Properties

Label 7225.2.a.bp.1.9
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 30x^{10} + 343x^{8} - 1860x^{6} + 4823x^{4} - 5230x^{2} + 1681 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(2.05077\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80333 q^{2} -0.561698 q^{3} +1.25200 q^{4} -1.01293 q^{6} -3.11199 q^{7} -1.34889 q^{8} -2.68450 q^{9} -5.61195 q^{11} -0.703246 q^{12} +1.24880 q^{13} -5.61195 q^{14} -4.93650 q^{16} -4.84103 q^{18} +4.00000 q^{19} +1.74800 q^{21} -10.1202 q^{22} -2.32777 q^{23} +0.757669 q^{24} +2.25200 q^{26} +3.19297 q^{27} -3.89622 q^{28} +6.62488 q^{29} -4.55412 q^{31} -6.20435 q^{32} +3.15222 q^{33} -3.36099 q^{36} -1.90762 q^{37} +7.21332 q^{38} -0.701449 q^{39} -5.92343 q^{41} +3.15222 q^{42} +2.04316 q^{43} -7.02616 q^{44} -4.19774 q^{46} +4.85546 q^{47} +2.77282 q^{48} +2.68450 q^{49} +1.56350 q^{52} -9.11674 q^{53} +5.75798 q^{54} +4.19774 q^{56} -2.24679 q^{57} +11.9468 q^{58} +6.00000 q^{59} -5.65685 q^{61} -8.21258 q^{62} +8.35413 q^{63} -1.31550 q^{64} +5.68450 q^{66} +8.46212 q^{67} +1.30750 q^{69} +8.79676 q^{71} +3.62109 q^{72} +1.56845 q^{73} -3.44007 q^{74} +5.00800 q^{76} +17.4643 q^{77} -1.26494 q^{78} -4.91050 q^{79} +6.26000 q^{81} -10.6819 q^{82} +3.94658 q^{83} +2.18850 q^{84} +3.68450 q^{86} -3.72118 q^{87} +7.56991 q^{88} -10.6130 q^{89} -3.88626 q^{91} -2.91437 q^{92} +2.55804 q^{93} +8.75600 q^{94} +3.48497 q^{96} +12.3919 q^{97} +4.84103 q^{98} +15.0653 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} + 28 q^{9} + 4 q^{16} + 48 q^{19} + 24 q^{21} + 24 q^{26} + 68 q^{36} - 28 q^{49} + 72 q^{59} - 76 q^{64} + 8 q^{66} + 88 q^{69} + 48 q^{76} + 60 q^{81} - 40 q^{84} - 16 q^{86} - 16 q^{89}+ \cdots + 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80333 1.27515 0.637574 0.770389i \(-0.279938\pi\)
0.637574 + 0.770389i \(0.279938\pi\)
\(3\) −0.561698 −0.324296 −0.162148 0.986766i \(-0.551842\pi\)
−0.162148 + 0.986766i \(0.551842\pi\)
\(4\) 1.25200 0.626000
\(5\) 0 0
\(6\) −1.01293 −0.413526
\(7\) −3.11199 −1.17622 −0.588111 0.808780i \(-0.700128\pi\)
−0.588111 + 0.808780i \(0.700128\pi\)
\(8\) −1.34889 −0.476905
\(9\) −2.68450 −0.894832
\(10\) 0 0
\(11\) −5.61195 −1.69207 −0.846033 0.533130i \(-0.821016\pi\)
−0.846033 + 0.533130i \(0.821016\pi\)
\(12\) −0.703246 −0.203010
\(13\) 1.24880 0.346355 0.173178 0.984891i \(-0.444597\pi\)
0.173178 + 0.984891i \(0.444597\pi\)
\(14\) −5.61195 −1.49986
\(15\) 0 0
\(16\) −4.93650 −1.23412
\(17\) 0 0
\(18\) −4.84103 −1.14104
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 1.74800 0.381445
\(22\) −10.1202 −2.15763
\(23\) −2.32777 −0.485373 −0.242687 0.970105i \(-0.578029\pi\)
−0.242687 + 0.970105i \(0.578029\pi\)
\(24\) 0.757669 0.154659
\(25\) 0 0
\(26\) 2.25200 0.441654
\(27\) 3.19297 0.614487
\(28\) −3.89622 −0.736316
\(29\) 6.62488 1.23021 0.615104 0.788446i \(-0.289114\pi\)
0.615104 + 0.788446i \(0.289114\pi\)
\(30\) 0 0
\(31\) −4.55412 −0.817944 −0.408972 0.912547i \(-0.634113\pi\)
−0.408972 + 0.912547i \(0.634113\pi\)
\(32\) −6.20435 −1.09678
\(33\) 3.15222 0.548731
\(34\) 0 0
\(35\) 0 0
\(36\) −3.36099 −0.560165
\(37\) −1.90762 −0.313611 −0.156805 0.987630i \(-0.550120\pi\)
−0.156805 + 0.987630i \(0.550120\pi\)
\(38\) 7.21332 1.17016
\(39\) −0.701449 −0.112322
\(40\) 0 0
\(41\) −5.92343 −0.925084 −0.462542 0.886597i \(-0.653063\pi\)
−0.462542 + 0.886597i \(0.653063\pi\)
\(42\) 3.15222 0.486398
\(43\) 2.04316 0.311579 0.155790 0.987790i \(-0.450208\pi\)
0.155790 + 0.987790i \(0.450208\pi\)
\(44\) −7.02616 −1.05923
\(45\) 0 0
\(46\) −4.19774 −0.618922
\(47\) 4.85546 0.708242 0.354121 0.935200i \(-0.384780\pi\)
0.354121 + 0.935200i \(0.384780\pi\)
\(48\) 2.77282 0.400222
\(49\) 2.68450 0.383499
\(50\) 0 0
\(51\) 0 0
\(52\) 1.56350 0.216818
\(53\) −9.11674 −1.25228 −0.626140 0.779710i \(-0.715366\pi\)
−0.626140 + 0.779710i \(0.715366\pi\)
\(54\) 5.75798 0.783562
\(55\) 0 0
\(56\) 4.19774 0.560946
\(57\) −2.24679 −0.297595
\(58\) 11.9468 1.56870
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −5.65685 −0.724286 −0.362143 0.932123i \(-0.617955\pi\)
−0.362143 + 0.932123i \(0.617955\pi\)
\(62\) −8.21258 −1.04300
\(63\) 8.35413 1.05252
\(64\) −1.31550 −0.164438
\(65\) 0 0
\(66\) 5.68450 0.699713
\(67\) 8.46212 1.03381 0.516906 0.856042i \(-0.327084\pi\)
0.516906 + 0.856042i \(0.327084\pi\)
\(68\) 0 0
\(69\) 1.30750 0.157405
\(70\) 0 0
\(71\) 8.79676 1.04398 0.521992 0.852951i \(-0.325189\pi\)
0.521992 + 0.852951i \(0.325189\pi\)
\(72\) 3.62109 0.426750
\(73\) 1.56845 0.183573 0.0917864 0.995779i \(-0.470742\pi\)
0.0917864 + 0.995779i \(0.470742\pi\)
\(74\) −3.44007 −0.399900
\(75\) 0 0
\(76\) 5.00800 0.574457
\(77\) 17.4643 1.99025
\(78\) −1.26494 −0.143227
\(79\) −4.91050 −0.552475 −0.276237 0.961089i \(-0.589088\pi\)
