Properties

Label 7225.2.a.bo.1.3
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-3,3,21,0,9,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 18 x^{10} + 55 x^{9} + 114 x^{8} - 354 x^{7} - 309 x^{6} + 936 x^{5} + 396 x^{4} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1445)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.27524\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.27524 q^{2} -1.70271 q^{3} +3.17670 q^{4} +3.87408 q^{6} -2.70724 q^{7} -2.67727 q^{8} -0.100765 q^{9} -2.17632 q^{11} -5.40901 q^{12} -5.37970 q^{13} +6.15962 q^{14} -0.261974 q^{16} +0.229265 q^{18} +8.53588 q^{19} +4.60966 q^{21} +4.95164 q^{22} +5.32570 q^{23} +4.55863 q^{24} +12.2401 q^{26} +5.27972 q^{27} -8.60011 q^{28} +1.31247 q^{29} +0.757667 q^{31} +5.95060 q^{32} +3.70565 q^{33} -0.320102 q^{36} +8.20380 q^{37} -19.4212 q^{38} +9.16010 q^{39} +0.0130696 q^{41} -10.4881 q^{42} +0.330596 q^{43} -6.91352 q^{44} -12.1172 q^{46} -11.3395 q^{47} +0.446067 q^{48} +0.329174 q^{49} -17.0897 q^{52} +8.04151 q^{53} -12.0126 q^{54} +7.24803 q^{56} -14.5342 q^{57} -2.98619 q^{58} -13.1546 q^{59} +7.20639 q^{61} -1.72387 q^{62} +0.272797 q^{63} -13.0151 q^{64} -8.43123 q^{66} -2.67143 q^{67} -9.06814 q^{69} -1.87106 q^{71} +0.269777 q^{72} -11.9780 q^{73} -18.6656 q^{74} +27.1160 q^{76} +5.89183 q^{77} -20.8414 q^{78} -17.0477 q^{79} -8.68755 q^{81} -0.0297365 q^{82} +3.35585 q^{83} +14.6435 q^{84} -0.752183 q^{86} -2.23477 q^{87} +5.82660 q^{88} -10.8909 q^{89} +14.5642 q^{91} +16.9182 q^{92} -1.29009 q^{93} +25.8001 q^{94} -10.1322 q^{96} +10.9119 q^{97} -0.748948 q^{98} +0.219298 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 3 q^{3} + 21 q^{4} + 9 q^{6} + 6 q^{7} - 12 q^{8} + 21 q^{9} + 6 q^{11} + 6 q^{12} - 9 q^{13} + 18 q^{14} + 39 q^{16} + 9 q^{18} + 27 q^{19} + 6 q^{21} + 15 q^{22} + 18 q^{23} + 36 q^{24}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.27524 −1.60884 −0.804418 0.594064i \(-0.797522\pi\)
−0.804418 + 0.594064i \(0.797522\pi\)
\(3\) −1.70271 −0.983062 −0.491531 0.870860i \(-0.663563\pi\)
−0.491531 + 0.870860i \(0.663563\pi\)
\(4\) 3.17670 1.58835
\(5\) 0 0
\(6\) 3.87408 1.58159
\(7\) −2.70724 −1.02324 −0.511621 0.859211i \(-0.670955\pi\)
−0.511621 + 0.859211i \(0.670955\pi\)
\(8\) −2.67727 −0.946559
\(9\) −0.100765 −0.0335885
\(10\) 0 0
\(11\) −2.17632 −0.656185 −0.328093 0.944646i \(-0.606406\pi\)
−0.328093 + 0.944646i \(0.606406\pi\)
\(12\) −5.40901 −1.56145
\(13\) −5.37970 −1.49206 −0.746031 0.665912i \(-0.768043\pi\)
−0.746031 + 0.665912i \(0.768043\pi\)
\(14\) 6.15962 1.64623
\(15\) 0 0
\(16\) −0.261974 −0.0654935
\(17\) 0 0
\(18\) 0.229265 0.0540384
\(19\) 8.53588 1.95827 0.979133 0.203220i \(-0.0651406\pi\)
0.979133 + 0.203220i \(0.0651406\pi\)
\(20\) 0 0
\(21\) 4.60966 1.00591
\(22\) 4.95164 1.05569
\(23\) 5.32570 1.11049 0.555243 0.831688i \(-0.312625\pi\)
0.555243 + 0.831688i \(0.312625\pi\)
\(24\) 4.55863 0.930526
\(25\) 0 0
\(26\) 12.2401 2.40048
\(27\) 5.27972 1.01608
\(28\) −8.60011 −1.62527
\(29\) 1.31247 0.243720 0.121860 0.992547i \(-0.461114\pi\)
0.121860 + 0.992547i \(0.461114\pi\)
\(30\) 0 0
\(31\) 0.757667 0.136081 0.0680405 0.997683i \(-0.478325\pi\)
0.0680405 + 0.997683i \(0.478325\pi\)
\(32\) 5.95060 1.05193
\(33\) 3.70565 0.645071
\(34\) 0 0
\(35\) 0 0
\(36\) −0.320102 −0.0533503
\(37\) 8.20380 1.34870 0.674348 0.738414i \(-0.264425\pi\)
0.674348 + 0.738414i \(0.264425\pi\)
\(38\) −19.4212 −3.15053
\(39\) 9.16010 1.46679
\(40\) 0 0
\(41\) 0.0130696 0.00204113 0.00102057 0.999999i \(-0.499675\pi\)
0.00102057 + 0.999999i \(0.499675\pi\)
\(42\) −10.4881 −1.61834
\(43\) 0.330596 0.0504154 0.0252077 0.999682i \(-0.491975\pi\)
0.0252077 + 0.999682i \(0.491975\pi\)
\(44\) −6.91352 −1.04225
\(45\) 0 0
\(46\) −12.1172 −1.78659
\(47\) −11.3395 −1.65404 −0.827019 0.562175i \(-0.809965\pi\)
−0.827019 + 0.562175i \(0.809965\pi\)
\(48\) 0.446067 0.0643842
\(49\) 0.329174 0.0470248
\(50\) 0 0
\(51\) 0 0
\(52\) −17.0897 −2.36992
\(53\) 8.04151 1.10459 0.552293 0.833650i \(-0.313753\pi\)
0.552293 + 0.833650i \(0.313753\pi\)
\(54\) −12.0126 −1.63471
\(55\) 0 0
\(56\) 7.24803 0.968559
\(57\) −14.5342 −1.92510
\(58\) −2.98619 −0.392106
\(59\) −13.1546 −1.71259 −0.856293 0.516490i \(-0.827238\pi\)
−0.856293 + 0.516490i \(0.827238\pi\)
\(60\) 0 0
\(61\) 7.20639 0.922684 0.461342 0.887222i \(-0.347368\pi\)
0.461342 + 0.887222i \(0.347368\pi\)
\(62\) −1.72387 −0.218932
\(63\) 0.272797 0.0343692
\(64\) −13.0151 −1.62688
\(65\) 0 0
\(66\) −8.43123 −1.03781
\(67\) −2.67143 −0.326367 −0.163184 0.986596i \(-0.552176\pi\)
−0.163184 + 0.986596i \(0.552176\pi\)
\(68\) 0 0
\(69\) −9.06814 −1.09168
\(70\) 0 0
