Properties

Label 7225.2.a.bp.1.12
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 30x^{10} + 343x^{8} - 1860x^{6} + 4823x^{4} - 5230x^{2} + 1681 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(-3.07592\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38621 q^{2} +3.15462 q^{3} +3.69399 q^{4} +7.52757 q^{6} -0.219993 q^{7} +4.04223 q^{8} +6.95160 q^{9} -0.524950 q^{11} +11.6531 q^{12} +1.96713 q^{13} -0.524950 q^{14} +2.25761 q^{16} +16.5880 q^{18} +4.00000 q^{19} -0.693995 q^{21} -1.25264 q^{22} +0.372668 q^{23} +12.7517 q^{24} +4.69399 q^{26} +12.4658 q^{27} -0.812655 q^{28} -7.00262 q^{29} -2.92062 q^{31} -2.69733 q^{32} -1.65602 q^{33} +25.6792 q^{36} +5.71657 q^{37} +9.54484 q^{38} +6.20555 q^{39} +0.797070 q^{41} -1.65602 q^{42} -2.49417 q^{43} -1.93916 q^{44} +0.889263 q^{46} +6.73955 q^{47} +7.12189 q^{48} -6.95160 q^{49} +7.26658 q^{52} -5.92169 q^{53} +29.7460 q^{54} -0.889263 q^{56} +12.6185 q^{57} -16.7097 q^{58} +6.00000 q^{59} -5.65685 q^{61} -6.96921 q^{62} -1.52931 q^{63} -10.9516 q^{64} -3.95160 q^{66} +11.5120 q^{67} +1.17562 q^{69} +7.16326 q^{71} +28.1000 q^{72} +1.18532 q^{73} +13.6409 q^{74} +14.7760 q^{76} +0.115486 q^{77} +14.8078 q^{78} -6.73050 q^{79} +18.4700 q^{81} +1.90197 q^{82} -6.11732 q^{83} -2.56361 q^{84} -5.95160 q^{86} -22.0906 q^{87} -2.12197 q^{88} +15.9852 q^{89} -0.432757 q^{91} +1.37663 q^{92} -9.21344 q^{93} +16.0820 q^{94} -8.50903 q^{96} -9.21517 q^{97} -16.5880 q^{98} -3.64925 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} + 28 q^{9} + 4 q^{16} + 48 q^{19} + 24 q^{21} + 24 q^{26} + 68 q^{36} - 28 q^{49} + 72 q^{59} - 76 q^{64} + 8 q^{66} + 88 q^{69} + 48 q^{76} + 60 q^{81} - 40 q^{84} - 16 q^{86} - 16 q^{89}+ \cdots + 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38621 1.68730 0.843652 0.536890i \(-0.180401\pi\)
0.843652 + 0.536890i \(0.180401\pi\)
\(3\) 3.15462 1.82132 0.910659 0.413158i \(-0.135574\pi\)
0.910659 + 0.413158i \(0.135574\pi\)
\(4\) 3.69399 1.84700
\(5\) 0 0
\(6\) 7.52757 3.07312
\(7\) −0.219993 −0.0831497 −0.0415749 0.999135i \(-0.513238\pi\)
−0.0415749 + 0.999135i \(0.513238\pi\)
\(8\) 4.04223 1.42914
\(9\) 6.95160 2.31720
\(10\) 0 0
\(11\) −0.524950 −0.158278 −0.0791392 0.996864i \(-0.525217\pi\)
−0.0791392 + 0.996864i \(0.525217\pi\)
\(12\) 11.6531 3.36397
\(13\) 1.96713 0.545585 0.272792 0.962073i \(-0.412053\pi\)
0.272792 + 0.962073i \(0.412053\pi\)
\(14\) −0.524950 −0.140299
\(15\) 0 0
\(16\) 2.25761 0.564402
\(17\) 0 0
\(18\) 16.5880 3.90982
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −0.693995 −0.151442
\(22\) −1.25264 −0.267064
\(23\) 0.372668 0.0777066 0.0388533 0.999245i \(-0.487629\pi\)
0.0388533 + 0.999245i \(0.487629\pi\)
\(24\) 12.7517 2.60292
\(25\) 0 0
\(26\) 4.69399 0.920568
\(27\) 12.4658 2.39904
\(28\) −0.812655 −0.153577
\(29\) −7.00262 −1.30035 −0.650177 0.759783i \(-0.725305\pi\)
−0.650177 + 0.759783i \(0.725305\pi\)
\(30\) 0 0
\(31\) −2.92062 −0.524559 −0.262279 0.964992i \(-0.584474\pi\)
−0.262279 + 0.964992i \(0.584474\pi\)
\(32\) −2.69733 −0.476825
\(33\) −1.65602 −0.288276
\(34\) 0 0
\(35\) 0 0
\(36\) 25.6792 4.27986
\(37\) 5.71657 0.939798 0.469899 0.882720i \(-0.344290\pi\)
0.469899 + 0.882720i \(0.344290\pi\)
\(38\) 9.54484 1.54838
\(39\) 6.20555 0.993684
\(40\) 0 0
\(41\) 0.797070 0.124481 0.0622407 0.998061i \(-0.480175\pi\)
0.0622407 + 0.998061i \(0.480175\pi\)
\(42\) −1.65602 −0.255529
\(43\) −2.49417 −0.380357 −0.190178 0.981750i \(-0.560907\pi\)
−0.190178 + 0.981750i \(0.560907\pi\)
\(44\) −1.93916 −0.292340
\(45\) 0 0
\(46\) 0.889263 0.131115
\(47\) 6.73955 0.983065 0.491532 0.870859i \(-0.336437\pi\)
0.491532 + 0.870859i \(0.336437\pi\)
\(48\) 7.12189 1.02796
\(49\) −6.95160 −0.993086
\(50\) 0 0
\(51\) 0 0
\(52\) 7.26658 1.00769
\(53\) −5.92169 −0.813406 −0.406703 0.913560i \(-0.633322\pi\)
−0.406703 + 0.913560i \(0.633322\pi\)
\(54\) 29.7460 4.04792
\(55\) 0 0
\(56\) −0.889263 −0.118833
\(57\) 12.6185 1.67136
\(58\) −16.7097 −2.19409
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −5.65685 −0.724286 −0.362143 0.932123i \(-0.617955\pi\)
−0.362143 + 0.932123i \(0.617955\pi\)
\(62\) −6.96921 −0.885091
\(63\) −1.52931 −0.192675
\(64\) −10.9516 −1.36895
\(65\) 0 0
\(66\) −3.95160 −0.486409
\(67\) 11.5120 1.40641 0.703206 0.710987i \(-0.251751\pi\)
0.703206 + 0.710987i \(0.251751\pi\)
\(68\) 0 0
\(69\) 1.17562 0.141528
\(70\) 0 0
\(71\) 7.16326 0.850123 0.425061 0.905165i \(-0.360253\pi\)
0.425061 + 0.905165i \(0.360253\pi\)
\(72\) 28.1000 3.31161
\(73\) 1.18532 0.138731 0.0693657 0.997591i \(-0.477902\pi\)
0.0693657 + 0.997591i \(0.477902\pi\)
\(74\) 13.6409 1.58573
\(75\) 0 0
\(76\) 14.7760 1.69492
\(77\) 0.115486 0.0131608
\(78\) 14.8078 1.67665