−0.276237 + 0.961089i \(0.589088\pi\)
\(80\) 0 0
\(81\) 6.26000 0.695556
\(82\) −10.6819 −1.17962
\(83\) 3.94658 0.433194 0.216597 0.976261i \(-0.430504\pi\)
0.216597 + 0.976261i \(0.430504\pi\)
\(84\) 2.18850 0.238785
\(85\) 0 0
\(86\) 3.68450 0.397309
\(87\) −3.72118 −0.398952
\(88\) 7.56991 0.806955
\(89\) −10.6130 −1.12497 −0.562487 0.826806i \(-0.690155\pi\)
−0.562487 + 0.826806i \(0.690155\pi\)
\(90\) 0 0
\(91\) −3.88626 −0.407391
\(92\) −2.91437 −0.303844
\(93\) 2.55804 0.265256
\(94\) 8.75600 0.903113
\(95\) 0 0
\(96\) 3.48497 0.355683
\(97\) 12.3919 1.25821 0.629103 0.777322i \(-0.283422\pi\)
0.629103 + 0.777322i \(0.283422\pi\)
\(98\) 4.84103 0.489018
\(99\) 15.0653 1.51412
\(100\) 0 0
\(101\) 9.62099 0.957324 0.478662 0.877999i \(-0.341122\pi\)
0.478662 + 0.877999i \(0.341122\pi\)
\(102\) 0 0
\(103\) −1.84298 −0.181594 −0.0907972 0.995869i \(-0.528942\pi\)
−0.0907972 + 0.995869i \(0.528942\pi\)
\(104\) −1.68450 −0.165178
\(105\) 0 0
\(106\) −16.4405 −1.59684
\(107\) −16.9869 −1.64218 −0.821091 0.570798i \(-0.806634\pi\)
−0.821091 + 0.570798i \(0.806634\pi\)
\(108\) 3.99760 0.384669
\(109\) 0.446191 0.0427373 0.0213687 0.999772i \(-0.493198\pi\)
0.0213687 + 0.999772i \(0.493198\pi\)
\(110\) 0 0
\(111\) 1.07151 0.101703
\(112\) 15.3623 1.45160
\(113\) −11.3246 −1.06533 −0.532663 0.846327i \(-0.678809\pi\)
−0.532663 + 0.846327i \(0.678809\pi\)
\(114\) −4.05171 −0.379477
\(115\) 0 0
\(116\) 8.29435 0.770111
\(117\) −3.35240 −0.309929
\(118\) 10.8200 0.996060
\(119\) 0 0
\(120\) 0 0
\(121\) 20.4940 1.86309
\(122\) −10.2012 −0.923571
\(123\) 3.32718 0.300001
\(124\) −5.70176 −0.512033
\(125\) 0 0
\(126\) 15.0653 1.34212
\(127\) −5.85000 −0.519104 −0.259552 0.965729i \(-0.583575\pi\)
−0.259552 + 0.965729i \(0.583575\pi\)
\(128\) 10.0364 0.887102
\(129\) −1.14764 −0.101044
\(130\) 0 0
\(131\) 19.5632 1.70924 0.854620 0.519253i \(-0.173790\pi\)
0.854620 + 0.519253i \(0.173790\pi\)
\(132\) 3.94658 0.343506
\(133\) −12.4480 −1.07938
\(134\) 15.2600 1.31826
\(135\) 0 0
\(136\) 0 0
\(137\) 13.8577 1.18394 0.591971 0.805959i \(-0.298350\pi\)
0.591971 + 0.805959i \(0.298350\pi\)
\(138\) 2.35786 0.200714
\(139\) 10.1997 0.865124 0.432562 0.901604i \(-0.357610\pi\)
0.432562 + 0.901604i \(0.357610\pi\)
\(140\) 0 0
\(141\) −2.72730 −0.229680
\(142\) 15.8635 1.33123
\(143\) −7.00821 −0.586056
\(144\) 13.2520 1.10433
\(145\) 0 0
\(146\) 2.82843 0.234082
\(147\) −1.50788 −0.124367
\(148\) −2.38834 −0.196320
\(149\) 15.9365 1.30557 0.652784 0.757544i \(-0.273601\pi\)
0.652784 + 0.757544i \(0.273601\pi\)
\(150\) 0 0
\(151\) −3.36899 −0.274165 −0.137082 0.990560i \(-0.543772\pi\)
−0.137082 + 0.990560i \(0.543772\pi\)
\(152\) −5.39556 −0.437638
\(153\) 0 0
\(154\) 31.4940 2.53786
\(155\) 0 0
\(156\) −0.878214 −0.0703134
\(157\) 3.92136 0.312959 0.156479 0.987681i \(-0.449986\pi\)
0.156479 + 0.987681i \(0.449986\pi\)
\(158\) −8.85526 −0.704486
\(159\) 5.12085 0.406110
\(160\) 0 0
\(161\) 7.24400 0.570907
\(162\) 11.2889 0.886936
\(163\) 14.7197 1.15293 0.576466 0.817121i \(-0.304431\pi\)
0.576466 + 0.817121i \(0.304431\pi\)
\(164\) −7.41613 −0.579103
\(165\) 0 0
\(166\) 7.11699 0.552386
\(167\) −0.420150 −0.0325122 −0.0162561 0.999868i \(-0.505175\pi\)
−0.0162561 + 0.999868i \(0.505175\pi\)
\(168\) −2.35786 −0.181913
\(169\) −11.4405 −0.880038
\(170\) 0 0
\(171\) −10.7380 −0.821154
\(172\) 2.55804 0.195049
\(173\) −16.6024 −1.26226 −0.631128 0.775679i \(-0.717408\pi\)
−0.631128 + 0.775679i \(0.717408\pi\)
\(174\) −6.71052 −0.508723
\(175\) 0 0
\(176\) 27.7034 2.08822
\(177\) −3.37019 −0.253319
\(178\) −19.1387 −1.43451
\(179\) 19.7935 1.47943 0.739717 0.672918i \(-0.234959\pi\)
0.739717 + 0.672918i \(0.234959\pi\)
\(180\) 0 0
\(181\) 9.36350 0.695983 0.347992 0.937498i \(-0.386864\pi\)
0.347992 + 0.937498i \(0.386864\pi\)
\(182\) −7.00821 −0.519483
\(183\) 3.17744 0.234883
\(184\) 3.13991 0.231477
\(185\) 0 0
\(186\) 4.61299 0.338241
\(187\) 0 0
\(188\) 6.07904 0.443360
\(189\) −9.93650 −0.722774
\(190\) 0 0
\(191\) 13.9365 1.00841 0.504205 0.863584i \(-0.331786\pi\)
0.504205 + 0.863584i \(0.331786\pi\)
\(192\) 0.738916 0.0533267
\(193\) −4.17482 −0.300510 −0.150255 0.988647i \(-0.548009\pi\)
−0.150255 + 0.988647i \(0.548009\pi\)
\(194\) 22.3467 1.60440
\(195\) 0 0
\(196\) 3.36099 0.240071
\(197\) 17.6901 1.26037 0.630184 0.776446i \(-0.282979\pi\)
0.630184 + 0.776446i \(0.282979\pi\)
\(198\) 27.1676 1.93072
\(199\) 5.60063 0.397018 0.198509 0.980099i \(-0.436390\pi\)
0.198509 + 0.980099i \(0.436390\pi\)
\(200\) 0 0
\(201\) −4.75316 −0.335262
\(202\) 17.3498 1.22073
\(203\) −20.6166 −1.44700
\(204\) 0 0
\(205\) 0 0
\(206\) −3.32351 −0.231560
\(207\) 6.24889 0.434328
\(208\) −6.16470 −0.427445
\(209\) −22.4478 −1.55275