\(71\) −1.87106 −0.222054 −0.111027 0.993817i \(-0.535414\pi\)
−0.111027 + 0.993817i \(0.535414\pi\)
\(72\) 0.269777 0.0317935
\(73\) −11.9780 −1.40192 −0.700962 0.713199i \(-0.747246\pi\)
−0.700962 + 0.713199i \(0.747246\pi\)
\(74\) −18.6656 −2.16983
\(75\) 0 0
\(76\) 27.1160 3.11041
\(77\) 5.89183 0.671437
\(78\) −20.8414 −2.35982
\(79\) −17.0477 −1.91802 −0.959009 0.283375i \(-0.908546\pi\)
−0.959009 + 0.283375i \(0.908546\pi\)
\(80\) 0 0
\(81\) −8.68755 −0.965283
\(82\) −0.0297365 −0.00328385
\(83\) 3.35585 0.368352 0.184176 0.982893i \(-0.441038\pi\)
0.184176 + 0.982893i \(0.441038\pi\)
\(84\) 14.6435 1.59774
\(85\) 0 0
\(86\) −0.752183 −0.0811100
\(87\) −2.23477 −0.239592
\(88\) 5.82660 0.621118
\(89\) −10.8909 −1.15444 −0.577218 0.816590i \(-0.695862\pi\)
−0.577218 + 0.816590i \(0.695862\pi\)
\(90\) 0 0
\(91\) 14.5642 1.52674
\(92\) 16.9182 1.76384
\(93\) −1.29009 −0.133776
\(94\) 25.8001 2.66107
\(95\) 0 0
\(96\) −10.1322 −1.03411
\(97\) 10.9119 1.10793 0.553965 0.832540i \(-0.313114\pi\)
0.553965 + 0.832540i \(0.313114\pi\)
\(98\) −0.748948 −0.0756552
\(99\) 0.219298 0.0220403
\(100\) 0 0
\(101\) −3.95599 −0.393636 −0.196818 0.980440i \(-0.563061\pi\)
−0.196818 + 0.980440i \(0.563061\pi\)
\(102\) 0 0
\(103\) −7.16779 −0.706263 −0.353132 0.935574i \(-0.614883\pi\)
−0.353132 + 0.935574i \(0.614883\pi\)
\(104\) 14.4029 1.41232
\(105\) 0 0
\(106\) −18.2963 −1.77710
\(107\) 3.70041 0.357732 0.178866 0.983873i \(-0.442757\pi\)
0.178866 + 0.983873i \(0.442757\pi\)
\(108\) 16.7721 1.61389
\(109\) −2.73869 −0.262319 −0.131160 0.991361i \(-0.541870\pi\)
−0.131160 + 0.991361i \(0.541870\pi\)
\(110\) 0 0
\(111\) −13.9687 −1.32585
\(112\) 0.709227 0.0670157
\(113\) 1.51487 0.142507 0.0712536 0.997458i \(-0.477300\pi\)
0.0712536 + 0.997458i \(0.477300\pi\)
\(114\) 33.0687 3.09716
\(115\) 0 0
\(116\) 4.16934 0.387114
\(117\) 0.542088 0.0501161
\(118\) 29.9299 2.75527
\(119\) 0 0
\(120\) 0 0
\(121\) −6.26363 −0.569421
\(122\) −16.3963 −1.48445
\(123\) −0.0222538 −0.00200656
\(124\) 2.40688 0.216144
\(125\) 0 0
\(126\) −0.620677 −0.0552943
\(127\) −4.15113 −0.368353 −0.184176 0.982893i \(-0.558962\pi\)
−0.184176 + 0.982893i \(0.558962\pi\)
\(128\) 17.7112 1.56546
\(129\) −0.562910 −0.0495614
\(130\) 0 0
\(131\) 12.3436 1.07847 0.539234 0.842156i \(-0.318714\pi\)
0.539234 + 0.842156i \(0.318714\pi\)
\(132\) 11.7717 1.02460
\(133\) −23.1087 −2.00378
\(134\) 6.07814 0.525071
\(135\) 0 0
\(136\) 0 0
\(137\) −13.1700 −1.12519 −0.562594 0.826733i \(-0.690197\pi\)
−0.562594 + 0.826733i \(0.690197\pi\)
\(138\) 20.6322 1.75633
\(139\) −0.706325 −0.0599097 −0.0299548 0.999551i \(-0.509536\pi\)
−0.0299548 + 0.999551i \(0.509536\pi\)
\(140\) 0 0
\(141\) 19.3079 1.62602
\(142\) 4.25710 0.357248
\(143\) 11.7080 0.979069
\(144\) 0.0263979 0.00219983
\(145\) 0 0
\(146\) 27.2529 2.25546
\(147\) −0.560489 −0.0462283
\(148\) 26.0610 2.14220
\(149\) 7.41327 0.607319 0.303659 0.952781i \(-0.401792\pi\)
0.303659 + 0.952781i \(0.401792\pi\)
\(150\) 0 0
\(151\) −2.19280 −0.178448 −0.0892238 0.996012i \(-0.528439\pi\)
−0.0892238 + 0.996012i \(0.528439\pi\)
\(152\) −22.8529 −1.85361
\(153\) 0 0
\(154\) −13.4053 −1.08023
\(155\) 0 0
\(156\) 29.0989 2.32978
\(157\) −5.33731 −0.425963 −0.212982 0.977056i \(-0.568317\pi\)
−0.212982 + 0.977056i \(0.568317\pi\)
\(158\) 38.7876 3.08578
\(159\) −13.6924 −1.08588
\(160\) 0 0
\(161\) −14.4180 −1.13630
\(162\) 19.7662 1.55298
\(163\) −7.78483 −0.609755 −0.304878 0.952392i \(-0.598616\pi\)
−0.304878 + 0.952392i \(0.598616\pi\)
\(164\) 0.0415183 0.00324204
\(165\) 0 0
\(166\) −7.63534 −0.592617
\(167\) −4.42165 −0.342157 −0.171079 0.985257i \(-0.554725\pi\)
−0.171079 + 0.985257i \(0.554725\pi\)
\(168\) −12.3413 −0.952154
\(169\) 15.9412 1.22625
\(170\) 0 0
\(171\) −0.860123 −0.0657752
\(172\) 1.05020 0.0800773
\(173\) −14.6188 −1.11145 −0.555724 0.831367i \(-0.687559\pi\)
−0.555724 + 0.831367i \(0.687559\pi\)
\(174\) 5.08463 0.385465
\(175\) 0 0
\(176\) 0.570139 0.0429759
\(177\) 22.3986 1.68358
\(178\) 24.7794 1.85730
\(179\) −5.42912 −0.405791 −0.202896 0.979200i \(-0.565035\pi\)
−0.202896 + 0.979200i \(0.565035\pi\)
\(180\) 0 0
\(181\) 18.3483 1.36382 0.681909 0.731437i \(-0.261150\pi\)
0.681909 + 0.731437i \(0.261150\pi\)
\(182\) −33.1369 −2.45627
\(183\) −12.2704 −0.907056
\(184\) −14.2583 −1.05114
\(185\) 0 0
\(186\) 2.93526 0.215224
\(187\) 0 0
\(188\) −36.0222 −2.62719
\(189\) −14.2935 −1.03970
\(190\) 0 0
\(191\) 4.91654 0.355748 0.177874 0.984053i \(-0.443078\pi\)
0.177874 + 0.984053i \(0.443078\pi\)
\(192\) 22.1609 1.59933
\(193\) −17.5487 −1.26318 −0.631591 0.775302i \(-0.717598\pi\)
−0.631591 + 0.775302i \(0.717598\pi\)
\(194\) −24.8270 −1.78248
