.469579\pi\)
\(138\) 1.29440 0.110186
\(139\) 19.7358 1.67397 0.836985 0.547225i \(-0.184316\pi\)
0.836985 + 0.547225i \(0.184316\pi\)
\(140\) 0 0
\(141\) 4.21809 0.355227
\(142\) −7.54812 −0.633424
\(143\) −0.158818 −0.0132810
\(144\) 12.4617 1.03847
\(145\) 0 0
\(146\) −9.73448 −0.805632
\(147\) 8.15343 0.672483
\(148\) 0.424900 0.0349266
\(149\) 10.1835 0.834263 0.417132 0.908846i \(-0.363035\pi\)
0.417132 + 0.908846i \(0.363035\pi\)
\(150\) 0 0
\(151\) −15.3484 −1.24903 −0.624516 0.781012i \(-0.714704\pi\)
−0.624516 + 0.781012i \(0.714704\pi\)
\(152\) −10.4361 −0.846482
\(153\) 0 0
\(154\) −0.411645 −0.0331713
\(155\) 0 0
\(156\) −2.62419 −0.210103
\(157\) −9.41222 −0.751177 −0.375588 0.926787i \(-0.622559\pi\)
−0.375588 + 0.926787i \(0.622559\pi\)
\(158\) 18.0275 1.43419
\(159\) 8.29826 0.658095
\(160\) 0 0
\(161\) −4.52415 −0.356553
\(162\) 8.96572 0.704414
\(163\) −12.4453 −0.974793 −0.487397 0.873181i \(-0.662053\pi\)
−0.487397 + 0.873181i \(0.662053\pi\)
\(164\) 8.31351 0.649176
\(165\) 0 0
\(166\) −11.7922 −0.915253
\(167\) −12.6025 −0.975211 −0.487605 0.873064i \(-0.662130\pi\)
−0.487605 + 0.873064i \(0.662130\pi\)
\(168\) 3.98591 0.307520
\(169\) −3.84890 −0.296069
\(170\) 0 0
\(171\) −19.7604 −1.51112
\(172\) 12.6035 0.961007
\(173\) 12.1965 0.927284 0.463642 0.886023i \(-0.346542\pi\)
0.463642 + 0.886023i \(0.346542\pi\)
\(174\) 0.522687 0.0396248
\(175\) 0 0
\(176\) −0.258925 −0.0195172
\(177\) −3.50686 −0.263592
\(178\) 18.4482 1.38275
\(179\) 13.8608 1.03600 0.518002 0.855379i \(-0.326676\pi\)
0.518002 + 0.855379i \(0.326676\pi\)
\(180\) 0 0
\(181\) 2.04424 0.151947 0.0759736 0.997110i \(-0.475794\pi\)
0.0759736 + 0.997110i \(0.475794\pi\)
\(182\) 23.7190 1.75817
\(183\) 4.10730 0.303620
\(184\) −1.39048 −0.102507
\(185\) 0 0
\(186\) −1.71965 −0.126091
\(187\) 0 0
\(188\) 7.73218 0.563927
\(189\) 16.5078 1.20077
\(190\) 0 0
\(191\) −3.08056 −0.222902 −0.111451 0.993770i \(-0.535550\pi\)
−0.111451 + 0.993770i \(0.535550\pi\)
\(192\) −0.962768 −0.0694818
\(193\) 20.6419 1.48584 0.742918 0.669382i \(-0.233441\pi\)
0.742918 + 0.669382i \(0.233441\pi\)
\(194\) −34.7149 −2.49239
\(195\) 0 0
\(196\) 14.9461 1.06758
\(197\) −18.2365 −1.29930 −0.649649 0.760235i \(-0.725084\pi\)
−0.649649 + 0.760235i \(0.725084\pi\)
\(198\) −0.239555 −0.0170244
\(199\) 26.6677 1.89042 0.945210 0.326463i \(-0.105857\pi\)
0.945210 + 0.326463i \(0.105857\pi\)
\(200\) 0 0
\(201\) 0.630160 0.0444480
\(202\) 24.0041 1.68893
\(203\) −1.82689 −0.128222
\(204\) 0 0
\(205\) 0 0
\(206\) 12.4837 0.869779
\(207\) −2.63282 −0.182993
\(208\) 14.9193 1.03447
\(209\) 0.410576 0.0284001
\(210\) 0 0
\(211\) 7.80566 0.537364 0.268682 0.963229i \(-0.413412\pi\)
0.268682 + 0.963229i \(0.413412\pi\)
\(212\) 15.2115 1.04473
\(213\) −2.87540 −0.197019
\(214\) −26.6193 −1.81966
\(215\) 0 0
\(216\) 5.07360 0.345215
\(217\) 6.01049 0.408019
\(218\) −8.57459 −0.580745
\(219\) −3.70828 −0.250582
\(220\) 0 0
\(221\) 0 0
\(222\) 0.418579 0.0280932
\(223\) −4.76891 −0.319350 −0.159675 0.987170i \(-0.551045\pi\)
−0.159675 + 0.987170i \(0.551045\pi\)
\(224\) 27.0814 1.80945
\(225\) 0 0
\(226\) −5.44152 −0.361964
\(227\) −11.2111 −0.744105 −0.372053 0.928212i \(-0.621346\pi\)
−0.372053 + 0.928212i \(0.621346\pi\)
\(228\) 6.78405 0.449285
\(229\) 20.6484 1.36449 0.682244 0.731125i \(-0.261004\pi\)
0.682244 + 0.731125i \(0.261004\pi\)
\(230\) 0 0
\(231\) −0.156813 −0.0103175
\(232\) −0.561484 −0.0368632
\(233\) −3.05851 −0.200370 −0.100185 0.994969i \(-0.531943\pi\)
−0.100185 + 0.994969i \(0.531943\pi\)
\(234\) 13.8032 0.902342
\(235\) 0 0
\(236\) −6.42842 −0.418455
\(237\) 6.86745 0.446089
\(238\) 0 0
\(239\) 4.94072 0.319588 0.159794 0.987150i \(-0.448917\pi\)
0.159794 + 0.987150i \(0.448917\pi\)
\(240\) 0 0
\(241\) −1.66176 −0.107043 −0.0535217 0.998567i \(-0.517045\pi\)
−0.0535217 + 0.998567i \(0.517045\pi\)