\(210\) 0 0
\(211\) 0.923118 0.0635501 0.0317750 0.999495i \(-0.489884\pi\)
0.0317750 + 0.999495i \(0.489884\pi\)
\(212\) −11.4142 −0.783928
\(213\) −4.94112 −0.338560
\(214\) −30.6329 −2.09402
\(215\) 0 0
\(216\) −4.30697 −0.293052
\(217\) 14.1724 0.962084
\(218\) 0.804630 0.0544964
\(219\) −0.880993 −0.0595320
\(220\) 0 0
\(221\) 0 0
\(222\) 1.93228 0.129686
\(223\) 1.24880 0.0836259 0.0418129 0.999125i \(-0.486687\pi\)
0.0418129 + 0.999125i \(0.486687\pi\)
\(224\) 19.3079 1.29006
\(225\) 0 0
\(226\) −20.4219 −1.35845
\(227\) 11.5828 0.768775 0.384388 0.923172i \(-0.374413\pi\)
0.384388 + 0.923172i \(0.374413\pi\)
\(228\) −2.81298 −0.186294
\(229\) 11.7480 0.776330 0.388165 0.921590i \(-0.373109\pi\)
0.388165 + 0.921590i \(0.373109\pi\)
\(230\) 0 0
\(231\) −9.80969 −0.645430
\(232\) −8.93623 −0.586692
\(233\) −11.3042 −0.740561 −0.370280 0.928920i \(-0.620738\pi\)
−0.370280 + 0.928920i \(0.620738\pi\)
\(234\) −6.04548 −0.395206
\(235\) 0 0
\(236\) 7.51200 0.488990
\(237\) 2.75822 0.179166
\(238\) 0 0
\(239\) 5.13501 0.332156 0.166078 0.986113i \(-0.446890\pi\)
0.166078 + 0.986113i \(0.446890\pi\)
\(240\) 0 0
\(241\) −8.48528 −0.546585 −0.273293 0.961931i \(-0.588113\pi\)
−0.273293 + 0.961931i \(0.588113\pi\)
\(242\) 36.9574 2.37571
\(243\) −13.0951 −0.840054
\(244\) −7.08238 −0.453403
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 4.99520 0.317837
\(248\) 6.14301 0.390081
\(249\) −2.21679 −0.140483
\(250\) 0 0
\(251\) −19.8095 −1.25036 −0.625182 0.780479i \(-0.714975\pi\)
−0.625182 + 0.780479i \(0.714975\pi\)
\(252\) 10.4594 0.658879
\(253\) 13.0633 0.821284
\(254\) −10.5495 −0.661934
\(255\) 0 0
\(256\) 20.7300 1.29562
\(257\) −24.3982 −1.52192 −0.760958 0.648801i \(-0.775271\pi\)
−0.760958 + 0.648801i \(0.775271\pi\)
\(258\) −2.06957 −0.128846
\(259\) 5.93650 0.368876
\(260\) 0 0
\(261\) −17.7845 −1.10083
\(262\) 35.2788 2.17953
\(263\) 18.0585 1.11354 0.556768 0.830668i \(-0.312041\pi\)
0.556768 + 0.830668i \(0.312041\pi\)
\(264\) −4.25200 −0.261693
\(265\) 0 0
\(266\) −22.4478 −1.37636
\(267\) 5.96129 0.364825
\(268\) 10.5946 0.647167
\(269\) −17.8601 −1.08895 −0.544475 0.838777i \(-0.683271\pi\)
−0.544475 + 0.838777i \(0.683271\pi\)
\(270\) 0 0
\(271\) −15.8570 −0.963243 −0.481622 0.876379i \(-0.659952\pi\)
−0.481622 + 0.876379i \(0.659952\pi\)
\(272\) 0 0
\(273\) 2.18290 0.132115
\(274\) 24.9900 1.50970
\(275\) 0 0
\(276\) 1.63699 0.0985355
\(277\) 14.1784 0.851896 0.425948 0.904748i \(-0.359941\pi\)
0.425948 + 0.904748i \(0.359941\pi\)
\(278\) 18.3934 1.10316
\(279\) 12.2255 0.731922
\(280\) 0 0
\(281\) −7.80949 −0.465875 −0.232937 0.972492i \(-0.574834\pi\)
−0.232937 + 0.972492i \(0.574834\pi\)
\(282\) −4.91823 −0.292876
\(283\) −20.9080 −1.24285 −0.621425 0.783474i \(-0.713446\pi\)
−0.621425 + 0.783474i \(0.713446\pi\)
\(284\) 11.0135 0.653534
\(285\) 0 0
\(286\) −12.6381 −0.747307
\(287\) 18.4337 1.08810
\(288\) 16.6556 0.981438
\(289\) 0 0
\(290\) 0 0
\(291\) −6.96050 −0.408032
\(292\) 1.96370 0.114917
\(293\) 4.79502 0.280128 0.140064 0.990142i \(-0.455269\pi\)
0.140064 + 0.990142i \(0.455269\pi\)
\(294\) −2.71920 −0.158587
\(295\) 0 0
\(296\) 2.57317 0.149562
\(297\) −17.9188 −1.03975
\(298\) 28.7388 1.66479
\(299\) −2.90692 −0.168112
\(300\) 0 0
\(301\) −6.35830 −0.366486
\(302\) −6.07540 −0.349600
\(303\) −5.40409 −0.310457
\(304\) −19.7460 −1.13251
\(305\) 0 0
\(306\) 0 0
\(307\) −24.9924 −1.42639 −0.713195 0.700966i \(-0.752753\pi\)
−0.713195 + 0.700966i \(0.752753\pi\)
\(308\) 21.8654 1.24589
\(309\) 1.03520 0.0588904
\(310\) 0 0
\(311\) −4.03229 −0.228650 −0.114325 0.993443i \(-0.536471\pi\)
−0.114325 + 0.993443i \(0.536471\pi\)
\(312\) 0.946178 0.0535668
\(313\) −22.6491 −1.28021 −0.640103 0.768289i \(-0.721108\pi\)
−0.640103 + 0.768289i \(0.721108\pi\)
\(314\) 7.07151 0.399068
\(315\) 0 0
\(316\) −6.14795 −0.345849
\(317\) −8.27315 −0.464666 −0.232333 0.972636i \(-0.574636\pi\)
−0.232333 + 0.972636i \(0.574636\pi\)
\(318\) 9.23459 0.517850
\(319\) −37.1785 −2.08160
\(320\) 0 0
\(321\) 9.54148 0.532554
\(322\) 13.0633 0.727991
\(323\) 0 0
\(324\) 7.83752 0.435418
\(325\) 0 0
\(326\) 26.5444 1.47016
\(327\) −0.250624 −0.0138596
\(328\) 7.99006 0.441177
\(329\) −15.1102 −0.833050
\(330\) 0 0
\(331\) −5.51200 −0.302967 −0.151484 0.988460i \(-0.548405\pi\)
−0.151484 + 0.988460i \(0.548405\pi\)
\(332\) 4.94112 0.271179
\(333\) 5.12099 0.280629
\(334\) −0.757669 −0.0414578
\(335\) 0 0
\(336\) −8.62899 −0.470750
\(337\) −9.53810 −0.519573 −0.259787 0.965666i \(-0.583652\pi\)
−0.259787 + 0.965666i \(0.583652\pi\)
\(338\) −20.6310 −1.12218
\(339\) 6.36099 0.345482
\(340\) 0 0
\(341\) 25.5575 1.38402
\(342\) −19.3641 −1.04709
\(343\) 13.4298 0.725142
\(344\) −2.75600 −0.148594
\(345\) 0 0