\(195\) 0 0
\(196\) 1.04569 0.0746919
\(197\) 21.7620 1.55048 0.775239 0.631668i \(-0.217629\pi\)
0.775239 + 0.631668i \(0.217629\pi\)
\(198\) −0.498955 −0.0354592
\(199\) −0.241280 −0.0171039 −0.00855196 0.999963i \(-0.502722\pi\)
−0.00855196 + 0.999963i \(0.502722\pi\)
\(200\) 0 0
\(201\) 4.54869 0.320840
\(202\) 9.00082 0.633295
\(203\) −3.55319 −0.249385
\(204\) 0 0
\(205\) 0 0
\(206\) 16.3084 1.13626
\(207\) −0.536647 −0.0372995
\(208\) 1.40934 0.0977203
\(209\) −18.5768 −1.28499
\(210\) 0 0
\(211\) −9.41485 −0.648145 −0.324072 0.946032i \(-0.605052\pi\)
−0.324072 + 0.946032i \(0.605052\pi\)
\(212\) 25.5455 1.75447
\(213\) 3.18588 0.218293
\(214\) −8.41931 −0.575532
\(215\) 0 0
\(216\) −14.1352 −0.961781
\(217\) −2.05119 −0.139244
\(218\) 6.23118 0.422029
\(219\) 20.3952 1.37818
\(220\) 0 0
\(221\) 0 0
\(222\) 31.7821 2.13308
\(223\) 14.8338 0.993345 0.496672 0.867938i \(-0.334555\pi\)
0.496672 + 0.867938i \(0.334555\pi\)
\(224\) −16.1097 −1.07638
\(225\) 0 0
\(226\) −3.44669 −0.229271
\(227\) 9.83158 0.652545 0.326272 0.945276i \(-0.394207\pi\)
0.326272 + 0.945276i \(0.394207\pi\)
\(228\) −46.1707 −3.05773
\(229\) −12.4315 −0.821500 −0.410750 0.911748i \(-0.634733\pi\)
−0.410750 + 0.911748i \(0.634733\pi\)
\(230\) 0 0
\(231\) −10.0321 −0.660064
\(232\) −3.51385 −0.230696
\(233\) 12.5812 0.824224 0.412112 0.911133i \(-0.364791\pi\)
0.412112 + 0.911133i \(0.364791\pi\)
\(234\) −1.23338 −0.0806285
\(235\) 0 0
\(236\) −41.7883 −2.72019
\(237\) 29.0274 1.88553
\(238\) 0 0
\(239\) −15.7966 −1.02179 −0.510897 0.859642i \(-0.670687\pi\)
−0.510897 + 0.859642i \(0.670687\pi\)
\(240\) 0 0
\(241\) 8.45284 0.544496 0.272248 0.962227i \(-0.412233\pi\)
0.272248 + 0.962227i \(0.412233\pi\)
\(242\) 14.2512 0.916104
\(243\) −1.04674 −0.0671482
\(244\) 22.8926 1.46555
\(245\) 0 0
\(246\) 0.0506328 0.00322823
\(247\) −45.9205 −2.92185
\(248\) −2.02848 −0.128809
\(249\) −5.71404 −0.362113
\(250\) 0 0
\(251\) 14.7900 0.933540 0.466770 0.884379i \(-0.345418\pi\)
0.466770 + 0.884379i \(0.345418\pi\)
\(252\) 0.866594 0.0545903
\(253\) −11.5904 −0.728684
\(254\) 9.44480 0.592619
\(255\) 0 0
\(256\) −14.2669 −0.891684
\(257\) −13.8681 −0.865070 −0.432535 0.901617i \(-0.642381\pi\)
−0.432535 + 0.901617i \(0.642381\pi\)
\(258\) 1.28075 0.0797362
\(259\) −22.2097 −1.38004
\(260\) 0 0
\(261\) −0.132252 −0.00818620
\(262\) −28.0847 −1.73508
\(263\) −0.382638 −0.0235945 −0.0117972 0.999930i \(-0.503755\pi\)
−0.0117972 + 0.999930i \(0.503755\pi\)
\(264\) −9.92104 −0.610598
\(265\) 0 0
\(266\) 52.5778 3.22375
\(267\) 18.5441 1.13488
\(268\) −8.48634 −0.518386
\(269\) 21.8946 1.33494 0.667468 0.744638i \(-0.267378\pi\)
0.667468 + 0.744638i \(0.267378\pi\)
\(270\) 0 0
\(271\) 16.9450 1.02933 0.514667 0.857390i \(-0.327916\pi\)
0.514667 + 0.857390i \(0.327916\pi\)
\(272\) 0 0
\(273\) −24.7986 −1.50088
\(274\) 29.9648 1.81024
\(275\) 0 0
\(276\) −28.8068 −1.73396
\(277\) −24.4581 −1.46954 −0.734771 0.678315i \(-0.762710\pi\)
−0.734771 + 0.678315i \(0.762710\pi\)
\(278\) 1.60706 0.0963848
\(279\) −0.0763467 −0.00457076
\(280\) 0 0
\(281\) −13.2014 −0.787529 −0.393765 0.919211i \(-0.628827\pi\)
−0.393765 + 0.919211i \(0.628827\pi\)
\(282\) −43.9301 −2.61600
\(283\) 13.7732 0.818730 0.409365 0.912371i \(-0.365750\pi\)
0.409365 + 0.912371i \(0.365750\pi\)
\(284\) −5.94379 −0.352699
\(285\) 0 0
\(286\) −26.6384 −1.57516
\(287\) −0.0353827 −0.00208857
\(288\) −0.599615 −0.0353326
\(289\) 0 0
\(290\) 0 0
\(291\) −18.5798 −1.08916
\(292\) −38.0507 −2.22675
\(293\) −21.1370 −1.23483 −0.617417 0.786636i \(-0.711821\pi\)
−0.617417 + 0.786636i \(0.711821\pi\)
\(294\) 1.27524 0.0743737
\(295\) 0 0
\(296\) −21.9638 −1.27662
\(297\) −11.4904 −0.666738
\(298\) −16.8669 −0.977076
\(299\) −28.6507 −1.65691
\(300\) 0 0
\(301\) −0.895003 −0.0515871
\(302\) 4.98914 0.287093
\(303\) 6.73592 0.386969
\(304\) −2.23618 −0.128254
\(305\) 0 0
\(306\) 0 0
\(307\) 23.2068 1.32448 0.662242 0.749290i \(-0.269605\pi\)
0.662242 + 0.749290i \(0.269605\pi\)
\(308\) 18.7166 1.06648
\(309\) 12.2047 0.694301
\(310\) 0 0
\(311\) 19.0929 1.08266 0.541330 0.840810i \(-0.317921\pi\)
0.541330 + 0.840810i \(0.317921\pi\)
\(312\) −24.5241 −1.38840
\(313\) −31.9061 −1.80344 −0.901720 0.432320i \(-0.857695\pi\)
−0.901720 + 0.432320i \(0.857695\pi\)
\(314\) 12.1436 0.685305
\(315\) 0 0
\(316\) −54.1555 −3.04649
\(317\) −7.35179 −0.412917 −0.206459 0.978455i \(-0.566194\pi\)
−0.206459 + 0.978455i \(0.566194\pi\)
\(318\) 31.1534 1.74700
\(319\) −2.85637 −0.159926
\(320\) 0 0
\(321\) −6.30074 −0.351673
\(322\) 32.8043 1.82811
\(323\) 0 0
\(324\) −27.5977 −1.53321
\(325\) 0 0
\(326\) 17.7123 0.980995
\(327\) 4.66321 0.257876