\(242\) −19.8592 −1.27659
\(243\) 14.8213 0.950787
\(244\) 7.52909 0.482001
\(245\) 0 0
\(246\) 8.18983 0.522165
\(247\) −23.6574 −1.50529
\(248\) 1.84729 0.117303
\(249\) −4.49215 −0.284679
\(250\) 0 0
\(251\) 9.14240 0.577063 0.288531 0.957470i \(-0.406833\pi\)
0.288531 + 0.957470i \(0.406833\pi\)
\(252\) 13.8347 0.871506
\(253\) 0.0547038 0.00343920
\(254\) 0.0149650 0.000938989 0
\(255\) 0 0
\(256\) 20.7617 1.29761
\(257\) 16.6522 1.03874 0.519369 0.854550i \(-0.326167\pi\)
0.519369 + 0.854550i \(0.326167\pi\)
\(258\) 12.4160 0.772985
\(259\) −1.46301 −0.0909070
\(260\) 0 0
\(261\) −1.06315 −0.0658073
\(262\) −14.7800 −0.913109
\(263\) 21.7280 1.33981 0.669903 0.742448i \(-0.266335\pi\)
0.669903 + 0.742448i \(0.266335\pi\)
\(264\) −0.0481956 −0.00296624
\(265\) 0 0
\(266\) −61.3183 −3.75967
\(267\) 7.02771 0.430089
\(268\) 1.15515 0.0705618
\(269\) −23.1721 −1.41283 −0.706414 0.707799i \(-0.749688\pi\)
−0.706414 + 0.707799i \(0.749688\pi\)
\(270\) 0 0
\(271\) 3.95595 0.240307 0.120153 0.992755i \(-0.461661\pi\)
0.120153 + 0.992755i \(0.461661\pi\)
\(272\) 0 0
\(273\) 9.03556 0.546857
\(274\) 4.03398 0.243702
\(275\) 0 0
\(276\) 0.903885 0.0544075
\(277\) 16.9099 1.01602 0.508009 0.861352i \(-0.330382\pi\)
0.508009 + 0.861352i \(0.330382\pi\)
\(278\) 35.6395 2.13752
\(279\) 3.49779 0.209407
\(280\) 0 0
\(281\) 4.66987 0.278581 0.139291 0.990252i \(-0.455518\pi\)
0.139291 + 0.990252i \(0.455518\pi\)
\(282\) 7.61715 0.453595
\(283\) 8.70036 0.517183 0.258591 0.965987i \(-0.416742\pi\)
0.258591 + 0.965987i \(0.416742\pi\)
\(284\) −5.27089 −0.312770
\(285\) 0 0
\(286\) −0.286798 −0.0169587
\(287\) −28.6250 −1.68968
\(288\) 15.7599 0.928661
\(289\) 0 0
\(290\) 0 0
\(291\) −13.2244 −0.775227
\(292\) −6.79765 −0.397802
\(293\) −0.739100 −0.0431787 −0.0215893 0.999767i \(-0.506873\pi\)
−0.0215893 + 0.999767i \(0.506873\pi\)
\(294\) 14.7237 0.858704
\(295\) 0 0
\(296\) −0.449649 −0.0261353
\(297\) −0.199605 −0.0115822
\(298\) 18.3896 1.06528
\(299\) −3.15204 −0.182287
\(300\) 0 0
\(301\) −43.3961 −2.50131
\(302\) −27.7165 −1.59491
\(303\) 9.14419 0.525320
\(304\) −38.5693 −2.21210
\(305\) 0 0
\(306\) 0 0
\(307\) 2.86108 0.163290 0.0816451 0.996661i \(-0.473983\pi\)
0.0816451 + 0.996661i \(0.473983\pi\)
\(308\) −0.287454 −0.0163792
\(309\) 4.75556 0.270535
\(310\) 0 0
\(311\) 20.4980 1.16233 0.581167 0.813784i \(-0.302596\pi\)
0.581167 + 0.813784i \(0.302596\pi\)
\(312\) 2.77703 0.157219
\(313\) −8.46543 −0.478494 −0.239247 0.970959i \(-0.576901\pi\)
−0.239247 + 0.970959i \(0.576901\pi\)
\(314\) −16.9969 −0.959189
\(315\) 0 0
\(316\) 12.5887 0.708171
\(317\) 21.0918 1.18463 0.592317 0.805705i \(-0.298213\pi\)
0.592317 + 0.805705i \(0.298213\pi\)
\(318\) 14.9852 0.840331
\(319\) 0.0220898 0.00123679
\(320\) 0 0
\(321\) −10.1404 −0.565982
\(322\) −8.16985 −0.455288
\(323\) 0 0
\(324\) 6.26082 0.347823
\(325\) 0 0
\(326\) −22.4741 −1.24473
\(327\) −3.26643 −0.180634
\(328\) −8.79773 −0.485774
\(329\) −26.6233 −1.46779
\(330\) 0 0
\(331\) −15.2261 −0.836903 −0.418451 0.908239i \(-0.637427\pi\)
−0.418451 + 0.908239i \(0.637427\pi\)
\(332\) −8.23457 −0.451931
\(333\) −0.851393 −0.0466561
\(334\) −22.7580 −1.24526
\(335\) 0 0
\(336\) 14.7309 0.803638
\(337\) −11.4737 −0.625011 −0.312506 0.949916i \(-0.601168\pi\)
−0.312506 + 0.949916i \(0.601168\pi\)
\(338\) −6.95046 −0.378055
\(339\) −2.07290 −0.112585
\(340\) 0 0
\(341\) −0.0726759 −0.00393562
\(342\) −35.6840 −1.92957
\(343\) −21.0685 −1.13759
\(344\) −13.3376 −0.719114
\(345\) 0 0
\(346\) 22.0248 1.18406
\(347\) 14.9843 0.804399 0.402199 0.915552i \(-0.368246\pi\)
0.402199 + 0.915552i \(0.368246\pi\)
\(348\) 0.364995 0.0195658
\(349\) −4.53667 −0.242842 −0.121421 0.992601i \(-0.538745\pi\)
−0.121421 + 0.992601i \(0.538745\pi\)
\(350\) 0 0
\(351\) 11.5012 0.613890
\(352\) −0.327454 −0.0174534
\(353\) 7.71469 0.410612 0.205306 0.978698i \(-0.434181\pi\)