\(346\) −29.9396 −1.60956
\(347\) 11.5471 0.619881 0.309940 0.950756i \(-0.399691\pi\)
0.309940 + 0.950756i \(0.399691\pi\)
\(348\) −4.65892 −0.249744
\(349\) −11.4325 −0.611967 −0.305984 0.952037i \(-0.598985\pi\)
−0.305984 + 0.952037i \(0.598985\pi\)
\(350\) 0 0
\(351\) 3.98738 0.212831
\(352\) 34.8185 1.85583
\(353\) −31.8017 −1.69263 −0.846317 0.532680i \(-0.821185\pi\)
−0.846317 + 0.532680i \(0.821185\pi\)
\(354\) −6.07756 −0.323019
\(355\) 0 0
\(356\) −13.2875 −0.704234
\(357\) 0 0
\(358\) 35.6942 1.88650
\(359\) 25.1785 1.32887 0.664435 0.747346i \(-0.268672\pi\)
0.664435 + 0.747346i \(0.268672\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 16.8855 0.887481
\(363\) −11.5114 −0.604193
\(364\) −4.86560 −0.255027
\(365\) 0 0
\(366\) 5.72998 0.299511
\(367\) −6.08693 −0.317735 −0.158868 0.987300i \(-0.550784\pi\)
−0.158868 + 0.987300i \(0.550784\pi\)
\(368\) 11.4910 0.599011
\(369\) 15.9014 0.827795
\(370\) 0 0
\(371\) 28.3712 1.47296
\(372\) 3.20267 0.166050
\(373\) −30.0732 −1.55713 −0.778566 0.627562i \(-0.784053\pi\)
−0.778566 + 0.627562i \(0.784053\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.54949 −0.337764
\(377\) 8.27315 0.426089
\(378\) −17.9188 −0.921643
\(379\) −1.01293 −0.0520306 −0.0260153 0.999662i \(-0.508282\pi\)
−0.0260153 + 0.999662i \(0.508282\pi\)
\(380\) 0 0
\(381\) 3.28593 0.168343
\(382\) 25.1321 1.28587
\(383\) −25.8660 −1.32169 −0.660846 0.750521i \(-0.729802\pi\)
−0.660846 + 0.750521i \(0.729802\pi\)
\(384\) −5.63743 −0.287684
\(385\) 0 0
\(386\) −7.52857 −0.383194
\(387\) −5.48486 −0.278811
\(388\) 15.5147 0.787637
\(389\) 33.0695 1.67669 0.838345 0.545140i \(-0.183524\pi\)
0.838345 + 0.545140i \(0.183524\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.62109 −0.182893
\(393\) −10.9886 −0.554301
\(394\) 31.9011 1.60715
\(395\) 0 0
\(396\) 18.8617 0.947836
\(397\) −8.15201 −0.409138 −0.204569 0.978852i \(-0.565579\pi\)
−0.204569 + 0.978852i \(0.565579\pi\)
\(398\) 10.0998 0.506257
\(399\) 6.99200 0.350038
\(400\) 0 0
\(401\) 0.165449 0.00826215 0.00413108 0.999991i \(-0.498685\pi\)
0.00413108 + 0.999991i \(0.498685\pi\)
\(402\) −8.57151 −0.427508
\(403\) −5.68719 −0.283299
\(404\) 12.0455 0.599285
\(405\) 0 0
\(406\) −37.1785 −1.84514
\(407\) 10.7055 0.530650
\(408\) 0 0
\(409\) 13.3690 0.661054 0.330527 0.943797i \(-0.392774\pi\)
0.330527 + 0.943797i \(0.392774\pi\)
\(410\) 0 0
\(411\) −7.78383 −0.383948
\(412\) −2.30741 −0.113678
\(413\) −18.6720 −0.918787
\(414\) 11.2688 0.553832
\(415\) 0 0
\(416\) −7.74800 −0.379877
\(417\) −5.72913 −0.280557
\(418\) −40.4808 −1.97998
\(419\) 23.5732 1.15162 0.575812 0.817582i \(-0.304686\pi\)
0.575812 + 0.817582i \(0.304686\pi\)
\(420\) 0 0
\(421\) −5.82751 −0.284015 −0.142008 0.989866i \(-0.545356\pi\)
−0.142008 + 0.989866i \(0.545356\pi\)
\(422\) 1.66469 0.0810357
\(423\) −13.0345 −0.633757
\(424\) 12.2975 0.597219
\(425\) 0 0
\(426\) −8.91047 −0.431714
\(427\) 17.6041 0.851921
\(428\) −21.2676 −1.02801
\(429\) 3.93650 0.190056
\(430\) 0 0
\(431\) −6.93636 −0.334112 −0.167056 0.985947i \(-0.553426\pi\)
−0.167056 + 0.985947i \(0.553426\pi\)
\(432\) −15.7621 −0.758353
\(433\) 15.4464 0.742307 0.371153 0.928572i \(-0.378962\pi\)
0.371153 + 0.928572i \(0.378962\pi\)
\(434\) 25.5575 1.22680
\(435\) 0 0
\(436\) 0.558631 0.0267536
\(437\) −9.31108 −0.445409
\(438\) −1.58872 −0.0759121
\(439\) 1.47043 0.0701800 0.0350900 0.999384i \(-0.488828\pi\)
0.0350900 + 0.999384i \(0.488828\pi\)
\(440\) 0 0
\(441\) −7.20652 −0.343167
\(442\) 0 0
\(443\) −12.7838 −0.607379 −0.303689 0.952771i \(-0.598218\pi\)
−0.303689 + 0.952771i \(0.598218\pi\)
\(444\) 1.34153 0.0636660
\(445\) 0 0
\(446\) 2.25200 0.106635
\(447\) −8.95150 −0.423391
\(448\) 4.09384 0.193416
\(449\) −9.73119 −0.459243 −0.229622 0.973280i \(-0.573749\pi\)
−0.229622 + 0.973280i \(0.573749\pi\)
\(450\) 0 0
\(451\) 33.2420 1.56530
\(452\) −14.1784 −0.666894
\(453\) 1.89236 0.0889106
\(454\) 20.8876 0.980302
\(455\) 0 0
\(456\) 3.03068 0.141924
\(457\) −36.2279 −1.69467 −0.847336 0.531058i \(-0.821795\pi\)
−0.847336 + 0.531058i \(0.821795\pi\)
\(458\) 21.1855 0.989935
\(459\) 0 0
\(460\) 0 0
\(461\) −40.0595 −1.86576 −0.932878 0.360193i \(-0.882711\pi\)
−0.932878 + 0.360193i \(0.882711\pi\)
\(462\) −17.6901 −0.823018
\(463\) −15.3607 −0.713874 −0.356937 0.934128i \(-0.616179\pi\)
−0.356937 + 0.934128i \(0.616179\pi\)
\(464\) −32.7037 −1.51823
\(465\) 0 0
\(466\) −20.3851 −0.944324
\(467\) 19.4471 0.899903 0.449952 0.893053i \(-0.351441\pi\)
0.449952 + 0.893053i \(0.351441\pi\)
\(468\) −4.19721 −0.194016
\(469\) −26.3341 −1.21599
\(470\) 0 0
\(471\) −2.20262 −0.101491
\(472\) −8.09334 −0.372526
\(473\) −11.4661 −0.527213
\(474\) 4.97398 0.228462
\(475\) 0 0
\(476\) 0 0
\(477\) 24.4739 1.12058