\(79\) −6.73050 −0.757241 −0.378620 0.925552i \(-0.623601\pi\)
−0.378620 + 0.925552i \(0.623601\pi\)
\(80\) 0 0
\(81\) 18.4700 2.05222
\(82\) 1.90197 0.210038
\(83\) −6.11732 −0.671463 −0.335731 0.941958i \(-0.608983\pi\)
−0.335731 + 0.941958i \(0.608983\pi\)
\(84\) −2.56361 −0.279713
\(85\) 0 0
\(86\) −5.95160 −0.641778
\(87\) −22.0906 −2.36836
\(88\) −2.12197 −0.226203
\(89\) 15.9852 1.69443 0.847213 0.531253i \(-0.178279\pi\)
0.847213 + 0.531253i \(0.178279\pi\)
\(90\) 0 0
\(91\) −0.432757 −0.0453652
\(92\) 1.37663 0.143524
\(93\) −9.21344 −0.955389
\(94\) 16.0820 1.65873
\(95\) 0 0
\(96\) −8.50903 −0.868449
\(97\) −9.21517 −0.935659 −0.467829 0.883819i \(-0.654964\pi\)
−0.467829 + 0.883819i \(0.654964\pi\)
\(98\) −16.5880 −1.67564
\(99\) −3.64925 −0.366763
\(100\) 0 0
\(101\) −7.20921 −0.717343 −0.358672 0.933464i \(-0.616770\pi\)
−0.358672 + 0.933464i \(0.616770\pi\)
\(102\) 0 0
\(103\) −9.52456 −0.938482 −0.469241 0.883070i \(-0.655472\pi\)
−0.469241 + 0.883070i \(0.655472\pi\)
\(104\) 7.95160 0.779719
\(105\) 0 0
\(106\) −14.1304 −1.37246
\(107\) −10.7838 −1.04251 −0.521255 0.853401i \(-0.674536\pi\)
−0.521255 + 0.853401i \(0.674536\pi\)
\(108\) 46.0486 4.43103
\(109\) 14.0737 1.34802 0.674008 0.738724i \(-0.264571\pi\)
0.674008 + 0.738724i \(0.264571\pi\)
\(110\) 0 0
\(111\) 18.0336 1.71167
\(112\) −0.496659 −0.0469299
\(113\) −7.18921 −0.676304 −0.338152 0.941092i \(-0.609802\pi\)
−0.338152 + 0.941092i \(0.609802\pi\)
\(114\) 30.1103 2.82009
\(115\) 0 0
\(116\) −25.8677 −2.40175
\(117\) 13.6747 1.26423
\(118\) 14.3173 1.31801
\(119\) 0 0
\(120\) 0 0
\(121\) −10.7244 −0.974948
\(122\) −13.4984 −1.22209
\(123\) 2.51445 0.226720
\(124\) −10.7888 −0.968859
\(125\) 0 0
\(126\) −3.64925 −0.325101
\(127\) 9.74047 0.864327 0.432163 0.901795i \(-0.357750\pi\)
0.432163 + 0.901795i \(0.357750\pi\)
\(128\) −20.7382 −1.83301
\(129\) −7.86814 −0.692751
\(130\) 0 0
\(131\) −19.6859 −1.71996 −0.859980 0.510327i \(-0.829524\pi\)
−0.859980 + 0.510327i \(0.829524\pi\)
\(132\) −6.11732 −0.532444
\(133\) −0.879974 −0.0763034
\(134\) 27.4700 2.37304
\(135\) 0 0
\(136\) 0 0
\(137\) −4.65693 −0.397869 −0.198934 0.980013i \(-0.563748\pi\)
−0.198934 + 0.980013i \(0.563748\pi\)
\(138\) 2.80528 0.238802
\(139\) −5.24785 −0.445117 −0.222558 0.974919i \(-0.571441\pi\)
−0.222558 + 0.974919i \(0.571441\pi\)
\(140\) 0 0
\(141\) 21.2607 1.79047
\(142\) 17.0930 1.43442
\(143\) −1.03265 −0.0863544
\(144\) 15.6940 1.30783
\(145\) 0 0
\(146\) 2.82843 0.234082
\(147\) −21.9296 −1.80873
\(148\) 21.1170 1.73581
\(149\) 8.74239 0.716205 0.358102 0.933682i \(-0.383424\pi\)
0.358102 + 0.933682i \(0.383424\pi\)
\(150\) 0 0
\(151\) 15.9032 1.29418 0.647092 0.762412i \(-0.275985\pi\)
0.647092 + 0.762412i \(0.275985\pi\)
\(152\) 16.1689 1.31147
\(153\) 0 0
\(154\) 0.275573 0.0222063
\(155\) 0 0
\(156\) 22.9233 1.83533
\(157\) 10.0719 0.803823 0.401911 0.915679i \(-0.368346\pi\)
0.401911 + 0.915679i \(0.368346\pi\)
\(158\) −16.0604 −1.27770
\(159\) −18.6806 −1.48147
\(160\) 0 0
\(161\) −0.0819845 −0.00646128
\(162\) 44.0732 3.46272
\(163\) −9.58784 −0.750978 −0.375489 0.926827i \(-0.622525\pi\)
−0.375489 + 0.926827i \(0.622525\pi\)
\(164\) 2.94437 0.229917
\(165\) 0 0
\(166\) −14.5972 −1.13296
\(167\) −5.34390 −0.413524 −0.206762 0.978391i \(-0.566293\pi\)
−0.206762 + 0.978391i \(0.566293\pi\)
\(168\) −2.80528 −0.216432
\(169\) −9.13038 −0.702337
\(170\) 0 0
\(171\) 27.8064 2.12641
\(172\) −9.21344 −0.702518
\(173\) 17.4551 1.32708 0.663542 0.748139i \(-0.269052\pi\)
0.663542 + 0.748139i \(0.269052\pi\)
\(174\) −52.7128 −3.99614
\(175\) 0 0
\(176\) −1.18513 −0.0893327
\(177\) 18.9277 1.42269
\(178\) 38.1440 2.85901
\(179\) −21.3248 −1.59389 −0.796945 0.604052i \(-0.793552\pi\)
−0.796945 + 0.604052i \(0.793552\pi\)
\(180\) 0 0
\(181\) −14.4380 −1.07317 −0.536584 0.843847i \(-0.680286\pi\)
−0.536584 + 0.843847i \(0.680286\pi\)
\(182\) −1.03265 −0.0765450
\(183\) −17.8452 −1.31916
\(184\) 1.50641 0.111054
\(185\) 0 0
\(186\) −21.9852 −1.61203
\(187\) 0 0
\(188\) 24.8959 1.81572
\(189\) −2.74239 −0.199480
\(190\) 0 0
\(191\) 6.74239 0.487862 0.243931 0.969793i \(-0.421563\pi\)
0.243931 + 0.969793i \(0.421563\pi\)
\(192\) −34.5481 −2.49329
\(193\) −14.6551 −1.05490 −0.527448 0.849587i \(-0.676851\pi\)
−0.527448 + 0.849587i \(0.676851\pi\)
\(194\) −21.9893 −1.57874
\(195\) 0 0
\(196\) −25.6792 −1.83423
\(197\) −0.869327 −0.0619370 −0.0309685 0.999520i \(-0.509859\pi\)
−0.0309685 + 0.999520i \(0.509859\pi\)
\(198\) −8.70787 −0.618841
\(199\) −13.3004 −0.942838 −0.471419 0.881909i \(-0.656258\pi\)
−0.471419 + 0.881909i \(0.656258\pi\)
\(200\) 0 0
\(201\) 36.3159 2.56152
\(202\) −17.2027 −1.21038
\(203\) 1.54053 0.108124
\(204\) 0 0
\(205\) 0 0
\(206\) −22.7276 −1.58351
\(207\) 2.59064 0.180062