0.205306 + 0.978698i \(0.434181\pi\)
\(354\) −6.33279 −0.336584
\(355\) 0 0
\(356\) 12.8825 0.682771
\(357\) 0 0
\(358\) 25.0302 1.32289
\(359\) −11.0284 −0.582057 −0.291029 0.956714i \(-0.593997\pi\)
−0.291029 + 0.956714i \(0.593997\pi\)
\(360\) 0 0
\(361\) 42.1592 2.21890
\(362\) 3.69155 0.194023
\(363\) −7.56519 −0.397070
\(364\) 16.5631 0.868142
\(365\) 0 0
\(366\) 7.41708 0.387697
\(367\) −16.0285 −0.836683 −0.418342 0.908290i \(-0.637389\pi\)
−0.418342 + 0.908290i \(0.637389\pi\)
\(368\) −5.13885 −0.267881
\(369\) −16.6582 −0.867191
\(370\) 0 0
\(371\) −52.3761 −2.71923
\(372\) −1.20084 −0.0622608
\(373\) −10.2501 −0.530732 −0.265366 0.964148i \(-0.585493\pi\)
−0.265366 + 0.964148i \(0.585493\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −8.18254 −0.421982
\(377\) −1.27281 −0.0655533
\(378\) 29.8103 1.53328
\(379\) −13.9520 −0.716664 −0.358332 0.933594i \(-0.616654\pi\)
−0.358332 + 0.933594i \(0.616654\pi\)
\(380\) 0 0
\(381\) 0.00570081 0.000292061 0
\(382\) −5.56297 −0.284626
\(383\) 5.62186 0.287264 0.143632 0.989631i \(-0.454122\pi\)
0.143632 + 0.989631i \(0.454122\pi\)
\(384\) 6.84272 0.349191
\(385\) 0 0
\(386\) 37.2757 1.89729
\(387\) −25.2542 −1.28374
\(388\) −24.2416 −1.23068
\(389\) 35.8157 1.81593 0.907965 0.419047i \(-0.137636\pi\)
0.907965 + 0.419047i \(0.137636\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −15.8166 −0.798858
\(393\) −5.63032 −0.284012
\(394\) −32.9320 −1.65909
\(395\) 0 0
\(396\) −0.167283 −0.00840627
\(397\) 3.89017 0.195242 0.0976211 0.995224i \(-0.468877\pi\)
0.0976211 + 0.995224i \(0.468877\pi\)
\(398\) 48.1573 2.41390
\(399\) −23.3587 −1.16940
\(400\) 0 0
\(401\) −36.7386 −1.83464 −0.917318 0.398156i \(-0.869650\pi\)
−0.917318 + 0.398156i \(0.869650\pi\)
\(402\) 1.13796 0.0567564
\(403\) 4.18759 0.208599
\(404\) 16.7622 0.833952
\(405\) 0 0
\(406\) −3.29904 −0.163729
\(407\) 0.0176900 0.000876860 0
\(408\) 0 0
\(409\) −22.3529 −1.10528 −0.552641 0.833419i \(-0.686380\pi\)
−0.552641 + 0.833419i \(0.686380\pi\)
\(410\) 0 0
\(411\) 1.53671 0.0758005
\(412\) 8.71743 0.429477
\(413\) 22.1342 1.08915
\(414\) −4.75442 −0.233667
\(415\) 0 0
\(416\) 18.8679 0.925077
\(417\) 13.5766 0.664849
\(418\) 0.741431 0.0362646
\(419\) 21.8658 1.06821 0.534107 0.845417i \(-0.320648\pi\)
0.534107 + 0.845417i \(0.320648\pi\)
\(420\) 0 0
\(421\) 20.6111 1.00453 0.502263 0.864715i \(-0.332501\pi\)
0.502263 + 0.864715i \(0.332501\pi\)
\(422\) 14.0957 0.686168
\(423\) −15.4934 −0.753313
\(424\) −16.0975 −0.781766
\(425\) 0 0
\(426\) −5.19248 −0.251576
\(427\) −25.9241 −1.25455
\(428\) −18.5884 −0.898503
\(429\) −0.109254 −0.00527481
\(430\) 0 0
\(431\) −22.3052 −1.07441 −0.537203 0.843453i \(-0.680519\pi\)
−0.537203 + 0.843453i \(0.680519\pi\)
\(432\) 18.7508 0.902146
\(433\) −8.93127 −0.429210 −0.214605 0.976701i \(-0.568846\pi\)
−0.214605 + 0.976701i \(0.568846\pi\)
\(434\) 10.8539 0.521005
\(435\) 0 0
\(436\) −5.98769 −0.286758
\(437\) 8.14865 0.389803
\(438\) −6.69652 −0.319972
\(439\) 22.2643 1.06262 0.531308 0.847179i \(-0.321701\pi\)
0.531308 + 0.847179i \(0.321701\pi\)
\(440\) 0 0
\(441\) −29.9481 −1.42610
\(442\) 0 0
\(443\) 6.17421 0.293346 0.146673 0.989185i \(-0.453144\pi\)
0.146673 + 0.989185i \(0.453144\pi\)
\(444\) 0.292296 0.0138718
\(445\) 0 0
\(446\) −8.61184 −0.407783
\(447\) 7.00539 0.331344
\(448\) 6.07671 0.287097
\(449\) 30.2985 1.42988 0.714938 0.699188i \(-0.246455\pi\)
0.714938 + 0.699188i \(0.246455\pi\)
\(450\) 0 0
\(451\) 0.346119 0.0162981
\(452\) −3.79984 −0.178730
\(453\) −10.5584 −0.496077
\(454\) −20.2453 −0.950159
\(455\) 0 0
\(456\) −7.17919 −0.336196
\(457\) 25.5756 1.19638 0.598188 0.801356i \(-0.295888\pi\)
0.598188 + 0.801356i \(0.295888\pi\)
\(458\) 37.2876 1.74233
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0565 −0.654677 −0.327338 0.944907i \(-0.606152\pi\)