\(478\) 9.26012 0.423548
\(479\) 14.5547 0.665023 0.332511 0.943099i \(-0.392104\pi\)
0.332511 + 0.943099i \(0.392104\pi\)
\(480\) 0 0
\(481\) −2.38224 −0.108621
\(482\) −15.3018 −0.696976
\(483\) −4.06894 −0.185143
\(484\) 25.6585 1.16629
\(485\) 0 0
\(486\) −23.6149 −1.07119
\(487\) 29.6975 1.34572 0.672861 0.739768i \(-0.265065\pi\)
0.672861 + 0.739768i \(0.265065\pi\)
\(488\) 7.63048 0.345415
\(489\) −8.26800 −0.373892
\(490\) 0 0
\(491\) 21.0715 0.950944 0.475472 0.879731i \(-0.342277\pi\)
0.475472 + 0.879731i \(0.342277\pi\)
\(492\) 4.16563 0.187801
\(493\) 0 0
\(494\) 9.00800 0.405289
\(495\) 0 0
\(496\) 22.4814 1.00944
\(497\) −27.3754 −1.22796
\(498\) −3.99760 −0.179137
\(499\) −9.40840 −0.421178 −0.210589 0.977575i \(-0.567538\pi\)
−0.210589 + 0.977575i \(0.567538\pi\)
\(500\) 0 0
\(501\) 0.235997 0.0105436
\(502\) −35.7231 −1.59440
\(503\) 29.3788 1.30993 0.654967 0.755658i \(-0.272683\pi\)
0.654967 + 0.755658i \(0.272683\pi\)
\(504\) −11.2688 −0.501952
\(505\) 0 0
\(506\) 23.5575 1.04726
\(507\) 6.42610 0.285393
\(508\) −7.32420 −0.324959
\(509\) 14.3930 0.637958 0.318979 0.947762i \(-0.396660\pi\)
0.318979 + 0.947762i \(0.396660\pi\)
\(510\) 0 0
\(511\) −4.88099 −0.215922
\(512\) 17.3102 0.765009
\(513\) 12.7719 0.563892
\(514\) −43.9980 −1.94067
\(515\) 0 0
\(516\) −1.43685 −0.0632536
\(517\) −27.2486 −1.19839
\(518\) 10.7055 0.470371
\(519\) 9.32552 0.409345
\(520\) 0 0
\(521\) 27.6698 1.21224 0.606118 0.795375i \(-0.292726\pi\)
0.606118 + 0.795375i \(0.292726\pi\)
\(522\) −32.0712 −1.40372
\(523\) 37.4867 1.63918 0.819590 0.572950i \(-0.194201\pi\)
0.819590 + 0.572950i \(0.194201\pi\)
\(524\) 24.4931 1.06998
\(525\) 0 0
\(526\) 32.5655 1.41992
\(527\) 0 0
\(528\) −15.5609 −0.677202
\(529\) −17.5815 −0.764413
\(530\) 0 0
\(531\) −16.1070 −0.698983
\(532\) −15.5849 −0.675689
\(533\) −7.39718 −0.320408
\(534\) 10.7502 0.465206
\(535\) 0 0
\(536\) −11.4145 −0.493030
\(537\) −11.1180 −0.479775
\(538\) −32.2076 −1.38857
\(539\) −15.0653 −0.648906
\(540\) 0 0
\(541\) 12.7279 0.547216 0.273608 0.961841i \(-0.411783\pi\)
0.273608 + 0.961841i \(0.411783\pi\)
\(542\) −28.5954 −1.22828
\(543\) −5.25946 −0.225705
\(544\) 0 0
\(545\) 0 0
\(546\) 3.93650 0.168466
\(547\) 28.7922 1.23106 0.615532 0.788112i \(-0.288941\pi\)
0.615532 + 0.788112i \(0.288941\pi\)
\(548\) 17.3498 0.741148
\(549\) 15.1858 0.648114
\(550\) 0 0
\(551\) 26.4995 1.12892
\(552\) −1.76368 −0.0750671
\(553\) 15.2814 0.649833
\(554\) 25.5683 1.08629
\(555\) 0 0
\(556\) 12.7700 0.541568
\(557\) −4.93477 −0.209093 −0.104546 0.994520i \(-0.533339\pi\)
−0.104546 + 0.994520i \(0.533339\pi\)
\(558\) 22.0466 0.933308
\(559\) 2.55150 0.107917
\(560\) 0 0
\(561\) 0 0
\(562\) −14.0831 −0.594059
\(563\) −3.97544 −0.167545 −0.0837724 0.996485i \(-0.526697\pi\)
−0.0837724 + 0.996485i \(0.526697\pi\)
\(564\) −3.41458 −0.143780
\(565\) 0 0
\(566\) −37.7040 −1.58482
\(567\) −19.4811 −0.818128
\(568\) −11.8659 −0.497881
\(569\) −5.49600 −0.230404 −0.115202 0.993342i \(-0.536752\pi\)
−0.115202 + 0.993342i \(0.536752\pi\)
\(570\) 0 0
\(571\) 17.4475 0.730155 0.365077 0.930977i \(-0.381043\pi\)
0.365077 + 0.930977i \(0.381043\pi\)
\(572\) −8.77428 −0.366871
\(573\) −7.82810 −0.327024
\(574\) 33.2420 1.38749
\(575\) 0 0
\(576\) 3.53147 0.147144
\(577\) −32.3418 −1.34641 −0.673203 0.739458i \(-0.735082\pi\)
−0.673203 + 0.739458i \(0.735082\pi\)
\(578\) 0 0
\(579\) 2.34499 0.0974543
\(580\) 0 0
\(581\) −12.2817 −0.509532
\(582\) −12.5521 −0.520301
\(583\) 51.1627 2.11894
\(584\) −2.11566 −0.0875467
\(585\) 0 0
\(586\) 8.64701 0.357205
\(587\) −28.6847 −1.18394 −0.591972 0.805959i \(-0.701650\pi\)
−0.591972 + 0.805959i \(0.701650\pi\)
\(588\) −1.88786 −0.0778541
\(589\) −18.2165 −0.750597
\(590\) 0 0
\(591\) −9.93650 −0.408733
\(592\) 9.41695 0.387034
\(593\) 9.74614 0.400226 0.200113 0.979773i \(-0.435869\pi\)
0.200113 + 0.979773i \(0.435869\pi\)
\(594\) −32.3135 −1.32584
\(595\) 0 0
\(596\) 19.9525 0.817286
\(597\) −3.14586 −0.128752
\(598\) −5.24214 −0.214367
\(599\) 8.07951 0.330120 0.165060 0.986284i \(-0.447218\pi\)
0.165060 + 0.986284i \(0.447218\pi\)
\(600\) 0 0
\(601\) 18.2165 0.743066 0.371533 0.928420i \(-0.378832\pi\)
0.371533 + 0.928420i \(0.378832\pi\)
\(602\) −11.4661 −0.467324
\(603\) −22.7165 −0.925089
\(604\) −4.21798 −0.171627
\(605\) 0 0
\(606\) −9.74536 −0.395878
\(607\) −11.8506 −0.481001 −0.240501 0.970649i \(-0.577312\pi\)
−0.240501 + 0.970649i \(0.577312\pi\)
\(608\) −24.8174 −1.00648
\(609\) 11.5803 0.469257
\(610\) 0 0
\(611\) 6.06350 0.245303
\(612\) 0 0
\(613\) −23.1494 −0.934995 −0.467497 0.883994i \(-0.654844\pi\)
−0.467497 + 0.883994i \(0.654844\pi\)
\(614\) −45.0695 −1.81886
\(615\) 0 0
\(616\) −23.5575 −0.949158