\(328\) −0.0349910 −0.00193205
\(329\) 30.6988 1.69248
\(330\) 0 0
\(331\) 16.3546 0.898930 0.449465 0.893298i \(-0.351615\pi\)
0.449465 + 0.893298i \(0.351615\pi\)
\(332\) 10.6605 0.585072
\(333\) −0.826660 −0.0453007
\(334\) 10.0603 0.550475
\(335\) 0 0
\(336\) −1.20761 −0.0658806
\(337\) 2.73232 0.148839 0.0744196 0.997227i \(-0.476290\pi\)
0.0744196 + 0.997227i \(0.476290\pi\)
\(338\) −36.2700 −1.97283
\(339\) −2.57939 −0.140093
\(340\) 0 0
\(341\) −1.64893 −0.0892944
\(342\) 1.95698 0.105821
\(343\) 18.0596 0.975125
\(344\) −0.885095 −0.0477211
\(345\) 0 0
\(346\) 33.2613 1.78814
\(347\) −18.9609 −1.01788 −0.508938 0.860803i \(-0.669962\pi\)
−0.508938 + 0.860803i \(0.669962\pi\)
\(348\) −7.09919 −0.380557
\(349\) −32.3382 −1.73102 −0.865511 0.500890i \(-0.833006\pi\)
−0.865511 + 0.500890i \(0.833006\pi\)
\(350\) 0 0
\(351\) −28.4033 −1.51606
\(352\) −12.9504 −0.690259
\(353\) 13.0916 0.696796 0.348398 0.937347i \(-0.386726\pi\)
0.348398 + 0.937347i \(0.386726\pi\)
\(354\) −50.9620 −2.70860
\(355\) 0 0
\(356\) −34.5972 −1.83365
\(357\) 0 0
\(358\) 12.3525 0.652851
\(359\) 8.64264 0.456141 0.228071 0.973645i \(-0.426758\pi\)
0.228071 + 0.973645i \(0.426758\pi\)
\(360\) 0 0
\(361\) 53.8613 2.83481
\(362\) −41.7467 −2.19416
\(363\) 10.6652 0.559776
\(364\) 46.2660 2.42500
\(365\) 0 0
\(366\) 27.9181 1.45930
\(367\) −6.61035 −0.345057 −0.172529 0.985005i \(-0.555194\pi\)
−0.172529 + 0.985005i \(0.555194\pi\)
\(368\) −1.39519 −0.0727295
\(369\) −0.00131697 −6.85586e−5 0
\(370\) 0 0
\(371\) −21.7703 −1.13026
\(372\) −4.09823 −0.212483
\(373\) 7.14349 0.369876 0.184938 0.982750i \(-0.440792\pi\)
0.184938 + 0.982750i \(0.440792\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 30.3589 1.56564
\(377\) −7.06073 −0.363646
\(378\) 32.5211 1.67270
\(379\) −7.19225 −0.369441 −0.184720 0.982791i \(-0.559138\pi\)
−0.184720 + 0.982791i \(0.559138\pi\)
\(380\) 0 0
\(381\) 7.06818 0.362114
\(382\) −11.1863 −0.572340
\(383\) 12.2903 0.628006 0.314003 0.949422i \(-0.398330\pi\)
0.314003 + 0.949422i \(0.398330\pi\)
\(384\) −30.1570 −1.53895
\(385\) 0 0
\(386\) 39.9274 2.03225
\(387\) −0.0333126 −0.00169338
\(388\) 34.6637 1.75978
\(389\) 10.6413 0.539536 0.269768 0.962925i \(-0.413053\pi\)
0.269768 + 0.962925i \(0.413053\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.881288 −0.0445117
\(393\) −21.0177 −1.06020
\(394\) −49.5137 −2.49446
\(395\) 0 0
\(396\) 0.696644 0.0350077
\(397\) 24.0554 1.20731 0.603654 0.797247i \(-0.293711\pi\)
0.603654 + 0.797247i \(0.293711\pi\)
\(398\) 0.548970 0.0275174
\(399\) 39.3476 1.96984
\(400\) 0 0
\(401\) 22.9193 1.14453 0.572267 0.820067i \(-0.306064\pi\)
0.572267 + 0.820067i \(0.306064\pi\)
\(402\) −10.3493 −0.516178
\(403\) −4.07603 −0.203041
\(404\) −12.5670 −0.625232
\(405\) 0 0
\(406\) 8.08435 0.401220
\(407\) −17.8541 −0.884995
\(408\) 0 0
\(409\) −7.50913 −0.371303 −0.185651 0.982616i \(-0.559439\pi\)
−0.185651 + 0.982616i \(0.559439\pi\)
\(410\) 0 0
\(411\) 22.4247 1.10613
\(412\) −22.7699 −1.12179
\(413\) 35.6128 1.75239
\(414\) 1.22100 0.0600088
\(415\) 0 0
\(416\) −32.0124 −1.56954
\(417\) 1.20267 0.0588949
\(418\) 42.2667 2.06733
\(419\) 13.3993 0.654598 0.327299 0.944921i \(-0.393862\pi\)
0.327299 + 0.944921i \(0.393862\pi\)
\(420\) 0 0
\(421\) −20.5078 −0.999491 −0.499745 0.866172i \(-0.666573\pi\)
−0.499745 + 0.866172i \(0.666573\pi\)
\(422\) 21.4210 1.04276
\(423\) 1.14263 0.0555566
\(424\) −21.5293 −1.04556
\(425\) 0 0
\(426\) −7.24862 −0.351197
\(427\) −19.5095 −0.944130
\(428\) 11.7551 0.568204
\(429\) −19.9353 −0.962486
\(430\) 0 0
\(431\) 8.98646 0.432863 0.216431 0.976298i \(-0.430558\pi\)
0.216431 + 0.976298i \(0.430558\pi\)
\(432\) −1.38315 −0.0665467
\(433\) −26.3738 −1.26744 −0.633721 0.773562i \(-0.718473\pi\)
−0.633721 + 0.773562i \(0.718473\pi\)
\(434\) 4.66694 0.224020
\(435\) 0 0
\(436\) −8.70001 −0.416655
\(437\) 45.4596 2.17463
\(438\) −46.4039 −2.21726
\(439\) −29.3558 −1.40108 −0.700538 0.713615i \(-0.747057\pi\)
−0.700538 + 0.713615i \(0.747057\pi\)
\(440\) 0 0
\(441\) −0.0331693 −0.00157949
\(442\) 0 0
\(443\) 23.4483 1.11406 0.557030 0.830492i \(-0.311941\pi\)
0.557030 + 0.830492i \(0.311941\pi\)
\(444\) −44.3744 −2.10592
\(445\) 0 0
\(446\) −33.7504 −1.59813
\(447\) −12.6227 −0.597032
\(448\) 35.2350 1.66470
\(449\) −11.8222 −0.557926 −0.278963 0.960302i \(-0.589991\pi\)
−0.278963 + 0.960302i \(0.589991\pi\)
\(450\) 0 0
\(451\) −0.0284437 −0.00133936
\(452\) 4.81230 0.226351
\(453\) 3.73371 0.175425
\(454\) −22.3692 −1.04984
\(455\) 0 0
\(456\) 38.9119 1.82222
\(457\) 3.31478 0.155059 0.0775293 0.996990i \(-0.475297\pi\)
0.0775293 + 0.996990i \(0.475297\pi\)
\(458\) 28.2847 1.32166
\(459\) 0 0