−0.327338 + 0.944907i \(0.606152\pi\)
\(462\) −0.283177 −0.0131746
\(463\) 25.1233 1.16758 0.583789 0.811905i \(-0.301569\pi\)
0.583789 + 0.811905i \(0.301569\pi\)
\(464\) −2.07511 −0.0963343
\(465\) 0 0
\(466\) −5.52315 −0.255855
\(467\) −22.2900 −1.03146 −0.515730 0.856751i \(-0.672479\pi\)
−0.515730 + 0.856751i \(0.672479\pi\)
\(468\) 9.63884 0.445556
\(469\) −3.97738 −0.183658
\(470\) 0 0
\(471\) −6.47483 −0.298344
\(472\) 6.80285 0.313126
\(473\) 0.524724 0.0241268
\(474\) 12.4014 0.569617
\(475\) 0 0
\(476\) 0 0
\(477\) −30.4801 −1.39559
\(478\) 8.92209 0.408087
\(479\) −26.7496 −1.22222 −0.611111 0.791545i \(-0.709277\pi\)
−0.611111 + 0.791545i \(0.709277\pi\)
\(480\) 0 0
\(481\) −1.01930 −0.0464760
\(482\) −3.00086 −0.136685
\(483\) −3.11224 −0.141612
\(484\) −13.8678 −0.630353
\(485\) 0 0
\(486\) 26.7647 1.21407
\(487\) 23.1460 1.04885 0.524423 0.851458i \(-0.324281\pi\)
0.524423 + 0.851458i \(0.324281\pi\)
\(488\) −7.96763 −0.360677
\(489\) −8.56135 −0.387158
\(490\) 0 0
\(491\) 7.78981 0.351549 0.175775 0.984430i \(-0.443757\pi\)
0.175775 + 0.984430i \(0.443757\pi\)
\(492\) 5.71901 0.257833
\(493\) 0 0
\(494\) −42.7213 −1.92212
\(495\) 0 0
\(496\) 6.82714 0.306548
\(497\) 18.1487 0.814079
\(498\) −8.11207 −0.363510
\(499\) 8.79764 0.393837 0.196918 0.980420i \(-0.436907\pi\)
0.196918 + 0.980420i \(0.436907\pi\)
\(500\) 0 0
\(501\) −8.66948 −0.387324
\(502\) 16.5096 0.736860
\(503\) −7.83946 −0.349544 −0.174772 0.984609i \(-0.555919\pi\)
−0.174772 + 0.984609i \(0.555919\pi\)
\(504\) −14.6405 −0.652141
\(505\) 0 0
\(506\) 0.0987858 0.00439156
\(507\) −2.64773 −0.117590
\(508\) 0.0104502 0.000463651 0
\(509\) −2.52868 −0.112082 −0.0560409 0.998428i \(-0.517848\pi\)
−0.0560409 + 0.998428i \(0.517848\pi\)
\(510\) 0 0
\(511\) 23.4055 1.03540
\(512\) 17.5981 0.777732
\(513\) −29.7330 −1.31274
\(514\) 30.0711 1.32638
\(515\) 0 0
\(516\) 8.67015 0.381682
\(517\) 0.321916 0.0141578
\(518\) −2.64195 −0.116080
\(519\) 8.39019 0.368289
\(520\) 0 0
\(521\) 10.1083 0.442853 0.221426 0.975177i \(-0.428929\pi\)
0.221426 + 0.975177i \(0.428929\pi\)
\(522\) −1.91987 −0.0840303
\(523\) 5.80494 0.253833 0.126916 0.991913i \(-0.459492\pi\)
0.126916 + 0.991913i \(0.459492\pi\)
\(524\) −10.3209 −0.450872
\(525\) 0 0
\(526\) 39.2371 1.71082
\(527\) 0 0
\(528\) −0.178119 −0.00775164
\(529\) −21.9143 −0.952796
\(530\) 0 0
\(531\) 12.8809 0.558985
\(532\) −42.8189 −1.85644
\(533\) −19.9434 −0.863844
\(534\) 12.6908 0.549187
\(535\) 0 0
\(536\) −1.22243 −0.0528009
\(537\) 9.53508 0.411469
\(538\) −41.8449 −1.80406
\(539\) 0.622253 0.0268023
\(540\) 0 0
\(541\) 42.3404 1.82035 0.910177 0.414219i \(-0.135945\pi\)
0.910177 + 0.414219i \(0.135945\pi\)
\(542\) 7.14377 0.306851
\(543\) 1.40627 0.0603487
\(544\) 0 0
\(545\) 0 0
\(546\) 16.3167 0.698290
\(547\) 20.0061 0.855398 0.427699 0.903921i \(-0.359324\pi\)
0.427699 + 0.903921i \(0.359324\pi\)
\(548\) 2.81695 0.120334
\(549\) −15.0864 −0.643872
\(550\) 0 0
\(551\) 3.29048 0.140179
\(552\) −0.956532 −0.0407127
\(553\) −43.3453 −1.84323
\(554\) 30.5364 1.29737
\(555\) 0 0
\(556\) 24.8873 1.05546
\(557\) 25.8965 1.09727 0.548636 0.836062i \(-0.315147\pi\)
0.548636 + 0.836062i \(0.315147\pi\)
\(558\) 6.31641 0.267395
\(559\) −30.2346 −1.27879
\(560\) 0 0
\(561\) 0 0
\(562\) 8.43299 0.355724
\(563\) −28.0309 −1.18136 −0.590681 0.806905i \(-0.701141\pi\)
−0.590681 + 0.806905i \(0.701141\pi\)
\(564\) 5.31910 0.223975
\(565\) 0 0
\(566\) 15.7114 0.660398
\(567\) −21.5571 −0.905315
\(568\) 5.57790 0.234043
\(569\) 39.1921 1.64302 0.821509 0.570195i \(-0.193132\pi\)
0.821509 + 0.570195i \(0.193132\pi\)
\(570\) 0 0
\(571\) −3.86762 −0.161855 −0.0809275 0.996720i \(-0.525788\pi\)
−0.0809275 + 0.996720i \(0.525788\pi\)
\(572\) −0.200273 −0.00837383
\(573\) −2.11917 −0.0885297
\(574\) −51.6918 −2.15757
\(575\) 0 0
\(576\) 3.53632 0.147347