\(617\) 10.4843 0.422081 0.211040 0.977477i \(-0.432315\pi\)
0.211040 + 0.977477i \(0.432315\pi\)
\(618\) 1.86681 0.0750940
\(619\) 23.2924 0.936202 0.468101 0.883675i \(-0.344938\pi\)
0.468101 + 0.883675i \(0.344938\pi\)
\(620\) 0 0
\(621\) −7.43250 −0.298256
\(622\) −7.27155 −0.291562
\(623\) 33.0275 1.32322
\(624\) 3.46270 0.138619
\(625\) 0 0
\(626\) −40.8439 −1.63245
\(627\) 12.6089 0.503550
\(628\) 4.90954 0.195912
\(629\) 0 0
\(630\) 0 0
\(631\) 41.1310 1.63740 0.818699 0.574223i \(-0.194696\pi\)
0.818699 + 0.574223i \(0.194696\pi\)
\(632\) 6.62373 0.263478
\(633\) −0.518514 −0.0206091
\(634\) −14.9192 −0.592518
\(635\) 0 0
\(636\) 6.41131 0.254225
\(637\) 3.35240 0.132827
\(638\) −67.0451 −2.65434
\(639\) −23.6149 −0.934189
\(640\) 0 0
\(641\) 47.2807 1.86747 0.933737 0.357959i \(-0.116527\pi\)
0.933737 + 0.357959i \(0.116527\pi\)
\(642\) 17.2064 0.679084
\(643\) 7.06878 0.278765 0.139383 0.990239i \(-0.455488\pi\)
0.139383 + 0.990239i \(0.455488\pi\)
\(644\) 9.06949 0.357388
\(645\) 0 0
\(646\) 0 0
\(647\) −26.9462 −1.05937 −0.529683 0.848196i \(-0.677689\pi\)
−0.529683 + 0.848196i \(0.677689\pi\)
\(648\) −8.44406 −0.331714
\(649\) −33.6717 −1.32173
\(650\) 0 0
\(651\) −7.96060 −0.312000
\(652\) 18.4290 0.721736
\(653\) 28.2509 1.10554 0.552771 0.833333i \(-0.313570\pi\)
0.552771 + 0.833333i \(0.313570\pi\)
\(654\) −0.451959 −0.0176730
\(655\) 0 0
\(656\) 29.2410 1.14167
\(657\) −4.21049 −0.164267
\(658\) −27.2486 −1.06226
\(659\) 14.1230 0.550153 0.275077 0.961422i \(-0.411297\pi\)
0.275077 + 0.961422i \(0.411297\pi\)
\(660\) 0 0
\(661\) 49.0355 1.90726 0.953629 0.300984i \(-0.0973150\pi\)
0.953629 + 0.300984i \(0.0973150\pi\)
\(662\) −9.93996 −0.386328
\(663\) 0 0
\(664\) −5.32351 −0.206592
\(665\) 0 0
\(666\) 9.23485 0.357843
\(667\) −15.4212 −0.597111
\(668\) −0.526028 −0.0203526
\(669\) −0.701449 −0.0271196
\(670\) 0 0
\(671\) 31.7460 1.22554
\(672\) −10.8452 −0.418363
\(673\) −31.4528 −1.21242 −0.606209 0.795306i \(-0.707310\pi\)
−0.606209 + 0.795306i \(0.707310\pi\)
\(674\) −17.2003 −0.662532
\(675\) 0 0
\(676\) −14.3235 −0.550904
\(677\) 30.2796 1.16374 0.581870 0.813282i \(-0.302321\pi\)
0.581870 + 0.813282i \(0.302321\pi\)
\(678\) 11.4710 0.440540
\(679\) −38.5635 −1.47993
\(680\) 0 0
\(681\) −6.50602 −0.249311
\(682\) 46.0886 1.76482
\(683\) 46.1788 1.76698 0.883490 0.468449i \(-0.155187\pi\)
0.883490 + 0.468449i \(0.155187\pi\)
\(684\) −13.4440 −0.514043
\(685\) 0 0
\(686\) 24.2184 0.924663
\(687\) −6.59883 −0.251761
\(688\) −10.0861 −0.384527
\(689\) −11.3850 −0.433734
\(690\) 0 0
\(691\) 10.6458 0.404987 0.202494 0.979284i \(-0.435095\pi\)
0.202494 + 0.979284i \(0.435095\pi\)
\(692\) −20.7862 −0.790172
\(693\) −46.8830 −1.78094
\(694\) 20.8232 0.790439
\(695\) 0 0
\(696\) 5.01946 0.190262
\(697\) 0 0
\(698\) −20.6166 −0.780349
\(699\) 6.34953 0.240161
\(700\) 0 0
\(701\) 39.4145 1.48866 0.744332 0.667810i \(-0.232768\pi\)
0.744332 + 0.667810i \(0.232768\pi\)
\(702\) 7.19057 0.271391
\(703\) −7.63048 −0.287789
\(704\) 7.38255 0.278240
\(705\) 0 0
\(706\) −57.3490 −2.15836
\(707\) −29.9404 −1.12603
\(708\) −4.21948 −0.158578
\(709\) −15.1971 −0.570740 −0.285370 0.958417i \(-0.592116\pi\)
−0.285370 + 0.958417i \(0.592116\pi\)
\(710\) 0 0
\(711\) 13.1822 0.494372
\(712\) 14.3158 0.536506
\(713\) 10.6009 0.397008
\(714\) 0 0
\(715\) 0 0
\(716\) 24.7815 0.926126
\(717\) −2.88432 −0.107717
\(718\) 45.4051 1.69450
\(719\) 6.85786 0.255755 0.127878 0.991790i \(-0.459184\pi\)
0.127878 + 0.991790i \(0.459184\pi\)
\(720\) 0 0
\(721\) 5.73535 0.213595
\(722\) −5.40999 −0.201339
\(723\) 4.76617 0.177256
\(724\) 11.7231 0.435686
\(725\) 0 0
\(726\) −20.7589 −0.770435
\(727\) −38.5606 −1.43013 −0.715066 0.699057i \(-0.753603\pi\)
−0.715066 + 0.699057i \(0.753603\pi\)
\(728\) 5.24214 0.194287
\(729\) −11.4245 −0.423129
\(730\) 0 0
\(731\) 0 0
\(732\) 3.97816 0.147037
\(733\) −42.7425 −1.57873 −0.789366 0.613923i \(-0.789591\pi\)
−0.789366 + 0.613923i \(0.789591\pi\)
\(734\) −10.9767 −0.405159
\(735\) 0 0
\(736\) 14.4423 0.532350
\(737\) −47.4890 −1.74928
\(738\) 28.6755 1.05556
\(739\) 6.00000 0.220714 0.110357 0.993892i \(-0.464801\pi\)
0.110357 + 0.993892i \(0.464801\pi\)
\(740\) 0 0
\(741\) −2.80580 −0.103073
\(742\) 51.1627 1.87824
\(743\) 52.2906 1.91836 0.959178 0.282804i \(-0.0912645\pi\)
0.959178 + 0.282804i \(0.0912645\pi\)
\(744\) −3.45051 −0.126502
\(745\) 0 0
\(746\) −54.2320 −1.98557
\(747\) −10.5946 −0.387635
\(748\) 0 0
\(749\) 52.8630 1.93157
\(750\) 0 0
\(751\) −39.4604 −1.43993 −0.719966 0.694010i \(-0.755842\pi\)
−0.719966 + 0.694010i \(0.755842\pi\)
\(752\) −23.9690 −0.874058
\(753\) 11.1269 0.405489
\(754\) 14.9192 0.543326
\(755\) 0 0
\(756\) −12.4405 −0.452456
\(757\) −8.61186 −0.313003 −0.156502 0.987678i \(-0.550022\pi\)