\(208\) 4.44102 0.307929
\(209\) −2.09980 −0.145246
\(210\) 0 0
\(211\) −17.7914 −1.22481 −0.612405 0.790544i \(-0.709798\pi\)
−0.612405 + 0.790544i \(0.709798\pi\)
\(212\) −21.8747 −1.50236
\(213\) 22.5973 1.54834
\(214\) −25.7324 −1.75903
\(215\) 0 0
\(216\) 50.3895 3.42857
\(217\) 0.642517 0.0436169
\(218\) 33.5828 2.27451
\(219\) 3.73924 0.252674
\(220\) 0 0
\(221\) 0 0
\(222\) 43.0319 2.88811
\(223\) 1.96713 0.131729 0.0658645 0.997829i \(-0.479019\pi\)
0.0658645 + 0.997829i \(0.479019\pi\)
\(224\) 0.593394 0.0396478
\(225\) 0 0
\(226\) −17.1550 −1.14113
\(227\) −11.9585 −0.793712 −0.396856 0.917881i \(-0.629899\pi\)
−0.396856 + 0.917881i \(0.629899\pi\)
\(228\) 46.6125 3.08699
\(229\) 9.30601 0.614958 0.307479 0.951555i \(-0.400515\pi\)
0.307479 + 0.951555i \(0.400515\pi\)
\(230\) 0 0
\(231\) 0.364313 0.0239700
\(232\) −28.3062 −1.85839
\(233\) 25.8009 1.69027 0.845137 0.534550i \(-0.179519\pi\)
0.845137 + 0.534550i \(0.179519\pi\)
\(234\) 32.6308 2.13314
\(235\) 0 0
\(236\) 22.1640 1.44275
\(237\) −21.2322 −1.37918
\(238\) 0 0
\(239\) 29.2912 1.89469 0.947345 0.320215i \(-0.103755\pi\)
0.947345 + 0.320215i \(0.103755\pi\)
\(240\) 0 0
\(241\) −8.48528 −0.546585 −0.273293 0.961931i \(-0.588113\pi\)
−0.273293 + 0.961931i \(0.588113\pi\)
\(242\) −25.5907 −1.64503
\(243\) 20.8683 1.33870
\(244\) −20.8964 −1.33775
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 7.86854 0.500663
\(248\) −11.8058 −0.749670
\(249\) −19.2978 −1.22295
\(250\) 0 0
\(251\) 1.77282 0.111900 0.0559498 0.998434i \(-0.482181\pi\)
0.0559498 + 0.998434i \(0.482181\pi\)
\(252\) −5.64925 −0.355869
\(253\) −0.195632 −0.0122993
\(254\) 23.2428 1.45838
\(255\) 0 0
\(256\) −27.5824 −1.72390
\(257\) −7.40235 −0.461746 −0.230873 0.972984i \(-0.574158\pi\)
−0.230873 + 0.972984i \(0.574158\pi\)
\(258\) −18.7750 −1.16888
\(259\) −1.25761 −0.0781440
\(260\) 0 0
\(261\) −48.6795 −3.01318
\(262\) −46.9746 −2.90210
\(263\) 7.67291 0.473132 0.236566 0.971615i \(-0.423978\pi\)
0.236566 + 0.971615i \(0.423978\pi\)
\(264\) −6.69399 −0.411987
\(265\) 0 0
\(266\) −2.09980 −0.128747
\(267\) 50.4271 3.08609
\(268\) 42.5252 2.59764
\(269\) −7.87260 −0.480001 −0.240000 0.970773i \(-0.577148\pi\)
−0.240000 + 0.970773i \(0.577148\pi\)
\(270\) 0 0
\(271\) 18.0672 1.09750 0.548751 0.835986i \(-0.315103\pi\)
0.548751 + 0.835986i \(0.315103\pi\)
\(272\) 0 0
\(273\) −1.36518 −0.0826245
\(274\) −11.1124 −0.671326
\(275\) 0 0
\(276\) 4.34275 0.261403
\(277\) 26.5569 1.59565 0.797824 0.602890i \(-0.205984\pi\)
0.797824 + 0.602890i \(0.205984\pi\)
\(278\) −12.5225 −0.751047
\(279\) −20.3030 −1.21551
\(280\) 0 0
\(281\) 13.7728 0.821618 0.410809 0.911721i \(-0.365246\pi\)
0.410809 + 0.911721i \(0.365246\pi\)
\(282\) 50.7325 3.02108
\(283\) −13.7471 −0.817181 −0.408591 0.912718i \(-0.633980\pi\)
−0.408591 + 0.912718i \(0.633980\pi\)
\(284\) 26.4611 1.57017
\(285\) 0 0
\(286\) −2.46411 −0.145706
\(287\) −0.175350 −0.0103506
\(288\) −18.7507 −1.10490
\(289\) 0 0
\(290\) 0 0
\(291\) −29.0703 −1.70413
\(292\) 4.37857 0.256237
\(293\) 19.8873 1.16183 0.580913 0.813966i \(-0.302696\pi\)
0.580913 + 0.813966i \(0.302696\pi\)
\(294\) −52.3287 −3.05187
\(295\) 0 0
\(296\) 23.1077 1.34311
\(297\) −6.54392 −0.379717
\(298\) 20.8612 1.20846
\(299\) 0.733088 0.0423955
\(300\) 0 0
\(301\) 0.548700 0.0316266
\(302\) 37.9484 2.18368
\(303\) −22.7423 −1.30651
\(304\) 9.03043 0.517931
\(305\) 0 0
\(306\) 0 0
\(307\) −14.9598 −0.853799 −0.426900 0.904299i \(-0.640394\pi\)
−0.426900 + 0.904299i \(0.640394\pi\)
\(308\) 0.426603 0.0243080
\(309\) −30.0463 −1.70928
\(310\) 0 0
\(311\) −29.6538 −1.68151 −0.840756 0.541414i \(-0.817889\pi\)
−0.840756 + 0.541414i \(0.817889\pi\)
\(312\) 25.0843 1.42012
\(313\) −14.3784 −0.812716 −0.406358 0.913714i \(-0.633201\pi\)
−0.406358 + 0.913714i \(0.633201\pi\)
\(314\) 24.0336 1.35629
\(315\) 0 0
\(316\) −24.8624 −1.39862
\(317\) 13.7751 0.773687 0.386843 0.922145i \(-0.373565\pi\)
0.386843 + 0.922145i \(0.373565\pi\)
\(318\) −44.5759 −2.49969
\(319\) 3.67603 0.205818
\(320\) 0 0
\(321\) −34.0188 −1.89874
\(322\) −0.195632 −0.0109021
\(323\) 0 0
\(324\) 68.2280 3.79044
\(325\) 0 0
\(326\) −22.8786 −1.26713
\(327\) 44.3971 2.45516
\(328\) 3.22194 0.177902
\(329\) −1.48266 −0.0817415
\(330\) 0 0
\(331\) −20.1640 −1.10831 −0.554156 0.832413i \(-0.686959\pi\)
−0.554156 + 0.832413i \(0.686959\pi\)
\(332\) −22.5973 −1.24019
\(333\) 39.7393 2.17770
\(334\) −12.7517 −0.697740
\(335\) 0 0
\(336\) −1.56677 −0.0854742
\(337\) 28.5829 1.55701 0.778504 0.627640i \(-0.215979\pi\)
0.778504 + 0.627640i \(0.215979\pi\)
\(338\) −21.7870 −1.18506
\(339\) −22.6792 −1.23176
\(340\) 0 0
\(341\) 1.53318 0.0830264
\(342\) 66.3519 3.58790
\(343\) 3.06926 0.165725