\(577\) 14.4808 0.602845 0.301423 0.953491i \(-0.402539\pi\)
0.301423 + 0.953491i \(0.402539\pi\)
\(578\) 0 0
\(579\) 14.1999 0.590128
\(580\) 0 0
\(581\) 28.3531 1.17629
\(582\) −23.8810 −0.989898
\(583\) 0.633306 0.0262289
\(584\) 7.19357 0.297672
\(585\) 0 0
\(586\) −1.33469 −0.0551355
\(587\) −31.2452 −1.28963 −0.644814 0.764339i \(-0.723065\pi\)
−0.644814 + 0.764339i \(0.723065\pi\)
\(588\) 10.2816 0.424008
\(589\) −10.8258 −0.446068
\(590\) 0 0
\(591\) −12.5452 −0.516041
\(592\) −1.66179 −0.0682991
\(593\) 2.00543 0.0823530 0.0411765 0.999152i \(-0.486889\pi\)
0.0411765 + 0.999152i \(0.486889\pi\)
\(594\) −0.360452 −0.0147895
\(595\) 0 0
\(596\) 12.8416 0.526012
\(597\) 18.3451 0.750816
\(598\) −5.69204 −0.232765
\(599\) 36.0451 1.47276 0.736381 0.676567i \(-0.236533\pi\)
0.736381 + 0.676567i \(0.236533\pi\)
\(600\) 0 0
\(601\) 38.7948 1.58247 0.791237 0.611510i \(-0.209438\pi\)
0.791237 + 0.611510i \(0.209438\pi\)
\(602\) −78.3660 −3.19396
\(603\) −2.31462 −0.0942588
\(604\) −19.3546 −0.787529
\(605\) 0 0
\(606\) 16.5129 0.670789
\(607\) −28.9535 −1.17519 −0.587594 0.809156i \(-0.699925\pi\)
−0.587594 + 0.809156i \(0.699925\pi\)
\(608\) −48.7774 −1.97818
\(609\) −1.25675 −0.0509259
\(610\) 0 0
\(611\) −18.5488 −0.750405
\(612\) 0 0
\(613\) −9.10707 −0.367831 −0.183915 0.982942i \(-0.558877\pi\)
−0.183915 + 0.982942i \(0.558877\pi\)
\(614\) 5.16662 0.208508
\(615\) 0 0
\(616\) 0.304197 0.0122564
\(617\) 5.05551 0.203527 0.101764 0.994809i \(-0.467551\pi\)
0.101764 + 0.994809i \(0.467551\pi\)
\(618\) 8.58774 0.345450
\(619\) 16.8593 0.677632 0.338816 0.940853i \(-0.389974\pi\)
0.338816 + 0.940853i \(0.389974\pi\)
\(620\) 0 0
\(621\) −3.96152 −0.158970
\(622\) 37.0159 1.48420
\(623\) −44.3568 −1.77712
\(624\) 10.2632 0.410858
\(625\) 0 0
\(626\) −15.2871 −0.610996
\(627\) 0.282442 0.0112797
\(628\) −11.8690 −0.473625
\(629\) 0 0
\(630\) 0 0
\(631\) 2.71309 0.108007 0.0540033 0.998541i \(-0.482802\pi\)
0.0540033 + 0.998541i \(0.482802\pi\)
\(632\) −13.3220 −0.529919
\(633\) 5.36965 0.213424
\(634\) 38.0882 1.51268
\(635\) 0 0
\(636\) 10.4643 0.414936
\(637\) −35.8543 −1.42060
\(638\) 0.0398904 0.00157928
\(639\) 10.5615 0.417808
\(640\) 0 0
\(641\) 22.8123 0.901030 0.450515 0.892769i \(-0.351240\pi\)
0.450515 + 0.892769i \(0.351240\pi\)
\(642\) −18.3118 −0.722711
\(643\) 19.2771 0.760214 0.380107 0.924942i \(-0.375887\pi\)
0.380107 + 0.924942i \(0.375887\pi\)
\(644\) −5.70506 −0.224811
\(645\) 0 0
\(646\) 0 0
\(647\) −12.8098 −0.503606 −0.251803 0.967778i \(-0.581024\pi\)
−0.251803 + 0.967778i \(0.581024\pi\)
\(648\) −6.62548 −0.260273
\(649\) −0.267636 −0.0105056
\(650\) 0 0
\(651\) 4.13472 0.162052
\(652\) −15.6938 −0.614618
\(653\) 41.7200 1.63263 0.816315 0.577607i \(-0.196013\pi\)
0.816315 + 0.577607i \(0.196013\pi\)
\(654\) −5.89861 −0.230654
\(655\) 0 0
\(656\) −32.5142 −1.26947
\(657\) 13.6208 0.531397
\(658\) −48.0772 −1.87424
\(659\) −34.3290 −1.33727 −0.668633 0.743592i \(-0.733120\pi\)
−0.668633 + 0.743592i \(0.733120\pi\)
\(660\) 0 0
\(661\) 27.7009 1.07744 0.538720 0.842485i \(-0.318908\pi\)
0.538720 + 0.842485i \(0.318908\pi\)
\(662\) −27.4958 −1.06865
\(663\) 0 0
\(664\) 8.71419 0.338176
\(665\) 0 0
\(666\) −1.53747 −0.0595758
\(667\) 0.438413 0.0169754
\(668\) −15.8920 −0.614881
\(669\) −3.28062 −0.126836
\(670\) 0 0
\(671\) 0.313461 0.0121010
\(672\) 18.6297 0.718658
\(673\) 36.2078 1.39571 0.697854 0.716240i \(-0.254138\pi\)
0.697854 + 0.716240i \(0.254138\pi\)
\(674\) −20.7195 −0.798086
\(675\) 0 0
\(676\) −4.85355 −0.186675
\(677\) −17.1158 −0.657812 −0.328906 0.944363i \(-0.606680\pi\)
−0.328906 + 0.944363i \(0.606680\pi\)
\(678\) −3.74331 −0.143761
\(679\) 83.4684 3.20322
\(680\) 0 0
\(681\) −7.71229 −0.295536
\(682\) −0.131240 −0.00502545
\(683\) 8.85022 0.338644 0.169322 0.985561i \(-0.445842\pi\)
0.169322 + 0.985561i \(0.445842\pi\)
\(684\) −24.9183 −0.952776
\(685\) 0 0