\(460\) 0 0
\(461\) 36.2559 1.68860 0.844302 0.535868i \(-0.180016\pi\)
0.844302 + 0.535868i \(0.180016\pi\)
\(462\) 22.8254 1.06193
\(463\) −10.9581 −0.509268 −0.254634 0.967038i \(-0.581955\pi\)
−0.254634 + 0.967038i \(0.581955\pi\)
\(464\) −0.343834 −0.0159621
\(465\) 0 0
\(466\) −28.6253 −1.32604
\(467\) 34.3919 1.59147 0.795734 0.605647i \(-0.207086\pi\)
0.795734 + 0.605647i \(0.207086\pi\)
\(468\) 1.72205 0.0796019
\(469\) 7.23222 0.333953
\(470\) 0 0
\(471\) 9.08791 0.418749
\(472\) 35.2185 1.62106
\(473\) −0.719482 −0.0330818
\(474\) −66.0442 −3.03351
\(475\) 0 0
\(476\) 0 0
\(477\) −0.810307 −0.0371014
\(478\) 35.9409 1.64390
\(479\) 27.5154 1.25721 0.628606 0.777724i \(-0.283626\pi\)
0.628606 + 0.777724i \(0.283626\pi\)
\(480\) 0 0
\(481\) −44.1340 −2.01234
\(482\) −19.2322 −0.876004
\(483\) 24.5497 1.11705
\(484\) −19.8977 −0.904440
\(485\) 0 0
\(486\) 2.38158 0.108030
\(487\) −10.6229 −0.481368 −0.240684 0.970604i \(-0.577372\pi\)
−0.240684 + 0.970604i \(0.577372\pi\)
\(488\) −19.2935 −0.873375
\(489\) 13.2553 0.599427
\(490\) 0 0
\(491\) 36.2103 1.63415 0.817074 0.576533i \(-0.195595\pi\)
0.817074 + 0.576533i \(0.195595\pi\)
\(492\) −0.0706938 −0.00318712
\(493\) 0 0
\(494\) 104.480 4.70078
\(495\) 0 0
\(496\) −0.198489 −0.00891242
\(497\) 5.06541 0.227215
\(498\) 13.0008 0.582580
\(499\) −20.8740 −0.934447 −0.467224 0.884139i \(-0.654746\pi\)
−0.467224 + 0.884139i \(0.654746\pi\)
\(500\) 0 0
\(501\) 7.52880 0.336362
\(502\) −33.6509 −1.50191
\(503\) −7.63988 −0.340645 −0.170323 0.985388i \(-0.554481\pi\)
−0.170323 + 0.985388i \(0.554481\pi\)
\(504\) −0.730351 −0.0325324
\(505\) 0 0
\(506\) 26.3710 1.17233
\(507\) −27.1433 −1.20548
\(508\) −13.1869 −0.585074
\(509\) −20.9805 −0.929945 −0.464972 0.885325i \(-0.653936\pi\)
−0.464972 + 0.885325i \(0.653936\pi\)
\(510\) 0 0
\(511\) 32.4275 1.43451
\(512\) −2.96165 −0.130888
\(513\) 45.0671 1.98976
\(514\) 31.5533 1.39175
\(515\) 0 0
\(516\) −1.78820 −0.0787209
\(517\) 24.6784 1.08536
\(518\) 50.5323 2.22026
\(519\) 24.8917 1.09262
\(520\) 0 0
\(521\) −6.11774 −0.268023 −0.134012 0.990980i \(-0.542786\pi\)
−0.134012 + 0.990980i \(0.542786\pi\)
\(522\) 0.300905 0.0131703
\(523\) 5.40916 0.236526 0.118263 0.992982i \(-0.462267\pi\)
0.118263 + 0.992982i \(0.462267\pi\)
\(524\) 39.2120 1.71298
\(525\) 0 0
\(526\) 0.870591 0.0379596
\(527\) 0 0
\(528\) −0.970784 −0.0422480
\(529\) 5.36307 0.233177
\(530\) 0 0
\(531\) 1.32553 0.0575232
\(532\) −73.4095 −3.18271
\(533\) −0.0703107 −0.00304550
\(534\) −42.1923 −1.82584
\(535\) 0 0
\(536\) 7.15215 0.308926
\(537\) 9.24423 0.398918
\(538\) −49.8154 −2.14769
\(539\) −0.716388 −0.0308570
\(540\) 0 0
\(541\) −20.4944 −0.881124 −0.440562 0.897722i \(-0.645221\pi\)
−0.440562 + 0.897722i \(0.645221\pi\)
\(542\) −38.5538 −1.65603
\(543\) −31.2419 −1.34072
\(544\) 0 0
\(545\) 0 0
\(546\) 56.4227 2.41467
\(547\) −10.1545 −0.434175 −0.217088 0.976152i \(-0.569656\pi\)
−0.217088 + 0.976152i \(0.569656\pi\)
\(548\) −41.8371 −1.78719
\(549\) −0.726156 −0.0309916
\(550\) 0 0
\(551\) 11.2031 0.477270
\(552\) 24.2779 1.03334
\(553\) 46.1523 1.96260
\(554\) 55.6479 2.36425
\(555\) 0 0
\(556\) −2.24378 −0.0951575
\(557\) −30.1117 −1.27587 −0.637937 0.770088i \(-0.720212\pi\)
−0.637937 + 0.770088i \(0.720212\pi\)
\(558\) 0.173707 0.00735360
\(559\) −1.77851 −0.0752228
\(560\) 0 0
\(561\) 0 0
\(562\) 30.0363 1.26700
\(563\) −12.8482 −0.541486 −0.270743 0.962652i \(-0.587269\pi\)
−0.270743 + 0.962652i \(0.587269\pi\)
\(564\) 61.3355 2.58269
\(565\) 0 0
\(566\) −31.3372 −1.31720
\(567\) 23.5193 0.987719
\(568\) 5.00933 0.210187
\(569\) 19.6602 0.824196 0.412098 0.911139i \(-0.364796\pi\)
0.412098 + 0.911139i \(0.364796\pi\)
\(570\) 0 0
\(571\) −20.2253 −0.846403 −0.423202 0.906036i \(-0.639094\pi\)
−0.423202 + 0.906036i \(0.639094\pi\)
\(572\) 37.1927 1.55510
\(573\) −8.37146 −0.349723
\(574\) 0.0805040 0.00336017
\(575\) 0 0
\(576\) 1.31147 0.0546446
\(577\) −34.5597 −1.43874 −0.719369 0.694628i \(-0.755569\pi\)
−0.719369 + 0.694628i \(0.755569\pi\)
\(578\) 0 0
\(579\) 29.8804 1.24179
\(580\) 0 0
\(581\) −9.08509 −0.376913
\(582\) 42.2734 1.75229
\(583\) −17.5009 −0.724814
\(584\) 32.0685 1.32700
\(585\) 0 0
\(586\) 48.0916 1.98665
\(587\) −23.7081 −0.978540 −0.489270 0.872132i \(-0.662737\pi\)
−0.489270 + 0.872132i \(0.662737\pi\)
\(588\) −1.78050 −0.0734268
\(589\) 6.46736 0.266483
\(590\) 0 0
\(591\) −37.0545 −1.52422
\(592\) −2.14918 −0.0883308
\(593\) 11.5371 0.473770 0.236885 0.971538i \(-0.423873\pi\)
0.236885 + 0.971538i \(0.423873\pi\)
\(594\) 26.1433 1.07267
\(595\) 0 0
\(596\) 23.5497 0.964635
\(597\) 0.410831 0.0168142
\(598\) 65.1871 2.66570