\(344\) −10.0820 −0.543584
\(345\) 0 0
\(346\) 41.6514 2.23919
\(347\) 10.9365 0.587101 0.293551 0.955944i \(-0.405163\pi\)
0.293551 + 0.955944i \(0.405163\pi\)
\(348\) −81.6025 −4.37435
\(349\) 0.645598 0.0345581 0.0172790 0.999851i \(-0.494500\pi\)
0.0172790 + 0.999851i \(0.494500\pi\)
\(350\) 0 0
\(351\) 24.5219 1.30888
\(352\) 1.41596 0.0754711
\(353\) 14.3022 0.761229 0.380615 0.924734i \(-0.375712\pi\)
0.380615 + 0.924734i \(0.375712\pi\)
\(354\) 45.1654 2.40052
\(355\) 0 0
\(356\) 59.0492 3.12960
\(357\) 0 0
\(358\) −50.8854 −2.68938
\(359\) −15.6760 −0.827349 −0.413675 0.910425i \(-0.635755\pi\)
−0.413675 + 0.910425i \(0.635755\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −34.4521 −1.81076
\(363\) −33.8315 −1.77569
\(364\) −1.59860 −0.0837895
\(365\) 0 0
\(366\) −42.5824 −2.22582
\(367\) 21.9010 1.14322 0.571610 0.820525i \(-0.306319\pi\)
0.571610 + 0.820525i \(0.306319\pi\)
\(368\) 0.841338 0.0438578
\(369\) 5.54091 0.288448
\(370\) 0 0
\(371\) 1.30273 0.0676345
\(372\) −34.0344 −1.76460
\(373\) 6.50858 0.337002 0.168501 0.985702i \(-0.446107\pi\)
0.168501 + 0.985702i \(0.446107\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 27.2428 1.40494
\(377\) −13.7751 −0.709454
\(378\) −6.54392 −0.336583
\(379\) 7.52757 0.386666 0.193333 0.981133i \(-0.438070\pi\)
0.193333 + 0.981133i \(0.438070\pi\)
\(380\) 0 0
\(381\) 30.7274 1.57421
\(382\) 16.0888 0.823172
\(383\) −24.7752 −1.26595 −0.632976 0.774172i \(-0.718167\pi\)
−0.632976 + 0.774172i \(0.718167\pi\)
\(384\) −65.4209 −3.33850
\(385\) 0 0
\(386\) −34.9701 −1.77993
\(387\) −17.3385 −0.881363
\(388\) −34.0408 −1.72816
\(389\) 23.6971 1.20149 0.600747 0.799440i \(-0.294870\pi\)
0.600747 + 0.799440i \(0.294870\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −28.1000 −1.41926
\(393\) −62.1013 −3.13260
\(394\) −2.07440 −0.104507
\(395\) 0 0
\(396\) −13.4803 −0.677410
\(397\) −27.7135 −1.39090 −0.695451 0.718573i \(-0.744795\pi\)
−0.695451 + 0.718573i \(0.744795\pi\)
\(398\) −31.7375 −1.59086
\(399\) −2.77598 −0.138973
\(400\) 0 0
\(401\) −30.5431 −1.52525 −0.762624 0.646842i \(-0.776089\pi\)
−0.762624 + 0.646842i \(0.776089\pi\)
\(402\) 86.6572 4.32207
\(403\) −5.74525 −0.286191
\(404\) −26.6308 −1.32493
\(405\) 0 0
\(406\) 3.67603 0.182438
\(407\) −3.00092 −0.148750
\(408\) 0 0
\(409\) −5.90321 −0.291895 −0.145947 0.989292i \(-0.546623\pi\)
−0.145947 + 0.989292i \(0.546623\pi\)
\(410\) 0 0
\(411\) −14.6908 −0.724645
\(412\) −35.1837 −1.73337
\(413\) −1.31996 −0.0649510
\(414\) 6.18180 0.303819
\(415\) 0 0
\(416\) −5.30601 −0.260148
\(417\) −16.5549 −0.810699
\(418\) −5.01057 −0.245075
\(419\) 32.4867 1.58708 0.793539 0.608519i \(-0.208236\pi\)
0.793539 + 0.608519i \(0.208236\pi\)
\(420\) 0 0
\(421\) −30.1156 −1.46774 −0.733872 0.679288i \(-0.762289\pi\)
−0.733872 + 0.679288i \(0.762289\pi\)
\(422\) −42.4540 −2.06663
\(423\) 46.8507 2.27796
\(424\) −23.9368 −1.16247
\(425\) 0 0
\(426\) 53.9220 2.61253
\(427\) 1.24447 0.0602242
\(428\) −39.8353 −1.92551
\(429\) −3.25761 −0.157279
\(430\) 0 0
\(431\) 8.32464 0.400984 0.200492 0.979695i \(-0.435746\pi\)
0.200492 + 0.979695i \(0.435746\pi\)
\(432\) 28.1429 1.35402
\(433\) −13.5795 −0.652591 −0.326295 0.945268i \(-0.605800\pi\)
−0.326295 + 0.945268i \(0.605800\pi\)
\(434\) 1.53318 0.0735950
\(435\) 0 0
\(436\) 51.9881 2.48978
\(437\) 1.49067 0.0713085
\(438\) 8.92260 0.426338
\(439\) 20.3714 0.972276 0.486138 0.873882i \(-0.338405\pi\)
0.486138 + 0.873882i \(0.338405\pi\)
\(440\) 0 0
\(441\) −48.3248 −2.30118
\(442\) 0 0
\(443\) 2.45360 0.116574 0.0582871 0.998300i \(-0.481436\pi\)
0.0582871 + 0.998300i \(0.481436\pi\)
\(444\) 66.6160 3.16145
\(445\) 0 0
\(446\) 4.69399 0.222267
\(447\) 27.5789 1.30444
\(448\) 2.40928 0.113828
\(449\) −3.19720 −0.150885 −0.0754426 0.997150i \(-0.524037\pi\)
−0.0754426 + 0.997150i \(0.524037\pi\)
\(450\) 0 0
\(451\) −0.418422 −0.0197027
\(452\) −26.5569 −1.24913
\(453\) 50.1685 2.35712
\(454\) −28.5354 −1.33923
\(455\) 0 0
\(456\) 51.0067 2.38861
\(457\) 30.1803 1.41177 0.705887 0.708325i \(-0.250549\pi\)
0.705887 + 0.708325i \(0.250549\pi\)
\(458\) 22.2061 1.03762
\(459\) 0 0
\(460\) 0 0
\(461\) 5.41527 0.252214 0.126107 0.992017i \(-0.459752\pi\)
0.126107 + 0.992017i \(0.459752\pi\)
\(462\) 0.869327 0.0404447
\(463\) −15.7574 −0.732307 −0.366153 0.930555i \(-0.619325\pi\)
−0.366153 + 0.930555i \(0.619325\pi\)
\(464\) −15.8092 −0.733923
\(465\) 0 0
\(466\) 61.5664 2.85201
\(467\) 10.7690 0.498331 0.249166 0.968461i \(-0.419844\pi\)
0.249166 + 0.968461i \(0.419844\pi\)
\(468\) 50.5144 2.33503
\(469\) −2.53256 −0.116943
\(470\) 0 0
\(471\) 31.7729 1.46402
\(472\) 24.2534 1.11635
\(473\) 1.30931 0.0602023
\(474\) −50.6644 −2.32709
\(475\) 0 0
\(476\) 0 0
\(477\) −41.1652 −1.88483