\(686\) −38.0462 −1.45261
\(687\) 14.2044 0.541932
\(688\) −49.2924 −1.87925
\(689\) −36.4911 −1.39020
\(690\) 0 0
\(691\) 1.39834 0.0531953 0.0265977 0.999646i \(-0.491533\pi\)
0.0265977 + 0.999646i \(0.491533\pi\)
\(692\) 15.3801 0.584663
\(693\) 0.575985 0.0218799
\(694\) 27.0591 1.02715
\(695\) 0 0
\(696\) −0.386254 −0.0146409
\(697\) 0 0
\(698\) −8.19245 −0.310089
\(699\) −2.10400 −0.0795806
\(700\) 0 0
\(701\) 2.36331 0.0892608 0.0446304 0.999004i \(-0.485789\pi\)
0.0446304 + 0.999004i \(0.485789\pi\)
\(702\) 20.7693 0.783885
\(703\) 2.63509 0.0993843
\(704\) −0.0734765 −0.00276925
\(705\) 0 0
\(706\) 13.9314 0.524316
\(707\) −57.7154 −2.17061
\(708\) −4.42222 −0.166197
\(709\) −32.5266 −1.22156 −0.610782 0.791799i \(-0.709145\pi\)
−0.610782 + 0.791799i \(0.709145\pi\)
\(710\) 0 0
\(711\) −25.2247 −0.945998
\(712\) −13.6328 −0.510912
\(713\) −1.44239 −0.0540179
\(714\) 0 0
\(715\) 0 0
\(716\) 17.4788 0.653212
\(717\) 3.39880 0.126931
\(718\) −19.9154 −0.743237
\(719\) −16.4302 −0.612744 −0.306372 0.951912i \(-0.599115\pi\)
−0.306372 + 0.951912i \(0.599115\pi\)
\(720\) 0 0
\(721\) −30.0157 −1.11784
\(722\) 76.1323 2.83335
\(723\) −1.14315 −0.0425143
\(724\) 2.57783 0.0958043
\(725\) 0 0
\(726\) −13.6614 −0.507024
\(727\) 32.4709 1.20428 0.602139 0.798391i \(-0.294315\pi\)
0.602139 + 0.798391i \(0.294315\pi\)
\(728\) −17.5278 −0.649624
\(729\) −4.69881 −0.174030
\(730\) 0 0
\(731\) 0 0
\(732\) 5.17939 0.191436
\(733\) 8.63424 0.318913 0.159456 0.987205i \(-0.449026\pi\)
0.159456 + 0.987205i \(0.449026\pi\)
\(734\) −28.9448 −1.06837
\(735\) 0 0
\(736\) −6.49894 −0.239554
\(737\) 0.0480925 0.00177151
\(738\) −30.0819 −1.10733
\(739\) 10.6026 0.390022 0.195011 0.980801i \(-0.437526\pi\)
0.195011 + 0.980801i \(0.437526\pi\)
\(740\) 0 0
\(741\) −16.2743 −0.597853
\(742\) −94.5824 −3.47223
\(743\) −22.3424 −0.819665 −0.409832 0.912161i \(-0.634413\pi\)
−0.409832 + 0.912161i \(0.634413\pi\)
\(744\) 1.27079 0.0465893
\(745\) 0 0
\(746\) −18.5100 −0.677700
\(747\) 16.5000 0.603704
\(748\) 0 0
\(749\) 64.0032 2.33863
\(750\) 0 0
\(751\) −7.13989 −0.260538 −0.130269 0.991479i \(-0.541584\pi\)
−0.130269 + 0.991479i \(0.541584\pi\)
\(752\) −30.2406 −1.10276
\(753\) 6.28921 0.229192
\(754\) −2.29849 −0.0837060
\(755\) 0 0
\(756\) 20.8167 0.757097
\(757\) −18.0266 −0.655186 −0.327593 0.944819i \(-0.606238\pi\)
−0.327593 + 0.944819i \(0.606238\pi\)
\(758\) −25.1949 −0.915119
\(759\) 0.0376317 0.00136594
\(760\) 0 0
\(761\) −49.9437 −1.81046 −0.905230 0.424923i \(-0.860301\pi\)
−0.905230 + 0.424923i \(0.860301\pi\)
\(762\) 0.0102947 0.000372937 0
\(763\) 20.6167 0.746375
\(764\) −3.88466 −0.140542
\(765\) 0 0
\(766\) 10.1521 0.366811
\(767\) 15.4212 0.556828
\(768\) 14.2823 0.515369
\(769\) −43.9115 −1.58349 −0.791745 0.610852i \(-0.790827\pi\)
−0.791745 + 0.610852i \(0.790827\pi\)
\(770\) 0 0
\(771\) 11.4554 0.412554
\(772\) 26.0299 0.936836
\(773\) 9.67759 0.348079 0.174039 0.984739i \(-0.444318\pi\)
0.174039 + 0.984739i \(0.444318\pi\)
\(774\) −45.6048 −1.63923
\(775\) 0 0
\(776\) 25.6536 0.920910
\(777\) −1.00643 −0.0361055
\(778\) 64.6771 2.31879
\(779\) 51.5576 1.84724
\(780\) 0 0
\(781\) −0.219445 −0.00785234
\(782\) 0 0
\(783\) −1.59969 −0.0571683
\(784\) −58.4542 −2.08765
\(785\) 0 0
\(786\) −10.1674 −0.362659
\(787\) −19.8384 −0.707161 −0.353581 0.935404i \(-0.615036\pi\)
−0.353581 + 0.935404i \(0.615036\pi\)
\(788\) −22.9966 −0.819221
\(789\) 14.9471 0.532130
\(790\) 0 0
\(791\) 13.0836 0.465198
\(792\) 0.177026 0.00629035
\(793\) −18.0616 −0.641387
\(794\) 7.02499 0.249308
\(795\) 0 0
\(796\) 33.6285 1.19193
\(797\) −5.56111 −0.196984 −0.0984922 0.995138i \(-0.531402\pi\)
−0.0984922 + 0.995138i \(0.531402\pi\)
\(798\) −42.1819 −1.49322
\(799\) 0 0
\(800\) 0 0
\(801\) −25.8133 −0.912068
\(802\) −66.3436 −2.34267
\(803\) −0.283008 −0.00998714
\(804\) 0.794645 0.0280250