−0.156502 + 0.987678i \(0.550022\pi\)
\(758\) −1.82664 −0.0663466
\(759\) −7.33764 −0.266340
\(760\) 0 0
\(761\) 41.2400 1.49495 0.747474 0.664291i \(-0.231267\pi\)
0.747474 + 0.664291i \(0.231267\pi\)
\(762\) 5.92562 0.214663
\(763\) −1.38854 −0.0502686
\(764\) 17.4485 0.631265
\(765\) 0 0
\(766\) −46.6450 −1.68535
\(767\) 7.49280 0.270549
\(768\) −11.6440 −0.420166
\(769\) 17.3510 0.625692 0.312846 0.949804i \(-0.398718\pi\)
0.312846 + 0.949804i \(0.398718\pi\)
\(770\) 0 0
\(771\) 13.7044 0.493552
\(772\) −5.22687 −0.188119
\(773\) 20.0124 0.719796 0.359898 0.932992i \(-0.382812\pi\)
0.359898 + 0.932992i \(0.382812\pi\)
\(774\) −9.89101 −0.355525
\(775\) 0 0
\(776\) −16.7153 −0.600044
\(777\) −3.33452 −0.119625
\(778\) 59.6352 2.13803
\(779\) −23.6937 −0.848915
\(780\) 0 0
\(781\) −49.3670 −1.76649
\(782\) 0 0
\(783\) 21.1530 0.755948
\(784\) −13.2520 −0.473286
\(785\) 0 0
\(786\) −19.8160 −0.706815
\(787\) 33.9131 1.20887 0.604437 0.796653i \(-0.293398\pi\)
0.604437 + 0.796653i \(0.293398\pi\)
\(788\) 22.1480 0.788990
\(789\) −10.1434 −0.361116
\(790\) 0 0
\(791\) 35.2420 1.25306
\(792\) −20.3214 −0.722089
\(793\) −7.06428 −0.250860
\(794\) −14.7008 −0.521711
\(795\) 0 0
\(796\) 7.01200 0.248534
\(797\) 0.730287 0.0258681 0.0129340 0.999916i \(-0.495883\pi\)
0.0129340 + 0.999916i \(0.495883\pi\)
\(798\) 12.6089 0.446350
\(799\) 0 0
\(800\) 0 0
\(801\) 28.4905 1.00666
\(802\) 0.298360 0.0105355
\(803\) −8.80204 −0.310617
\(804\) −5.95095 −0.209874
\(805\) 0 0
\(806\) −10.2559 −0.361248
\(807\) 10.0320 0.353142
\(808\) −12.9777 −0.456553
\(809\) −20.4333 −0.718395 −0.359198 0.933262i \(-0.616950\pi\)
−0.359198 + 0.933262i \(0.616950\pi\)
\(810\) 0 0
\(811\) −2.51695 −0.0883820 −0.0441910 0.999023i \(-0.514071\pi\)
−0.0441910 + 0.999023i \(0.514071\pi\)
\(812\) −25.8119 −0.905822
\(813\) 8.90684 0.312376
\(814\) 19.3055 0.676657
\(815\) 0 0
\(816\) 0 0
\(817\) 8.17265 0.285925
\(818\) 24.1087 0.842941
\(819\) 10.4326 0.364546
\(820\) 0 0
\(821\) 15.2982 0.533912 0.266956 0.963709i \(-0.413982\pi\)
0.266956 + 0.963709i \(0.413982\pi\)
\(822\) −14.0368 −0.489590
\(823\) −14.3448 −0.500029 −0.250014 0.968242i \(-0.580435\pi\)
−0.250014 + 0.968242i \(0.580435\pi\)
\(824\) 2.48598 0.0866033
\(825\) 0 0
\(826\) −33.6717 −1.17159
\(827\) 40.3144 1.40187 0.700934 0.713226i \(-0.252767\pi\)
0.700934 + 0.713226i \(0.252767\pi\)
\(828\) 7.82361 0.271889
\(829\) 37.1150 1.28906 0.644528 0.764581i \(-0.277054\pi\)
0.644528 + 0.764581i \(0.277054\pi\)
\(830\) 0 0
\(831\) −7.96396 −0.276267
\(832\) −1.64280 −0.0569540
\(833\) 0 0
\(834\) −10.3315 −0.357751
\(835\) 0 0
\(836\) −28.1047 −0.972020
\(837\) −14.5412 −0.502616
\(838\) 42.5102 1.46849
\(839\) −7.10180 −0.245182 −0.122591 0.992457i \(-0.539120\pi\)
−0.122591 + 0.992457i \(0.539120\pi\)
\(840\) 0 0
\(841\) 14.8890 0.513414
\(842\) −10.5089 −0.362161
\(843\) 4.38657 0.151082
\(844\) 1.15574 0.0397824
\(845\) 0 0
\(846\) −23.5054 −0.808134
\(847\) −63.7771 −2.19141
\(848\) 45.0048 1.54547
\(849\) 11.7440 0.403052
\(850\) 0 0
\(851\) 4.44050 0.152218
\(852\) −6.18629 −0.211939
\(853\) 38.3399 1.31273 0.656366 0.754442i \(-0.272093\pi\)
0.656366 + 0.754442i \(0.272093\pi\)
\(854\) 31.7460 1.08633
\(855\) 0 0
\(856\) 22.9134 0.783164
\(857\) −1.73040 −0.0591094 −0.0295547 0.999563i \(-0.509409\pi\)
−0.0295547 + 0.999563i \(0.509409\pi\)
\(858\) 7.09880 0.242349
\(859\) 30.9245 1.05513 0.527565 0.849515i \(-0.323105\pi\)
0.527565 + 0.849515i \(0.323105\pi\)
\(860\) 0 0
\(861\) −10.3542 −0.352868
\(862\) −12.5085 −0.426043
\(863\) −40.2134 −1.36888 −0.684439 0.729070i \(-0.739953\pi\)
−0.684439 + 0.729070i \(0.739953\pi\)
\(864\) −19.8103 −0.673960
\(865\) 0 0
\(866\) 27.8550 0.946550
\(867\) 0 0
\(868\) 17.7438 0.602265
\(869\) 27.5575 0.934824
\(870\) 0 0
\(871\) 10.5675 0.358066
\(872\) −0.601863 −0.0203816
\(873\) −33.2660 −1.12588
\(874\) −16.7909 −0.567962
\(875\) 0 0
\(876\) −1.10300 −0.0372670
\(877\) −1.01124 −0.0341472 −0.0170736 0.999854i \(-0.505435\pi\)
−0.0170736 + 0.999854i \(0.505435\pi\)
\(878\) 2.65168 0.0894898
\(879\) −2.69336 −0.0908446
\(880\) 0 0
\(881\) −19.5296 −0.657968 −0.328984 0.944336i \(-0.606706\pi\)
−0.328984 + 0.944336i \(0.606706\pi\)
\(882\) −12.9957 −0.437589
\(883\) −12.6125 −0.424445 −0.212223 0.977221i \(-0.568070\pi\)
−0.212223 + 0.977221i \(0.568070\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −23.0535 −0.774497
\(887\) −37.1151 −1.24620 −0.623102 0.782141i \(-0.714128\pi\)
−0.623102 + 0.782141i \(0.714128\pi\)
\(888\) −1.44534 −0.0485026
\(889\) 18.2052 0.610581
\(890\) 0 0
\(891\) −35.1308 −1.17693
\(892\) 1.56350 0.0523498
\(893\) 19.4218 0.649927
\(894\) −16.1425 −0.539886
\(895\) 0 0
\(896\) −31.2332 −1.04343
\(897\) 1.63281 0.0545180