\(478\) 69.8949 3.19692
\(479\) 36.9092 1.68643 0.843213 0.537579i \(-0.180661\pi\)
0.843213 + 0.537579i \(0.180661\pi\)
\(480\) 0 0
\(481\) 11.2453 0.512740
\(482\) −20.2477 −0.922256
\(483\) −0.258629 −0.0117680
\(484\) −39.6160 −1.80073
\(485\) 0 0
\(486\) 49.7961 2.25880
\(487\) −38.3234 −1.73660 −0.868299 0.496041i \(-0.834786\pi\)
−0.868299 + 0.496041i \(0.834786\pi\)
\(488\) −22.8663 −1.03511
\(489\) −30.2460 −1.36777
\(490\) 0 0
\(491\) 38.0336 1.71643 0.858216 0.513289i \(-0.171573\pi\)
0.858216 + 0.513289i \(0.171573\pi\)
\(492\) 9.28836 0.418752
\(493\) 0 0
\(494\) 18.7760 0.844771
\(495\) 0 0
\(496\) −6.59362 −0.296062
\(497\) −1.57587 −0.0706875
\(498\) −46.0486 −2.06349
\(499\) 9.30610 0.416598 0.208299 0.978065i \(-0.433207\pi\)
0.208299 + 0.978065i \(0.433207\pi\)
\(500\) 0 0
\(501\) −16.8580 −0.753158
\(502\) 4.23033 0.188809
\(503\) 1.56864 0.0699421 0.0349710 0.999388i \(-0.488866\pi\)
0.0349710 + 0.999388i \(0.488866\pi\)
\(504\) −6.18180 −0.275359
\(505\) 0 0
\(506\) −0.466819 −0.0207526
\(507\) −28.8028 −1.27918
\(508\) 35.9812 1.59641
\(509\) 24.4247 1.08261 0.541304 0.840827i \(-0.317931\pi\)
0.541304 + 0.840827i \(0.317931\pi\)
\(510\) 0 0
\(511\) −0.260763 −0.0115355
\(512\) −24.3410 −1.07573
\(513\) 49.8632 2.20151
\(514\) −17.6636 −0.779106
\(515\) 0 0
\(516\) −29.0649 −1.27951
\(517\) −3.53793 −0.155598
\(518\) −3.00092 −0.131853
\(519\) 55.0640 2.41704
\(520\) 0 0
\(521\) 7.50829 0.328944 0.164472 0.986382i \(-0.447408\pi\)
0.164472 + 0.986382i \(0.447408\pi\)
\(522\) −116.159 −5.08416
\(523\) −8.98247 −0.392776 −0.196388 0.980526i \(-0.562921\pi\)
−0.196388 + 0.980526i \(0.562921\pi\)
\(524\) −72.7194 −3.17676
\(525\) 0 0
\(526\) 18.3092 0.798317
\(527\) 0 0
\(528\) −3.73864 −0.162703
\(529\) −22.8611 −0.993962
\(530\) 0 0
\(531\) 41.7096 1.81004
\(532\) −3.25062 −0.140932
\(533\) 1.56794 0.0679152
\(534\) 120.330 5.20718
\(535\) 0 0
\(536\) 46.5340 2.00996
\(537\) −67.2715 −2.90298
\(538\) −18.7857 −0.809908
\(539\) 3.64925 0.157184
\(540\) 0 0
\(541\) 12.7279 0.547216 0.273608 0.961841i \(-0.411783\pi\)
0.273608 + 0.961841i \(0.411783\pi\)
\(542\) 43.1121 1.85182
\(543\) −45.5464 −1.95458
\(544\) 0 0
\(545\) 0 0
\(546\) −3.25761 −0.139413
\(547\) 2.57260 0.109997 0.0549983 0.998486i \(-0.482485\pi\)
0.0549983 + 0.998486i \(0.482485\pi\)
\(548\) −17.2027 −0.734862
\(549\) −39.3242 −1.67832
\(550\) 0 0
\(551\) −28.0105 −1.19329
\(552\) 4.75214 0.202264
\(553\) 1.48067 0.0629644
\(554\) 63.3703 2.69235
\(555\) 0 0
\(556\) −19.3855 −0.822129
\(557\) −21.0162 −0.890487 −0.445243 0.895410i \(-0.646883\pi\)
−0.445243 + 0.895410i \(0.646883\pi\)
\(558\) −48.4472 −2.05093
\(559\) −4.90636 −0.207517
\(560\) 0 0
\(561\) 0 0
\(562\) 32.8648 1.38632
\(563\) −40.5377 −1.70846 −0.854231 0.519893i \(-0.825972\pi\)
−0.854231 + 0.519893i \(0.825972\pi\)
\(564\) 78.5369 3.30700
\(565\) 0 0
\(566\) −32.8035 −1.37883
\(567\) −4.06327 −0.170641
\(568\) 28.9555 1.21495
\(569\) −0.612010 −0.0256568 −0.0128284 0.999918i \(-0.504084\pi\)
−0.0128284 + 0.999918i \(0.504084\pi\)
\(570\) 0 0
\(571\) −14.8945 −0.623316 −0.311658 0.950194i \(-0.600884\pi\)
−0.311658 + 0.950194i \(0.600884\pi\)
\(572\) −3.81460 −0.159496
\(573\) 21.2697 0.888553
\(574\) −0.418422 −0.0174646
\(575\) 0 0
\(576\) −76.1312 −3.17213
\(577\) 37.2107 1.54910 0.774550 0.632513i \(-0.217976\pi\)
0.774550 + 0.632513i \(0.217976\pi\)
\(578\) 0 0
\(579\) −46.2311 −1.92130
\(580\) 0 0
\(581\) 1.34577 0.0558319
\(582\) −69.3679 −2.87539
\(583\) 3.10859 0.128745
\(584\) 4.79134 0.198267
\(585\) 0 0
\(586\) 47.4552 1.96035
\(587\) 9.60470 0.396428 0.198214 0.980159i \(-0.436486\pi\)
0.198214 + 0.980159i \(0.436486\pi\)
\(588\) −81.0080 −3.34071
\(589\) −11.6825 −0.481368
\(590\) 0 0
\(591\) −2.74239 −0.112807
\(592\) 12.9058 0.530424
\(593\) 16.5206 0.678419 0.339210 0.940711i \(-0.389840\pi\)
0.339210 + 0.940711i \(0.389840\pi\)
\(594\) −15.6152 −0.640698
\(595\) 0 0
\(596\) 32.2944 1.32283
\(597\) −41.9576 −1.71721
\(598\) 1.74930 0.0715342
\(599\) 34.8096 1.42228 0.711140 0.703050i \(-0.248179\pi\)
0.711140 + 0.703050i \(0.248179\pi\)
\(600\) 0 0
\(601\) 11.6825 0.476538 0.238269 0.971199i \(-0.423420\pi\)
0.238269 + 0.971199i \(0.423420\pi\)
\(602\) 1.30931 0.0533636
\(603\) 80.0267 3.25894
\(604\) 58.7464 2.39036
\(605\) 0 0
\(606\) −54.2679 −2.20448
\(607\) −26.9296 −1.09304 −0.546519 0.837447i \(-0.684047\pi\)
−0.546519 + 0.837447i \(0.684047\pi\)
\(608\) −10.7893 −0.437564
\(609\) 4.85978 0.196928
\(610\) 0 0
\(611\) 13.2576 0.536345
\(612\) 0 0
\(613\) −5.43522 −0.219526 −0.109763 0.993958i \(-0.535009\pi\)
−0.109763 + 0.993958i \(0.535009\pi\)
\(614\) −35.6971 −1.44062
\(615\) 0 0
\(616\) 0.466819 0.0188087