\(805\) 0 0
\(806\) 7.56207 0.266363
\(807\) −15.9405 −0.561132
\(808\) −17.7385 −0.624040
\(809\) −31.0442 −1.09146 −0.545729 0.837962i \(-0.683747\pi\)
−0.545729 + 0.837962i \(0.683747\pi\)
\(810\) 0 0
\(811\) 46.9708 1.64937 0.824683 0.565595i \(-0.191353\pi\)
0.824683 + 0.565595i \(0.191353\pi\)
\(812\) −2.30374 −0.0808455
\(813\) 2.72136 0.0954424
\(814\) 0.0319451 0.00111968
\(815\) 0 0
\(816\) 0 0
\(817\) 78.1626 2.73456
\(818\) −40.3656 −1.41135
\(819\) −33.1883 −1.15969
\(820\) 0 0
\(821\) 16.7433 0.584346 0.292173 0.956366i \(-0.405622\pi\)
0.292173 + 0.956366i \(0.405622\pi\)
\(822\) 2.77505 0.0967908
\(823\) 26.5996 0.927205 0.463602 0.886043i \(-0.346557\pi\)
0.463602 + 0.886043i \(0.346557\pi\)
\(824\) −9.22517 −0.321374
\(825\) 0 0
\(826\) 39.9707 1.39076
\(827\) −34.4855 −1.19918 −0.599590 0.800307i \(-0.704670\pi\)
−0.599590 + 0.800307i \(0.704670\pi\)
\(828\) −3.32004 −0.115379
\(829\) −7.29346 −0.253312 −0.126656 0.991947i \(-0.540424\pi\)
−0.126656 + 0.991947i \(0.540424\pi\)
\(830\) 0 0
\(831\) 11.6326 0.403531
\(832\) 4.23372 0.146778
\(833\) 0 0
\(834\) 24.5170 0.848956
\(835\) 0 0
\(836\) 0.517745 0.0179066
\(837\) 5.26302 0.181917
\(838\) 39.4859 1.36402
\(839\) 35.5082 1.22588 0.612940 0.790129i \(-0.289987\pi\)
0.612940 + 0.790129i \(0.289987\pi\)
\(840\) 0 0
\(841\) −28.8230 −0.993895
\(842\) 37.2202 1.28269
\(843\) 3.21248 0.110644
\(844\) 9.84311 0.338814
\(845\) 0 0
\(846\) −27.9784 −0.961916
\(847\) 47.7492 1.64068
\(848\) −59.4925 −2.04298
\(849\) 5.98513 0.205409
\(850\) 0 0
\(851\) 0.351091 0.0120352
\(852\) −3.62594 −0.124223
\(853\) 0.238822 0.00817712 0.00408856 0.999992i \(-0.498699\pi\)
0.00408856 + 0.999992i \(0.498699\pi\)
\(854\) −46.8144 −1.60196
\(855\) 0 0
\(856\) 19.6711 0.672343
\(857\) 18.1950 0.621528 0.310764 0.950487i \(-0.399415\pi\)
0.310764 + 0.950487i \(0.399415\pi\)
\(858\) −0.197293 −0.00673548
\(859\) −20.1560 −0.687715 −0.343857 0.939022i \(-0.611734\pi\)
−0.343857 + 0.939022i \(0.611734\pi\)
\(860\) 0 0
\(861\) −19.6916 −0.671088
\(862\) −40.2795 −1.37192
\(863\) −14.7597 −0.502424 −0.251212 0.967932i \(-0.580829\pi\)
−0.251212 + 0.967932i \(0.580829\pi\)
\(864\) 23.7135 0.806749
\(865\) 0 0
\(866\) −16.1284 −0.548064
\(867\) 0 0
\(868\) 7.57936 0.257260
\(869\) 0.524110 0.0177792
\(870\) 0 0
\(871\) −2.77109 −0.0938949
\(872\) 6.33644 0.214579
\(873\) 48.5741 1.64398
\(874\) 14.7151 0.497745
\(875\) 0 0
\(876\) −4.67622 −0.157995
\(877\) 42.7577 1.44382 0.721912 0.691984i \(-0.243263\pi\)
0.721912 + 0.691984i \(0.243263\pi\)
\(878\) 40.2055 1.35687
\(879\) −0.508439 −0.0171492
\(880\) 0 0
\(881\) −43.6832 −1.47172 −0.735862 0.677131i \(-0.763223\pi\)
−0.735862 + 0.677131i \(0.763223\pi\)
\(882\) −54.0813 −1.82101
\(883\) 41.4824 1.39599 0.697997 0.716101i \(-0.254075\pi\)
0.697997 + 0.716101i \(0.254075\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 11.1496 0.374577
\(887\) 32.8798 1.10400 0.551998 0.833845i \(-0.313866\pi\)
0.551998 + 0.833845i \(0.313866\pi\)
\(888\) −0.309321 −0.0103801
\(889\) −0.0359818 −0.00120679
\(890\) 0 0
\(891\) 0.260658 0.00873238
\(892\) −6.01370 −0.201354
\(893\) 47.9524 1.60467
\(894\) 12.6505 0.423097
\(895\) 0 0
\(896\) −43.1892 −1.44285
\(897\) −2.16834 −0.0723988
\(898\) 54.7140 1.82583
\(899\) −0.582447 −0.0194257
\(900\) 0 0
\(901\) 0 0
\(902\) 0.625031 0.0208113
\(903\) −29.8529 −0.993443
\(904\) 4.02116 0.133742
\(905\) 0 0
\(906\) −19.0667 −0.633448
\(907\) 36.4475 1.21022 0.605110 0.796142i \(-0.293129\pi\)
0.605110 + 0.796142i \(0.293129\pi\)
\(908\) −14.1374 −0.469166
\(909\) −33.5873 −1.11402
\(910\) 0 0
\(911\) 29.8739 0.989767 0.494883 0.868959i \(-0.335211\pi\)
0.494883 + 0.868959i \(0.335211\pi\)
\(912\) −26.5325 −0.878579
\(913\) −0.342832 −0.0113461
\(914\) 46.1852 1.52767
\(915\) 0 0
\(916\) 26.0381 0.860324
\(917\) 35.5369 1.17353
\(918\) 0 0