\(599\) −9.83844 −0.401988 −0.200994 0.979593i \(-0.564417\pi\)
−0.200994 + 0.979593i \(0.564417\pi\)
\(600\) 0 0
\(601\) 10.1246 0.412991 0.206496 0.978448i \(-0.433794\pi\)
0.206496 + 0.978448i \(0.433794\pi\)
\(602\) 2.03634 0.0829952
\(603\) 0.269188 0.0109622
\(604\) −6.96587 −0.283437
\(605\) 0 0
\(606\) −15.3258 −0.622569
\(607\) 0.707519 0.0287173 0.0143587 0.999897i \(-0.495429\pi\)
0.0143587 + 0.999897i \(0.495429\pi\)
\(608\) 50.7936 2.05995
\(609\) 6.05007 0.245161
\(610\) 0 0
\(611\) 61.0032 2.46792
\(612\) 0 0
\(613\) 28.1775 1.13808 0.569039 0.822310i \(-0.307315\pi\)
0.569039 + 0.822310i \(0.307315\pi\)
\(614\) −52.8010 −2.13088
\(615\) 0 0
\(616\) −15.7740 −0.635554
\(617\) 39.8676 1.60501 0.802505 0.596645i \(-0.203500\pi\)
0.802505 + 0.596645i \(0.203500\pi\)
\(618\) −27.7686 −1.11702
\(619\) 37.4591 1.50561 0.752804 0.658244i \(-0.228701\pi\)
0.752804 + 0.658244i \(0.228701\pi\)
\(620\) 0 0
\(621\) 28.1182 1.12834
\(622\) −43.4409 −1.74182
\(623\) 29.4844 1.18127
\(624\) −2.39971 −0.0960651
\(625\) 0 0
\(626\) 72.5940 2.90144
\(627\) 31.6310 1.26322
\(628\) −16.9550 −0.676579
\(629\) 0 0
\(630\) 0 0
\(631\) −10.5005 −0.418020 −0.209010 0.977913i \(-0.567024\pi\)
−0.209010 + 0.977913i \(0.567024\pi\)
\(632\) 45.6414 1.81552
\(633\) 16.0308 0.637167
\(634\) 16.7271 0.664316
\(635\) 0 0
\(636\) −43.4966 −1.72475
\(637\) −1.77086 −0.0701639
\(638\) 6.49891 0.257294
\(639\) 0.188538 0.00745845
\(640\) 0 0
\(641\) 44.9746 1.77639 0.888195 0.459466i \(-0.151959\pi\)
0.888195 + 0.459466i \(0.151959\pi\)
\(642\) 14.3357 0.565784
\(643\) −3.17835 −0.125342 −0.0626710 0.998034i \(-0.519962\pi\)
−0.0626710 + 0.998034i \(0.519962\pi\)
\(644\) −45.8016 −1.80484
\(645\) 0 0
\(646\) 0 0
\(647\) −3.28494 −0.129144 −0.0645721 0.997913i \(-0.520568\pi\)
−0.0645721 + 0.997913i \(0.520568\pi\)
\(648\) 23.2589 0.913697
\(649\) 28.6287 1.12377
\(650\) 0 0
\(651\) 3.49259 0.136885
\(652\) −24.7301 −0.968505
\(653\) 33.9120 1.32708 0.663540 0.748140i \(-0.269053\pi\)
0.663540 + 0.748140i \(0.269053\pi\)
\(654\) −10.6099 −0.414880
\(655\) 0 0
\(656\) −0.00342390 −0.000133681 0
\(657\) 1.20697 0.0470885
\(658\) −69.8471 −2.72292
\(659\) 27.5756 1.07419 0.537097 0.843521i \(-0.319521\pi\)
0.537097 + 0.843521i \(0.319521\pi\)
\(660\) 0 0
\(661\) −19.4561 −0.756756 −0.378378 0.925651i \(-0.623518\pi\)
−0.378378 + 0.925651i \(0.623518\pi\)
\(662\) −37.2106 −1.44623
\(663\) 0 0
\(664\) −8.98451 −0.348667
\(665\) 0 0
\(666\) 1.88085 0.0728813
\(667\) 6.98985 0.270648
\(668\) −14.0463 −0.543466
\(669\) −25.2577 −0.976520
\(670\) 0 0
\(671\) −15.6834 −0.605452
\(672\) 27.4302 1.05814
\(673\) 2.96580 0.114323 0.0571616 0.998365i \(-0.481795\pi\)
0.0571616 + 0.998365i \(0.481795\pi\)
\(674\) −6.21668 −0.239458
\(675\) 0 0
\(676\) 50.6404 1.94771
\(677\) −4.50634 −0.173193 −0.0865964 0.996243i \(-0.527599\pi\)
−0.0865964 + 0.996243i \(0.527599\pi\)
\(678\) 5.86873 0.225387
\(679\) −29.5411 −1.13368
\(680\) 0 0
\(681\) −16.7404 −0.641492
\(682\) 3.75170 0.143660
\(683\) −48.5495 −1.85769 −0.928847 0.370464i \(-0.879199\pi\)
−0.928847 + 0.370464i \(0.879199\pi\)
\(684\) −2.73235 −0.104474
\(685\) 0 0
\(686\) −41.0898 −1.56881
\(687\) 21.1674 0.807585
\(688\) −0.0866074 −0.00330188
\(689\) −43.2609 −1.64811
\(690\) 0 0
\(691\) −1.63196 −0.0620827 −0.0310413 0.999518i \(-0.509882\pi\)
−0.0310413 + 0.999518i \(0.509882\pi\)
\(692\) −46.4396 −1.76537
\(693\) −0.593693 −0.0225525
\(694\) 43.1406 1.63759
\(695\) 0 0
\(696\) 5.98309 0.226788
\(697\) 0 0
\(698\) 73.5769 2.78493
\(699\) −21.4222 −0.810264
\(700\) 0 0
\(701\) −40.4449 −1.52758 −0.763792 0.645463i \(-0.776664\pi\)
−0.763792 + 0.645463i \(0.776664\pi\)
\(702\) 64.6242 2.43908
\(703\) 70.0267 2.64111
\(704\) 28.3250 1.06754
\(705\) 0 0
\(706\) −29.7865 −1.12103
\(707\) 10.7098 0.402785
\(708\) 71.1535 2.67411
\(709\) −47.3049 −1.77657 −0.888286 0.459291i \(-0.848103\pi\)
−0.888286 + 0.459291i \(0.848103\pi\)
\(710\) 0 0
\(711\) 1.71782 0.0644234
\(712\) 29.1580 1.09274
\(713\) 4.03511 0.151116
\(714\) 0 0
\(715\) 0 0
\(716\) −17.2467 −0.644539
\(717\) 26.8970 1.00449
\(718\) −19.6640 −0.733856
\(719\) 8.17117 0.304733 0.152367 0.988324i \(-0.451311\pi\)
0.152367 + 0.988324i \(0.451311\pi\)
\(720\) 0 0
\(721\) 19.4050 0.722679
\(722\) −122.547 −4.56074
\(723\) −14.3928 −0.535273
\(724\) 58.2871 2.16622
\(725\) 0 0
\(726\) −24.2658 −0.900587
\(727\) 18.8237 0.698133 0.349067 0.937098i \(-0.386499\pi\)
0.349067 + 0.937098i \(0.386499\pi\)
\(728\) −38.9923 −1.44515
\(729\) 27.8449 1.03129
\(730\) 0 0
\(731\) 0 0
\(732\) −38.9795 −1.44072
\(733\) −25.9444 −0.958278 −0.479139 0.877739i \(-0.659051\pi\)
−0.479139 + 0.877739i \(0.659051\pi\)