\(617\) −3.49860 −0.140848 −0.0704242 0.997517i \(-0.522435\pi\)
−0.0704242 + 0.997517i \(0.522435\pi\)
\(618\) −71.6968 −2.88407
\(619\) −12.1301 −0.487549 −0.243774 0.969832i \(-0.578386\pi\)
−0.243774 + 0.969832i \(0.578386\pi\)
\(620\) 0 0
\(621\) 4.64560 0.186421
\(622\) −70.7602 −2.83722
\(623\) −3.51664 −0.140891
\(624\) 14.0097 0.560837
\(625\) 0 0
\(626\) −34.3099 −1.37130
\(627\) −6.62407 −0.264540
\(628\) 37.2054 1.48466
\(629\) 0 0
\(630\) 0 0
\(631\) 12.6183 0.502327 0.251164 0.967945i \(-0.419187\pi\)
0.251164 + 0.967945i \(0.419187\pi\)
\(632\) −27.2062 −1.08221
\(633\) −56.1250 −2.23077
\(634\) 32.8703 1.30545
\(635\) 0 0
\(636\) −69.0062 −2.73627
\(637\) −13.6747 −0.541813
\(638\) 8.77178 0.347278
\(639\) 49.7961 1.96991
\(640\) 0 0
\(641\) 30.1997 1.19282 0.596408 0.802681i \(-0.296594\pi\)
0.596408 + 0.802681i \(0.296594\pi\)
\(642\) −81.1759 −3.20376
\(643\) −19.7117 −0.777352 −0.388676 0.921374i \(-0.627068\pi\)
−0.388676 + 0.921374i \(0.627068\pi\)
\(644\) −0.302850 −0.0119340
\(645\) 0 0
\(646\) 0 0
\(647\) 21.0418 0.827237 0.413618 0.910450i \(-0.364265\pi\)
0.413618 + 0.910450i \(0.364265\pi\)
\(648\) 74.6598 2.93291
\(649\) −3.14970 −0.123637
\(650\) 0 0
\(651\) 2.02690 0.0794403
\(652\) −35.4174 −1.38705
\(653\) 38.7173 1.51513 0.757563 0.652762i \(-0.226390\pi\)
0.757563 + 0.652762i \(0.226390\pi\)
\(654\) 105.941 4.14261
\(655\) 0 0
\(656\) 1.79947 0.0702575
\(657\) 8.23989 0.321469
\(658\) −3.53793 −0.137923
\(659\) −24.1577 −0.941049 −0.470524 0.882387i \(-0.655935\pi\)
−0.470524 + 0.882387i \(0.655935\pi\)
\(660\) 0 0
\(661\) −25.7432 −1.00129 −0.500647 0.865651i \(-0.666905\pi\)
−0.500647 + 0.865651i \(0.666905\pi\)
\(662\) −48.1155 −1.87006
\(663\) 0 0
\(664\) −24.7276 −0.959616
\(665\) 0 0
\(666\) 94.8264 3.67445
\(667\) −2.60965 −0.101046
\(668\) −19.7404 −0.763777
\(669\) 6.20555 0.239921
\(670\) 0 0
\(671\) 2.96957 0.114639
\(672\) 1.87193 0.0722113
\(673\) 10.4958 0.404583 0.202292 0.979325i \(-0.435161\pi\)
0.202292 + 0.979325i \(0.435161\pi\)
\(674\) 68.2047 2.62715
\(675\) 0 0
\(676\) −33.7276 −1.29721
\(677\) −8.48787 −0.326215 −0.163108 0.986608i \(-0.552152\pi\)
−0.163108 + 0.986608i \(0.552152\pi\)
\(678\) −54.1173 −2.07836
\(679\) 2.02728 0.0777998
\(680\) 0 0
\(681\) −37.7244 −1.44560
\(682\) 3.65849 0.140091
\(683\) −14.2898 −0.546784 −0.273392 0.961903i \(-0.588146\pi\)
−0.273392 + 0.961903i \(0.588146\pi\)
\(684\) 102.717 3.92747
\(685\) 0 0
\(686\) 7.32390 0.279628
\(687\) 29.3569 1.12003
\(688\) −5.63085 −0.214674
\(689\) −11.6488 −0.443782
\(690\) 0 0
\(691\) 8.82584 0.335751 0.167875 0.985808i \(-0.446309\pi\)
0.167875 + 0.985808i \(0.446309\pi\)
\(692\) 64.4789 2.45112
\(693\) 0.802810 0.0304962
\(694\) 26.0967 0.990619
\(695\) 0 0
\(696\) −89.2952 −3.38472
\(697\) 0 0
\(698\) 1.54053 0.0583100
\(699\) 81.3920 3.07853
\(700\) 0 0
\(701\) −18.5340 −0.700019 −0.350010 0.936746i \(-0.613822\pi\)
−0.350010 + 0.936746i \(0.613822\pi\)
\(702\) 58.5144 2.20848
\(703\) 22.8663 0.862418
\(704\) 5.74905 0.216675
\(705\) 0 0
\(706\) 34.1280 1.28443
\(707\) 1.58598 0.0596469
\(708\) 69.9188 2.62771
\(709\) 25.4989 0.957631 0.478815 0.877916i \(-0.341066\pi\)
0.478815 + 0.877916i \(0.341066\pi\)
\(710\) 0 0
\(711\) −46.7878 −1.75468
\(712\) 64.6158 2.42158
\(713\) −1.08842 −0.0407617
\(714\) 0 0
\(715\) 0 0
\(716\) −78.7736 −2.94391
\(717\) 92.4025 3.45083
\(718\) −37.4063 −1.39599
\(719\) −4.76313 −0.177635 −0.0888174 0.996048i \(-0.528309\pi\)
−0.0888174 + 0.996048i \(0.528309\pi\)
\(720\) 0 0
\(721\) 2.09534 0.0780345
\(722\) −7.15863 −0.266417
\(723\) −26.7678 −0.995505
\(724\) −53.3339 −1.98214
\(725\) 0 0
\(726\) −80.7289 −2.99613
\(727\) 11.1858 0.414858 0.207429 0.978250i \(-0.433490\pi\)
0.207429 + 0.978250i \(0.433490\pi\)
\(728\) −1.74930 −0.0648334
\(729\) 10.4216 0.385984
\(730\) 0 0
\(731\) 0 0
\(732\) −65.9201 −2.43648
\(733\) 26.2804 0.970687 0.485344 0.874324i \(-0.338695\pi\)
0.485344 + 0.874324i \(0.338695\pi\)
\(734\) 52.2603 1.92896
\(735\) 0 0
\(736\) −1.00521 −0.0370524
\(737\) −6.04321 −0.222605
\(738\) 13.2218 0.486700
\(739\) 6.00000 0.220714 0.110357 0.993892i \(-0.464801\pi\)
0.110357 + 0.993892i \(0.464801\pi\)
\(740\) 0 0
\(741\) 24.8222 0.911867
\(742\) 3.10859 0.114120
\(743\) −34.0401 −1.24881 −0.624405 0.781101i \(-0.714659\pi\)
−0.624405 + 0.781101i \(0.714659\pi\)
\(744\) −37.2428 −1.36539
\(745\) 0 0
\(746\) 15.5308 0.568624
\(747\) −42.5252 −1.55591
\(748\) 0 0
\(749\) 2.37237 0.0866844
\(750\) 0 0
\(751\) 13.0431 0.475949 0.237974 0.971271i \(-0.423517\pi\)
0.237974 + 0.971271i \(0.423517\pi\)
\(752\) 15.2153 0.554844
\(753\) 5.59258 0.203805
\(754\) −32.8703 −1.19707
\(755\) 0 0
\(756\) −10.1304 −0.368438
\(757\) −31.8716 −1.15839 −0.579197 0.815188i \(-0.696634\pi\)