\(919\) 11.6218 0.383368 0.191684 0.981457i \(-0.438605\pi\)
0.191684 + 0.981457i \(0.438605\pi\)
\(920\) 0 0
\(921\) 1.96818 0.0648539
\(922\) −25.3837 −0.835966
\(923\) 12.6444 0.416196
\(924\) −0.197744 −0.00650531
\(925\) 0 0
\(926\) 45.3684 1.49090
\(927\) −17.4675 −0.573709
\(928\) −2.62432 −0.0861475
\(929\) −5.04232 −0.165433 −0.0827165 0.996573i \(-0.526360\pi\)
−0.0827165 + 0.996573i \(0.526360\pi\)
\(930\) 0 0
\(931\) 92.6904 3.03781
\(932\) −3.85685 −0.126335
\(933\) 14.1009 0.461643
\(934\) −40.2520 −1.31709
\(935\) 0 0
\(936\) −10.2003 −0.333406
\(937\) −34.9116 −1.14051 −0.570257 0.821466i \(-0.693156\pi\)
−0.570257 + 0.821466i \(0.693156\pi\)
\(938\) −7.18248 −0.234516
\(939\) −5.82351 −0.190043
\(940\) 0 0
\(941\) −11.0586 −0.360502 −0.180251 0.983621i \(-0.557691\pi\)
−0.180251 + 0.983621i \(0.557691\pi\)
\(942\) −11.6924 −0.380960
\(943\) 6.86937 0.223697
\(944\) 25.1416 0.818290
\(945\) 0 0
\(946\) 0.947562 0.0308079
\(947\) 11.4918 0.373435 0.186717 0.982414i \(-0.440215\pi\)
0.186717 + 0.982414i \(0.440215\pi\)
\(948\) 8.66000 0.281264
\(949\) 16.3069 0.529346
\(950\) 0 0
\(951\) 14.5094 0.470500
\(952\) 0 0
\(953\) 0.704896 0.0228338 0.0114169 0.999935i \(-0.496366\pi\)
0.0114169 + 0.999935i \(0.496366\pi\)
\(954\) −55.0419 −1.78205
\(955\) 0 0
\(956\) 6.23035 0.201504
\(957\) 0.0151959 0.000491215 0
\(958\) −48.3053 −1.56067
\(959\) −9.69929 −0.313206
\(960\) 0 0
\(961\) −29.0837 −0.938185
\(962\) −1.84068 −0.0593459
\(963\) 37.2465 1.20025
\(964\) −2.09552 −0.0674920
\(965\) 0 0
\(966\) −5.62018 −0.180826
\(967\) 39.9545 1.28485 0.642425 0.766348i \(-0.277928\pi\)
0.642425 + 0.766348i \(0.277928\pi\)
\(968\) 14.6755 0.471688
\(969\) 0 0
\(970\) 0 0
\(971\) 43.2538 1.38808 0.694040 0.719936i \(-0.255829\pi\)
0.694040 + 0.719936i \(0.255829\pi\)
\(972\) 18.6900 0.599481
\(973\) −85.6915 −2.74714
\(974\) 41.7978 1.33929
\(975\) 0 0
\(976\) −29.4464 −0.942555
\(977\) −48.8671 −1.56340 −0.781699 0.623656i \(-0.785647\pi\)
−0.781699 + 0.623656i \(0.785647\pi\)
\(978\) −15.4603 −0.494367
\(979\) 0.536340 0.0171415
\(980\) 0 0
\(981\) 11.9978 0.383061
\(982\) 14.0671 0.448898
\(983\) 48.8832 1.55913 0.779565 0.626321i \(-0.215440\pi\)
0.779565 + 0.626321i \(0.215440\pi\)
\(984\) −6.05211 −0.192934
\(985\) 0 0
\(986\) 0 0
\(987\) −18.3146 −0.582961
\(988\) −29.8325 −0.949099
\(989\) 10.4141 0.331150
\(990\) 0 0
\(991\) 14.5340 0.461687 0.230843 0.972991i \(-0.425851\pi\)
0.230843 + 0.972991i \(0.425851\pi\)
\(992\) 8.63407 0.274132
\(993\) −10.4743 −0.332392
\(994\) 32.7734 1.03951
\(995\) 0 0
\(996\) −5.66470 −0.179493
\(997\) 44.2040 1.39995 0.699977 0.714165i \(-0.253193\pi\)
0.699977 + 0.714165i \(0.253193\pi\)
\(998\) 15.8870 0.502896
\(999\) −1.28107 −0.0405312
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bq.1.10 12
5.4 even 2 1445.2.a.q.1.3 12
17.11 odd 16 425.2.m.b.376.5 24
17.14 odd 16 425.2.m.b.26.5 24
17.16 even 2 7225.2.a.bs.1.10 12
85.4 even 4 1445.2.d.j.866.19 24
85.14 odd 16 85.2.l.a.26.2 24
85.28 even 16 425.2.n.c.274.5 24
85.48 even 16 425.2.n.f.349.2 24
85.62 even 16 425.2.n.f.274.2 24
85.64 even 4 1445.2.d.j.866.20 24
85.79 odd 16 85.2.l.a.36.2 yes 24
85.82 even 16 425.2.n.c.349.5 24
85.84 even 2 1445.2.a.p.1.3 12
255.14 even 16 765.2.be.b.451.5 24
255.164 even 16 765.2.be.b.631.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.2 24 85.14 odd 16
85.2.l.a.36.2 yes 24 85.79 odd 16
425.2.m.b.26.5 24 17.14 odd 16
425.2.m.b.376.5 24 17.11 odd 16
425.2.n.c.274.5 24 85.28 even 16
425.2.n.c.349.5 24 85.82 even 16
425.2.n.f.274.2 24 85.62 even 16
425.2.n.f.349.2 24 85.48 even 16
765.2.be.b.451.5 24 255.14 even 16
765.2.be.b.631.5 24 255.164 even 16
1445.2.a.p.1.3 12 85.84 even 2
1445.2.a.q.1.3 12 5.4 even 2
1445.2.d.j.866.19 24 85.4 even 4
1445.2.d.j.866.20 24 85.64 even 4
7225.2.a.bq.1.10 12 1.1 even 1 trivial
7225.2.a.bs.1.10 12 17.16 even 2