\(734\) 15.0401 0.555140
\(735\) 0 0
\(736\) 31.6911 1.16815
\(737\) 5.81389 0.214158
\(738\) 0.00299641 0.000110299 0
\(739\) 18.9248 0.696162 0.348081 0.937465i \(-0.386833\pi\)
0.348081 + 0.937465i \(0.386833\pi\)
\(740\) 0 0
\(741\) 78.1895 2.87236
\(742\) 49.5327 1.81840
\(743\) 0.0747338 0.00274172 0.00137086 0.999999i \(-0.499564\pi\)
0.00137086 + 0.999999i \(0.499564\pi\)
\(744\) 3.45392 0.126627
\(745\) 0 0
\(746\) −16.2531 −0.595069
\(747\) −0.338153 −0.0123724
\(748\) 0 0
\(749\) −10.0179 −0.366047
\(750\) 0 0
\(751\) −31.3032 −1.14227 −0.571135 0.820856i \(-0.693497\pi\)
−0.571135 + 0.820856i \(0.693497\pi\)
\(752\) 2.97066 0.108329
\(753\) −25.1832 −0.917728
\(754\) 16.0648 0.585046
\(755\) 0 0
\(756\) −45.4061 −1.65140
\(757\) 10.9290 0.397223 0.198612 0.980078i \(-0.436357\pi\)
0.198612 + 0.980078i \(0.436357\pi\)
\(758\) 16.3641 0.594369
\(759\) 19.7352 0.716342
\(760\) 0 0
\(761\) −34.7125 −1.25833 −0.629164 0.777272i \(-0.716603\pi\)
−0.629164 + 0.777272i \(0.716603\pi\)
\(762\) −16.0818 −0.582582
\(763\) 7.41431 0.268416
\(764\) 15.6184 0.565053
\(765\) 0 0
\(766\) −27.9634 −1.01036
\(767\) 70.7680 2.55528
\(768\) 24.2925 0.876581
\(769\) 28.5727 1.03036 0.515178 0.857083i \(-0.327726\pi\)
0.515178 + 0.857083i \(0.327726\pi\)
\(770\) 0 0
\(771\) 23.6135 0.850418
\(772\) −55.7469 −2.00638
\(773\) −31.3773 −1.12856 −0.564281 0.825583i \(-0.690847\pi\)
−0.564281 + 0.825583i \(0.690847\pi\)
\(774\) 0.0757941 0.00272436
\(775\) 0 0
\(776\) −29.2140 −1.04872
\(777\) 37.8167 1.35667
\(778\) −24.2115 −0.868025
\(779\) 0.111561 0.00399708
\(780\) 0 0
\(781\) 4.07202 0.145708
\(782\) 0 0
\(783\) 6.92950 0.247640
\(784\) −0.0862349 −0.00307982
\(785\) 0 0
\(786\) 47.8201 1.70569
\(787\) 19.5079 0.695380 0.347690 0.937610i \(-0.386966\pi\)
0.347690 + 0.937610i \(0.386966\pi\)
\(788\) 69.1314 2.46270
\(789\) 0.651523 0.0231948
\(790\) 0 0
\(791\) −4.10113 −0.145819
\(792\) −0.587121 −0.0208624
\(793\) −38.7683 −1.37670
\(794\) −54.7318 −1.94236
\(795\) 0 0
\(796\) −0.766476 −0.0271670
\(797\) 16.1734 0.572892 0.286446 0.958096i \(-0.407526\pi\)
0.286446 + 0.958096i \(0.407526\pi\)
\(798\) −89.5250 −3.16915
\(799\) 0 0
\(800\) 0 0
\(801\) 1.09743 0.0387757
\(802\) −52.1468 −1.84137
\(803\) 26.0681 0.919922
\(804\) 14.4498 0.509606
\(805\) 0 0
\(806\) 9.27392 0.326660
\(807\) −37.2802 −1.31233
\(808\) 10.5913 0.372600
\(809\) 37.5852 1.32143 0.660713 0.750639i \(-0.270254\pi\)
0.660713 + 0.750639i \(0.270254\pi\)
\(810\) 0 0
\(811\) 34.8967 1.22539 0.612695 0.790320i \(-0.290085\pi\)
0.612695 + 0.790320i \(0.290085\pi\)
\(812\) −11.2874 −0.396111
\(813\) −28.8524 −1.01190
\(814\) 40.6223 1.42381
\(815\) 0 0
\(816\) 0 0
\(817\) 2.82193 0.0987267
\(818\) 17.0850 0.597365
\(819\) −1.46757 −0.0512809
\(820\) 0 0
\(821\) 30.8990 1.07838 0.539191 0.842184i \(-0.318730\pi\)
0.539191 + 0.842184i \(0.318730\pi\)
\(822\) −51.0215 −1.77958
\(823\) −42.4684 −1.48035 −0.740177 0.672412i \(-0.765258\pi\)
−0.740177 + 0.672412i \(0.765258\pi\)
\(824\) 19.1901 0.668520
\(825\) 0 0
\(826\) −81.0275 −2.81931
\(827\) −20.4596 −0.711449 −0.355724 0.934591i \(-0.615766\pi\)
−0.355724 + 0.934591i \(0.615766\pi\)
\(828\) −1.70477 −0.0592447
\(829\) −38.1368 −1.32455 −0.662273 0.749263i \(-0.730408\pi\)
−0.662273 + 0.749263i \(0.730408\pi\)
\(830\) 0 0
\(831\) 41.6451 1.44465
\(832\) 70.0172 2.42741
\(833\) 0 0
\(834\) −2.73636 −0.0947522
\(835\) 0 0
\(836\) −59.0130 −2.04101
\(837\) 4.00027 0.138270
\(838\) −30.4866 −1.05314
\(839\) 37.7486 1.30323 0.651613 0.758552i \(-0.274093\pi\)
0.651613 + 0.758552i \(0.274093\pi\)
\(840\) 0 0
\(841\) −27.2774 −0.940600
\(842\) 46.6602 1.60802
\(843\) 22.4782 0.774190
\(844\) −29.9082 −1.02948
\(845\) 0 0
\(846\) −2.59976 −0.0893814
\(847\) 16.9572 0.582655
\(848\) −2.10667 −0.0723432
\(849\) −23.4518 −0.804863
\(850\) 0 0
\(851\) 43.6910 1.49771
\(852\) 10.1206 0.346725
\(853\) 19.5859 0.670608 0.335304 0.942110i \(-0.391161\pi\)
0.335304 + 0.942110i \(0.391161\pi\)
\(854\) 44.3887 1.51895
\(855\) 0 0
\(856\) −9.90701 −0.338615
\(857\) 14.2754 0.487639 0.243820 0.969821i \(-0.421599\pi\)
0.243820 + 0.969821i \(0.421599\pi\)
\(858\) 45.3575 1.54848
\(859\) 50.2428 1.71426 0.857130 0.515099i \(-0.172245\pi\)
0.857130 + 0.515099i \(0.172245\pi\)
\(860\) 0 0
\(861\) 0.0602466 0.00205320
\(862\) −20.4463 −0.696405
\(863\) −13.1930 −0.449095 −0.224548 0.974463i \(-0.572090\pi\)
−0.224548 + 0.974463i \(0.572090\pi\)
\(864\) 31.4175 1.06884
\(865\) 0 0
\(866\) 60.0065 2.03910
\(867\) 0 0
\(868\) −6.51602 −0.221168
\(869\) 37.1013 1.25858
\(870\) 0 0
\(871\) 14.3715 0.486960
\(872\) 7.33223 0.248301
\(873\) −1.09954 −0.0372137