−0.579197 + 0.815188i \(0.696634\pi\)
\(758\) 17.9624 0.652423
\(759\) −0.617144 −0.0224009
\(760\) 0 0
\(761\) −18.7549 −0.679863 −0.339932 0.940450i \(-0.610404\pi\)
−0.339932 + 0.940450i \(0.610404\pi\)
\(762\) 73.3221 2.65618
\(763\) −3.09612 −0.112087
\(764\) 24.9064 0.901081
\(765\) 0 0
\(766\) −59.1187 −2.13605
\(767\) 11.8028 0.426175
\(768\) −87.0119 −3.13977
\(769\) −47.7916 −1.72341 −0.861705 0.507410i \(-0.830603\pi\)
−0.861705 + 0.507410i \(0.830603\pi\)
\(770\) 0 0
\(771\) −23.3516 −0.840987
\(772\) −54.1358 −1.94839
\(773\) −28.3286 −1.01891 −0.509455 0.860497i \(-0.670153\pi\)
−0.509455 + 0.860497i \(0.670153\pi\)
\(774\) −41.3732 −1.48713
\(775\) 0 0
\(776\) −37.2498 −1.33719
\(777\) −3.96727 −0.142325
\(778\) 56.5464 2.02729
\(779\) 3.18828 0.114232
\(780\) 0 0
\(781\) −3.76036 −0.134556
\(782\) 0 0
\(783\) −87.2932 −3.11961
\(784\) −15.6940 −0.560500
\(785\) 0 0
\(786\) −148.187 −5.28565
\(787\) 42.3119 1.50826 0.754129 0.656727i \(-0.228059\pi\)
0.754129 + 0.656727i \(0.228059\pi\)
\(788\) −3.21129 −0.114397
\(789\) 24.2051 0.861723
\(790\) 0 0
\(791\) 1.58158 0.0562344
\(792\) −14.7511 −0.524157
\(793\) −11.1278 −0.395160
\(794\) −66.1303 −2.34688
\(795\) 0 0
\(796\) −49.1315 −1.74142
\(797\) −54.1578 −1.91837 −0.959185 0.282780i \(-0.908743\pi\)
−0.959185 + 0.282780i \(0.908743\pi\)
\(798\) −6.62407 −0.234489
\(799\) 0 0
\(800\) 0 0
\(801\) 111.123 3.92633
\(802\) −72.8821 −2.57356
\(803\) −0.622235 −0.0219582
\(804\) 134.151 4.73113
\(805\) 0 0
\(806\) −13.7094 −0.482892
\(807\) −24.8350 −0.874234
\(808\) −29.1413 −1.02519
\(809\) −30.9803 −1.08921 −0.544604 0.838693i \(-0.683320\pi\)
−0.544604 + 0.838693i \(0.683320\pi\)
\(810\) 0 0
\(811\) −4.15045 −0.145742 −0.0728710 0.997341i \(-0.523216\pi\)
−0.0728710 + 0.997341i \(0.523216\pi\)
\(812\) 5.69071 0.199705
\(813\) 56.9950 1.99890
\(814\) −7.16081 −0.250986
\(815\) 0 0
\(816\) 0 0
\(817\) −9.97667 −0.349039
\(818\) −14.0863 −0.492515
\(819\) −3.00835 −0.105120
\(820\) 0 0
\(821\) −1.40975 −0.0492007 −0.0246003 0.999697i \(-0.507831\pi\)
−0.0246003 + 0.999697i \(0.507831\pi\)
\(822\) −35.0554 −1.22270
\(823\) −20.2090 −0.704442 −0.352221 0.935917i \(-0.614573\pi\)
−0.352221 + 0.935917i \(0.614573\pi\)
\(824\) −38.5004 −1.34123
\(825\) 0 0
\(826\) −3.14970 −0.109592
\(827\) 11.3584 0.394971 0.197486 0.980306i \(-0.436722\pi\)
0.197486 + 0.980306i \(0.436722\pi\)
\(828\) 9.56980 0.332574
\(829\) −10.9336 −0.379741 −0.189870 0.981809i \(-0.560807\pi\)
−0.189870 + 0.981809i \(0.560807\pi\)
\(830\) 0 0
\(831\) 83.7768 2.90618
\(832\) −21.5433 −0.746879
\(833\) 0 0
\(834\) −39.5036 −1.36790
\(835\) 0 0
\(836\) −7.75666 −0.268270
\(837\) −36.4078 −1.25844
\(838\) 77.5200 2.67788
\(839\) 38.8677 1.34186 0.670931 0.741520i \(-0.265895\pi\)
0.670931 + 0.741520i \(0.265895\pi\)
\(840\) 0 0
\(841\) 20.0367 0.690922
\(842\) −71.8621 −2.47653
\(843\) 43.4480 1.49643
\(844\) −65.7213 −2.26222
\(845\) 0 0
\(846\) 111.796 3.84361
\(847\) 2.35930 0.0810666
\(848\) −13.3688 −0.459088
\(849\) −43.3669 −1.48835
\(850\) 0 0
\(851\) 2.13038 0.0730285
\(852\) 83.4745 2.85979
\(853\) 32.0255 1.09653 0.548266 0.836304i \(-0.315288\pi\)
0.548266 + 0.836304i \(0.315288\pi\)
\(854\) 2.96957 0.101617
\(855\) 0 0
\(856\) −43.5906 −1.48990
\(857\) −25.6769 −0.877107 −0.438553 0.898705i \(-0.644509\pi\)
−0.438553 + 0.898705i \(0.644509\pi\)
\(858\) −7.77333 −0.265377
\(859\) −38.7065 −1.32065 −0.660324 0.750981i \(-0.729581\pi\)
−0.660324 + 0.750981i \(0.729581\pi\)
\(860\) 0 0
\(861\) −0.553162 −0.0188517
\(862\) 19.8643 0.676582
\(863\) −29.5881 −1.00719 −0.503596 0.863939i \(-0.667990\pi\)
−0.503596 + 0.863939i \(0.667990\pi\)
\(864\) −33.6243 −1.14392
\(865\) 0 0
\(866\) −32.4036 −1.10112
\(867\) 0 0
\(868\) 2.37346 0.0805603
\(869\) 3.53318 0.119855
\(870\) 0 0
\(871\) 22.6456 0.767317
\(872\) 56.8890 1.92651
\(873\) −64.0602 −2.16811
\(874\) 3.55705 0.120319
\(875\) 0 0
\(876\) 13.8127 0.466689
\(877\) 26.4995 0.894825 0.447413 0.894328i \(-0.352346\pi\)
0.447413 + 0.894328i \(0.352346\pi\)
\(878\) 48.6105 1.64053
\(879\) 62.7367 2.11606
\(880\) 0 0
\(881\) 10.9924 0.370344 0.185172 0.982706i \(-0.440716\pi\)
0.185172 + 0.982706i \(0.440716\pi\)
\(882\) −115.313 −3.88279
\(883\) −56.2202 −1.89196 −0.945980 0.324225i \(-0.894896\pi\)
−0.945980 + 0.324225i \(0.894896\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 5.85481 0.196696
\(887\) 6.90120 0.231720 0.115860 0.993266i \(-0.463038\pi\)
0.115860 + 0.993266i \(0.463038\pi\)
\(888\) 72.8958 2.44622
\(889\) −2.14284 −0.0718685
\(890\) 0 0
\(891\) −9.69582 −0.324822
\(892\) 7.26658 0.243303
\(893\) 26.9582 0.902122
\(894\) 65.8090 2.20098
\(895\) 0 0
\(896\) 4.56226 0.152414
\(897\) 2.31261 0.0772158