\(898\) −17.5486 −0.585603
\(899\) −30.1705 −1.00624
\(900\) 0 0
\(901\) 0 0
\(902\) 59.9463 1.99599
\(903\) 3.57145 0.118850
\(904\) 15.2756 0.508059
\(905\) 0 0
\(906\) 3.41254 0.113374
\(907\) 34.4437 1.14368 0.571842 0.820364i \(-0.306229\pi\)
0.571842 + 0.820364i \(0.306229\pi\)
\(908\) 14.5016 0.481254
\(909\) −25.8275 −0.856644
\(910\) 0 0
\(911\) −10.1968 −0.337835 −0.168918 0.985630i \(-0.554027\pi\)
−0.168918 + 0.985630i \(0.554027\pi\)
\(912\) 11.0913 0.367269
\(913\) −22.1480 −0.732992
\(914\) −65.3309 −2.16096
\(915\) 0 0
\(916\) 14.7085 0.485983
\(917\) −60.8804 −2.01045
\(918\) 0 0
\(919\) −50.5315 −1.66688 −0.833440 0.552611i \(-0.813632\pi\)
−0.833440 + 0.552611i \(0.813632\pi\)
\(920\) 0 0
\(921\) 14.0382 0.462573
\(922\) −72.2405 −2.37911
\(923\) 10.9854 0.361589
\(924\) −12.2817 −0.404039
\(925\) 0 0
\(926\) −27.7005 −0.910295
\(927\) 4.94748 0.162496
\(928\) −41.1031 −1.34927
\(929\) 28.3712 0.930830 0.465415 0.885093i \(-0.345905\pi\)
0.465415 + 0.885093i \(0.345905\pi\)
\(930\) 0 0
\(931\) 10.7380 0.351923
\(932\) −14.1528 −0.463591
\(933\) 2.26493 0.0741504
\(934\) 35.0695 1.14751
\(935\) 0 0
\(936\) 4.52202 0.147807
\(937\) 47.5024 1.55183 0.775917 0.630835i \(-0.217287\pi\)
0.775917 + 0.630835i \(0.217287\pi\)
\(938\) −47.4890 −1.55057
\(939\) 12.7220 0.415166
\(940\) 0 0
\(941\) −46.0404 −1.50087 −0.750437 0.660942i \(-0.770157\pi\)
−0.750437 + 0.660942i \(0.770157\pi\)
\(942\) −3.97205 −0.129416
\(943\) 13.7884 0.449011
\(944\) −29.6190 −0.964016
\(945\) 0 0
\(946\) −20.6772 −0.672274
\(947\) −29.7383 −0.966366 −0.483183 0.875519i \(-0.660519\pi\)
−0.483183 + 0.875519i \(0.660519\pi\)
\(948\) 3.45329 0.112158
\(949\) 1.95868 0.0635814
\(950\) 0 0
\(951\) 4.64701 0.150690
\(952\) 0 0
\(953\) −9.02109 −0.292222 −0.146111 0.989268i \(-0.546676\pi\)
−0.146111 + 0.989268i \(0.546676\pi\)
\(954\) 44.1344 1.42891
\(955\) 0 0
\(956\) 6.42903 0.207930
\(957\) 20.8831 0.675054
\(958\) 26.2470 0.848002
\(959\) −43.1250 −1.39258
\(960\) 0 0
\(961\) −10.2600 −0.330968
\(962\) −4.29596 −0.138507
\(963\) 45.6011 1.46948
\(964\) −10.6236 −0.342162
\(965\) 0 0
\(966\) −7.33764 −0.236085
\(967\) 11.7541 0.377986 0.188993 0.981978i \(-0.439478\pi\)
0.188993 + 0.981978i \(0.439478\pi\)
\(968\) −27.6441 −0.888516
\(969\) 0 0
\(970\) 0 0
\(971\) 19.9525 0.640306 0.320153 0.947366i \(-0.396266\pi\)
0.320153 + 0.947366i \(0.396266\pi\)
\(972\) −16.3951 −0.525874
\(973\) −31.7413 −1.01758
\(974\) 53.5544 1.71599
\(975\) 0 0
\(976\) 27.9250 0.893859
\(977\) 27.2005 0.870221 0.435110 0.900377i \(-0.356709\pi\)
0.435110 + 0.900377i \(0.356709\pi\)
\(978\) −14.9099 −0.476767
\(979\) 59.5596 1.90353
\(980\) 0 0
\(981\) −1.19780 −0.0382427
\(982\) 37.9989 1.21259
\(983\) −7.12485 −0.227248 −0.113624 0.993524i \(-0.536246\pi\)
−0.113624 + 0.993524i \(0.536246\pi\)
\(984\) −4.48800 −0.143072
\(985\) 0 0
\(986\) 0 0
\(987\) 8.48734 0.270155
\(988\) 6.25400 0.198966
\(989\) −4.75601 −0.151232
\(990\) 0 0
\(991\) 56.9670 1.80962 0.904808 0.425820i \(-0.140014\pi\)
0.904808 + 0.425820i \(0.140014\pi\)
\(992\) 28.2554 0.897108
\(993\) 3.09608 0.0982511
\(994\) −49.3670 −1.56583
\(995\) 0 0
\(996\) −2.77542 −0.0879425
\(997\) −5.04451 −0.159761 −0.0798806 0.996804i \(-0.525454\pi\)
−0.0798806 + 0.996804i \(0.525454\pi\)
\(998\) −16.9665 −0.537064
\(999\) −6.09097 −0.192710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bp.1.9 12
5.2 odd 4 1445.2.b.f.579.10 12
5.3 odd 4 1445.2.b.f.579.3 12
5.4 even 2 inner 7225.2.a.bp.1.4 12
17.8 even 8 425.2.e.d.251.2 12
17.15 even 8 425.2.e.d.276.5 12
17.16 even 2 inner 7225.2.a.bp.1.10 12
85.8 odd 8 85.2.j.c.64.2 yes 12
85.32 odd 8 85.2.j.c.4.2 12
85.33 odd 4 1445.2.b.f.579.4 12
85.42 odd 8 85.2.j.c.64.5 yes 12
85.49 even 8 425.2.e.d.276.2 12
85.59 even 8 425.2.e.d.251.5 12
85.67 odd 4 1445.2.b.f.579.9 12
85.83 odd 8 85.2.j.c.4.5 yes 12
85.84 even 2 inner 7225.2.a.bp.1.3 12
255.8 even 8 765.2.t.e.64.5 12
255.32 even 8 765.2.t.e.514.5 12
255.83 even 8 765.2.t.e.514.2 12
255.212 even 8 765.2.t.e.64.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.2 12 85.32 odd 8
85.2.j.c.4.5 yes 12 85.83 odd 8
85.2.j.c.64.2 yes 12 85.8 odd 8
85.2.j.c.64.5 yes 12 85.42 odd 8
425.2.e.d.251.2 12 17.8 even 8
425.2.e.d.251.5 12 85.59 even 8
425.2.e.d.276.2 12 85.49 even 8
425.2.e.d.276.5 12 17.15 even 8
765.2.t.e.64.2 12 255.212 even 8
765.2.t.e.64.5 12 255.8 even 8
765.2.t.e.514.2 12 255.83 even 8
765.2.t.e.514.5 12 255.32 even 8
1445.2.b.f.579.3 12 5.3 odd 4
1445.2.b.f.579.4 12 85.33 odd 4
1445.2.b.f.579.9 12 85.67 odd 4
1445.2.b.f.579.10 12 5.2 odd 4
7225.2.a.bp.1.3 12 85.84 even 2 inner
7225.2.a.bp.1.4 12 5.4 even 2 inner
7225.2.a.bp.1.9 12 1.1 even 1 trivial
7225.2.a.bp.1.10 12 17.16 even 2 inner