\(874\) −103.431 −3.49861
\(875\) 0 0
\(876\) 64.7894 2.18903
\(877\) −6.22918 −0.210345 −0.105172 0.994454i \(-0.533539\pi\)
−0.105172 + 0.994454i \(0.533539\pi\)
\(878\) 66.7914 2.25410
\(879\) 35.9902 1.21392
\(880\) 0 0
\(881\) −30.3408 −1.02221 −0.511104 0.859519i \(-0.670763\pi\)
−0.511104 + 0.859519i \(0.670763\pi\)
\(882\) 0.0754681 0.00254114
\(883\) −27.0762 −0.911185 −0.455593 0.890188i \(-0.650573\pi\)
−0.455593 + 0.890188i \(0.650573\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −53.3504 −1.79234
\(887\) 28.1506 0.945205 0.472603 0.881276i \(-0.343315\pi\)
0.472603 + 0.881276i \(0.343315\pi\)
\(888\) 37.3981 1.25500
\(889\) 11.2381 0.376914
\(890\) 0 0
\(891\) 18.9069 0.633405
\(892\) 47.1225 1.57778
\(893\) −96.7927 −3.23905
\(894\) 28.7196 0.960526
\(895\) 0 0
\(896\) −47.9484 −1.60185
\(897\) 48.7839 1.62885
\(898\) 26.8984 0.897611
\(899\) 0.994419 0.0331657
\(900\) 0 0
\(901\) 0 0
\(902\) 0.0647162 0.00215481
\(903\) 1.52393 0.0507134
\(904\) −4.05573 −0.134891
\(905\) 0 0
\(906\) −8.49507 −0.282230
\(907\) 37.7225 1.25256 0.626278 0.779600i \(-0.284577\pi\)
0.626278 + 0.779600i \(0.284577\pi\)
\(908\) 31.2320 1.03647
\(909\) 0.398628 0.0132216
\(910\) 0 0
\(911\) 17.9517 0.594765 0.297383 0.954758i \(-0.403886\pi\)
0.297383 + 0.954758i \(0.403886\pi\)
\(912\) 3.80757 0.126081
\(913\) −7.30340 −0.241707
\(914\) −7.54190 −0.249464
\(915\) 0 0
\(916\) −39.4913 −1.30483
\(917\) −33.4172 −1.10353
\(918\) 0 0
\(919\) −25.0436 −0.826112 −0.413056 0.910706i \(-0.635539\pi\)
−0.413056 + 0.910706i \(0.635539\pi\)
\(920\) 0 0
\(921\) −39.5146 −1.30205
\(922\) −82.4906 −2.71668
\(923\) 10.0657 0.331318
\(924\) −31.8690 −1.04841
\(925\) 0 0
\(926\) 24.9324 0.819328
\(927\) 0.722266 0.0237223
\(928\) 7.81001 0.256376
\(929\) 21.1573 0.694148 0.347074 0.937838i \(-0.387175\pi\)
0.347074 + 0.937838i \(0.387175\pi\)
\(930\) 0 0
\(931\) 2.80979 0.0920871
\(932\) 39.9668 1.30916
\(933\) −32.5098 −1.06432
\(934\) −78.2497 −2.56041
\(935\) 0 0
\(936\) −1.45132 −0.0474378
\(937\) 6.56252 0.214388 0.107194 0.994238i \(-0.465813\pi\)
0.107194 + 0.994238i \(0.465813\pi\)
\(938\) −16.4550 −0.537275
\(939\) 54.3270 1.77289
\(940\) 0 0
\(941\) 18.5109 0.603439 0.301719 0.953397i \(-0.402439\pi\)
0.301719 + 0.953397i \(0.402439\pi\)
\(942\) −20.6771 −0.673698
\(943\) 0.0696049 0.00226665
\(944\) 3.44617 0.112163
\(945\) 0 0
\(946\) 1.63699 0.0532232
\(947\) −30.7922 −1.00061 −0.500307 0.865848i \(-0.666779\pi\)
−0.500307 + 0.865848i \(0.666779\pi\)
\(948\) 92.2113 2.99488
\(949\) 64.4383 2.09176
\(950\) 0 0
\(951\) 12.5180 0.405924
\(952\) 0 0
\(953\) 12.7261 0.412240 0.206120 0.978527i \(-0.433916\pi\)
0.206120 + 0.978527i \(0.433916\pi\)
\(954\) 1.84364 0.0596900
\(955\) 0 0
\(956\) −50.1809 −1.62297
\(957\) 4.86358 0.157217
\(958\) −62.6041 −2.02265
\(959\) 35.6544 1.15134
\(960\) 0 0
\(961\) −30.4259 −0.981482
\(962\) 100.415 3.23752
\(963\) −0.372874 −0.0120157
\(964\) 26.8522 0.864850
\(965\) 0 0
\(966\) −55.8563 −1.79715
\(967\) −6.17919 −0.198709 −0.0993547 0.995052i \(-0.531678\pi\)
−0.0993547 + 0.995052i \(0.531678\pi\)
\(968\) 16.7694 0.538990
\(969\) 0 0
\(970\) 0 0
\(971\) 8.79368 0.282202 0.141101 0.989995i \(-0.454936\pi\)
0.141101 + 0.989995i \(0.454936\pi\)
\(972\) −3.32517 −0.106655
\(973\) 1.91219 0.0613021
\(974\) 24.1695 0.774442
\(975\) 0 0
\(976\) −1.88789 −0.0604298
\(977\) 14.5316 0.464906 0.232453 0.972608i \(-0.425325\pi\)
0.232453 + 0.972608i \(0.425325\pi\)
\(978\) −30.1590 −0.964380
\(979\) 23.7021 0.757524
\(980\) 0 0
\(981\) 0.275966 0.00881091
\(982\) −82.3870 −2.62907
\(983\) 22.7184 0.724603 0.362302 0.932061i \(-0.381991\pi\)
0.362302 + 0.932061i \(0.381991\pi\)
\(984\) 0.0595796 0.00189933
\(985\) 0 0
\(986\) 0 0
\(987\) −52.2713 −1.66381
\(988\) −145.876 −4.64093
\(989\) 1.76065 0.0559855
\(990\) 0 0
\(991\) −3.88859 −0.123525 −0.0617626 0.998091i \(-0.519672\pi\)
−0.0617626 + 0.998091i \(0.519672\pi\)
\(992\) 4.50857 0.143147
\(993\) −27.8472 −0.883705
\(994\) −11.5250 −0.365551
\(995\) 0 0
\(996\) −18.1518 −0.575162
\(997\) −31.1914 −0.987842 −0.493921 0.869507i \(-0.664437\pi\)
−0.493921 + 0.869507i \(0.664437\pi\)
\(998\) 47.4932 1.50337
\(999\) 43.3137 1.37039
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bo.1.3 12
5.4 even 2 1445.2.a.r.1.10 12
17.16 even 2 7225.2.a.bn.1.3 12
85.4 even 4 1445.2.d.i.866.5 24
85.64 even 4 1445.2.d.i.866.6 24
85.84 even 2 1445.2.a.s.1.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.r.1.10 12 5.4 even 2
1445.2.a.s.1.10 yes 12 85.84 even 2
1445.2.d.i.866.5 24 85.4 even 4
1445.2.d.i.866.6 24 85.64 even 4
7225.2.a.bn.1.3 12 17.16 even 2
7225.2.a.bo.1.3 12 1.1 even 1 trivial