\(898\) −7.62919 −0.254589
\(899\) 20.4520 0.682113
\(900\) 0 0
\(901\) 0 0
\(902\) −0.998442 −0.0332445
\(903\) 1.73094 0.0576020
\(904\) −29.0604 −0.966534
\(905\) 0 0
\(906\) 119.713 3.97718
\(907\) 31.2128 1.03640 0.518202 0.855258i \(-0.326601\pi\)
0.518202 + 0.855258i \(0.326601\pi\)
\(908\) −44.1746 −1.46598
\(909\) −50.1156 −1.66223
\(910\) 0 0
\(911\) 42.4932 1.40786 0.703931 0.710268i \(-0.251426\pi\)
0.703931 + 0.710268i \(0.251426\pi\)
\(912\) 28.4875 0.943317
\(913\) 3.21129 0.106278
\(914\) 72.0164 2.38209
\(915\) 0 0
\(916\) 34.3763 1.13583
\(917\) 4.33076 0.143014
\(918\) 0 0
\(919\) 29.1312 0.960949 0.480475 0.877009i \(-0.340464\pi\)
0.480475 + 0.877009i \(0.340464\pi\)
\(920\) 0 0
\(921\) −47.1923 −1.55504
\(922\) 12.9220 0.425562
\(923\) 14.0911 0.463814
\(924\) 1.34577 0.0442726
\(925\) 0 0
\(926\) −37.6004 −1.23562
\(927\) −66.2109 −2.17465
\(928\) 18.8884 0.620041
\(929\) 1.30273 0.0427412 0.0213706 0.999772i \(-0.493197\pi\)
0.0213706 + 0.999772i \(0.493197\pi\)
\(930\) 0 0
\(931\) −27.8064 −0.911318
\(932\) 95.3084 3.12193
\(933\) −93.5463 −3.06257
\(934\) 25.6971 0.840836
\(935\) 0 0
\(936\) 55.2764 1.80677
\(937\) −9.43458 −0.308214 −0.154107 0.988054i \(-0.549250\pi\)
−0.154107 + 0.988054i \(0.549250\pi\)
\(938\) −6.04321 −0.197318
\(939\) −45.3584 −1.48021
\(940\) 0 0
\(941\) 25.1776 0.820767 0.410383 0.911913i \(-0.365395\pi\)
0.410383 + 0.911913i \(0.365395\pi\)
\(942\) 75.8167 2.47024
\(943\) 0.297042 0.00967302
\(944\) 13.5456 0.440873
\(945\) 0 0
\(946\) 3.12430 0.101580
\(947\) −27.6569 −0.898727 −0.449364 0.893349i \(-0.648349\pi\)
−0.449364 + 0.893349i \(0.648349\pi\)
\(948\) −78.4315 −2.54734
\(949\) 2.33169 0.0756898
\(950\) 0 0
\(951\) 43.4552 1.40913
\(952\) 0 0
\(953\) −16.0279 −0.519195 −0.259598 0.965717i \(-0.583590\pi\)
−0.259598 + 0.965717i \(0.583590\pi\)
\(954\) −98.2288 −3.18027
\(955\) 0 0
\(956\) 108.202 3.49949
\(957\) 11.5965 0.374860
\(958\) 88.0732 2.84552
\(959\) 1.02449 0.0330827
\(960\) 0 0
\(961\) −22.4700 −0.724838
\(962\) 26.8336 0.865149
\(963\) −74.9648 −2.41571
\(964\) −31.3446 −1.00954
\(965\) 0 0
\(966\) −0.617144 −0.0198563
\(967\) 10.9849 0.353252 0.176626 0.984278i \(-0.443482\pi\)
0.176626 + 0.984278i \(0.443482\pi\)
\(968\) −43.3506 −1.39334
\(969\) 0 0
\(970\) 0 0
\(971\) 32.2944 1.03638 0.518188 0.855267i \(-0.326607\pi\)
0.518188 + 0.855267i \(0.326607\pi\)
\(972\) 77.0874 2.47258
\(973\) 1.15449 0.0370113
\(974\) −91.4476 −2.93017
\(975\) 0 0
\(976\) −12.7710 −0.408788
\(977\) −2.59459 −0.0830084 −0.0415042 0.999138i \(-0.513215\pi\)
−0.0415042 + 0.999138i \(0.513215\pi\)
\(978\) −72.1732 −2.30784
\(979\) −8.39143 −0.268191
\(980\) 0 0
\(981\) 97.8347 3.12362
\(982\) 90.7561 2.89614
\(983\) 9.61652 0.306719 0.153360 0.988170i \(-0.450991\pi\)
0.153360 + 0.988170i \(0.450991\pi\)
\(984\) 10.1640 0.324015
\(985\) 0 0
\(986\) 0 0
\(987\) −4.67721 −0.148877
\(988\) 29.0663 0.924723
\(989\) −0.929495 −0.0295562
\(990\) 0 0
\(991\) 28.2650 0.897867 0.448933 0.893565i \(-0.351804\pi\)
0.448933 + 0.893565i \(0.351804\pi\)
\(992\) 7.87787 0.250123
\(993\) −63.6096 −2.01859
\(994\) −3.76036 −0.119271
\(995\) 0 0
\(996\) −71.2859 −2.25878
\(997\) 3.34593 0.105967 0.0529833 0.998595i \(-0.483127\pi\)
0.0529833 + 0.998595i \(0.483127\pi\)
\(998\) 22.2063 0.702928
\(999\) 71.2616 2.25462
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bp.1.12 12
5.2 odd 4 1445.2.b.f.579.11 12
5.3 odd 4 1445.2.b.f.579.2 12
5.4 even 2 inner 7225.2.a.bp.1.1 12
17.8 even 8 425.2.e.d.251.1 12
17.15 even 8 425.2.e.d.276.6 12
17.16 even 2 inner 7225.2.a.bp.1.11 12
85.8 odd 8 85.2.j.c.64.1 yes 12
85.32 odd 8 85.2.j.c.4.1 12
85.33 odd 4 1445.2.b.f.579.1 12
85.42 odd 8 85.2.j.c.64.6 yes 12
85.49 even 8 425.2.e.d.276.1 12
85.59 even 8 425.2.e.d.251.6 12
85.67 odd 4 1445.2.b.f.579.12 12
85.83 odd 8 85.2.j.c.4.6 yes 12
85.84 even 2 inner 7225.2.a.bp.1.2 12
255.8 even 8 765.2.t.e.64.6 12
255.32 even 8 765.2.t.e.514.6 12
255.83 even 8 765.2.t.e.514.1 12
255.212 even 8 765.2.t.e.64.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.1 12 85.32 odd 8
85.2.j.c.4.6 yes 12 85.83 odd 8
85.2.j.c.64.1 yes 12 85.8 odd 8
85.2.j.c.64.6 yes 12 85.42 odd 8
425.2.e.d.251.1 12 17.8 even 8
425.2.e.d.251.6 12 85.59 even 8
425.2.e.d.276.1 12 85.49 even 8
425.2.e.d.276.6 12 17.15 even 8
765.2.t.e.64.1 12 255.212 even 8
765.2.t.e.64.6 12 255.8 even 8
765.2.t.e.514.1 12 255.83 even 8
765.2.t.e.514.6 12 255.32 even 8
1445.2.b.f.579.1 12 85.33 odd 4
1445.2.b.f.579.2 12 5.3 odd 4
1445.2.b.f.579.11 12 5.2 odd 4
1445.2.b.f.579.12 12 85.67 odd 4
7225.2.a.bp.1.1 12 5.4 even 2 inner
7225.2.a.bp.1.2 12 85.84 even 2 inner
7225.2.a.bp.1.11 12 17.16 even 2 inner
7225.2.a.bp.1.12 12 1.1 even 1 trivial