Properties

Label 7225.2.a.bn.1.8
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-3,-3,21,0,-9,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 18 x^{10} + 55 x^{9} + 114 x^{8} - 354 x^{7} - 309 x^{6} + 936 x^{5} + 396 x^{4} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1445)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.704111\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.704111 q^{2} +3.11994 q^{3} -1.50423 q^{4} +2.19679 q^{6} -4.06346 q^{7} -2.46736 q^{8} +6.73405 q^{9} +0.231031 q^{11} -4.69311 q^{12} -2.35528 q^{13} -2.86112 q^{14} +1.27116 q^{16} +4.74152 q^{18} +7.38657 q^{19} -12.6778 q^{21} +0.162671 q^{22} -1.87741 q^{23} -7.69804 q^{24} -1.65838 q^{26} +11.6500 q^{27} +6.11237 q^{28} -4.04943 q^{29} -0.130455 q^{31} +5.82977 q^{32} +0.720802 q^{33} -10.1295 q^{36} -5.82227 q^{37} +5.20096 q^{38} -7.34835 q^{39} -8.10305 q^{41} -8.92655 q^{42} +3.69785 q^{43} -0.347523 q^{44} -1.32190 q^{46} -1.30633 q^{47} +3.96595 q^{48} +9.51170 q^{49} +3.54288 q^{52} -8.26017 q^{53} +8.20291 q^{54} +10.0260 q^{56} +23.0457 q^{57} -2.85125 q^{58} +2.29764 q^{59} -8.92792 q^{61} -0.0918548 q^{62} -27.3635 q^{63} +1.56248 q^{64} +0.507524 q^{66} -14.5995 q^{67} -5.85742 q^{69} -11.0065 q^{71} -16.6154 q^{72} +0.471385 q^{73} -4.09952 q^{74} -11.1111 q^{76} -0.938783 q^{77} -5.17405 q^{78} +4.31667 q^{79} +16.1453 q^{81} -5.70544 q^{82} -15.4238 q^{83} +19.0703 q^{84} +2.60370 q^{86} -12.6340 q^{87} -0.570036 q^{88} +3.68913 q^{89} +9.57059 q^{91} +2.82405 q^{92} -0.407012 q^{93} -0.919804 q^{94} +18.1885 q^{96} +9.00621 q^{97} +6.69729 q^{98} +1.55577 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} - 3 q^{3} + 21 q^{4} - 9 q^{6} - 6 q^{7} - 12 q^{8} + 21 q^{9} - 6 q^{11} - 6 q^{12} - 9 q^{13} - 18 q^{14} + 39 q^{16} + 9 q^{18} + 27 q^{19} + 6 q^{21} - 15 q^{22} - 18 q^{23} - 36 q^{24}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.704111 0.497881 0.248941 0.968519i \(-0.419918\pi\)
0.248941 + 0.968519i \(0.419918\pi\)
\(3\) 3.11994 1.80130 0.900650 0.434545i \(-0.143091\pi\)
0.900650 + 0.434545i \(0.143091\pi\)
\(4\) −1.50423 −0.752114
\(5\) 0 0
\(6\) 2.19679 0.896834
\(7\) −4.06346 −1.53584 −0.767922 0.640544i \(-0.778709\pi\)
−0.767922 + 0.640544i \(0.778709\pi\)
\(8\) −2.46736 −0.872345
\(9\) 6.73405 2.24468
\(10\) 0 0
\(11\) 0.231031 0.0696583 0.0348292 0.999393i \(-0.488911\pi\)
0.0348292 + 0.999393i \(0.488911\pi\)
\(12\) −4.69311 −1.35478
\(13\) −2.35528 −0.653238 −0.326619 0.945156i \(-0.605909\pi\)
−0.326619 + 0.945156i \(0.605909\pi\)
\(14\) −2.86112 −0.764668
\(15\) 0 0
\(16\) 1.27116 0.317790
\(17\) 0 0
\(18\) 4.74152 1.11759
\(19\) 7.38657 1.69460 0.847298 0.531118i \(-0.178228\pi\)
0.847298 + 0.531118i \(0.178228\pi\)
\(20\) 0 0
\(21\) −12.6778 −2.76651
\(22\) 0.162671 0.0346816
\(23\) −1.87741 −0.391467 −0.195734 0.980657i \(-0.562709\pi\)
−0.195734 + 0.980657i \(0.562709\pi\)
\(24\) −7.69804 −1.57136
\(25\) 0 0
\(26\) −1.65838 −0.325235
\(27\) 11.6500 2.24205
\(28\) 6.11237 1.15513
\(29\) −4.04943 −0.751961 −0.375980 0.926628i \(-0.622694\pi\)
−0.375980 + 0.926628i \(0.622694\pi\)
\(30\) 0 0
\(31\) −0.130455 −0.0234304 −0.0117152 0.999931i \(-0.503729\pi\)
−0.0117152 + 0.999931i \(0.503729\pi\)
\(32\) 5.82977 1.03057
\(33\) 0.720802 0.125476
\(34\) 0 0
\(35\) 0 0
\(36\) −10.1295 −1.68826
\(37\) −5.82227 −0.957175 −0.478587 0.878040i \(-0.658851\pi\)
−0.478587 + 0.878040i \(0.658851\pi\)
\(38\) 5.20096 0.843707
\(39\) −7.34835 −1.17668
\(40\) 0 0
\(41\) −8.10305 −1.26548 −0.632742 0.774363i \(-0.718071\pi\)
−0.632742 + 0.774363i \(0.718071\pi\)
\(42\) −8.92655 −1.37740
\(43\) 3.69785 0.563917 0.281959 0.959427i \(-0.409016\pi\)
0.281959 + 0.959427i \(0.409016\pi\)
\(44\) −0.347523 −0.0523910
\(45\) 0 0
\(46\) −1.32190 −0.194904
\(47\) −1.30633 −0.190549 −0.0952743 0.995451i \(-0.530373\pi\)
−0.0952743 + 0.995451i \(0.530373\pi\)
\(48\) 3.96595 0.572435
\(49\) 9.51170 1.35881
\(50\) 0 0
\(51\) 0 0
\(52\) 3.54288 0.491309
\(53\) −8.26017 −1.13462 −0.567311 0.823504i \(-0.692016\pi\)
−0.567311 + 0.823504i \(0.692016\pi\)
\(54\) 8.20291 1.11627
\(55\) 0 0
\(56\) 10.0260 1.33978
\(57\) 23.0457 3.05248
\(58\) −2.85125 −0.374387
\(59\) 2.29764 0.299128 0.149564 0.988752i \(-0.452213\pi\)
0.149564 + 0.988752i \(0.452213\pi\)
\(60\) 0 0
\(61\) −8.92792 −1.14310 −0.571552 0.820566i \(-0.693658\pi\)
−0.571552 + 0.820566i \(0.693658\pi\)
\(62\) −0.0918548 −0.0116656
\(63\) −27.3635 −3.44748
\(64\) 1.56248 0.195310
\(65\) 0 0
\(66\) 0.507524 0.0624719
\(67\) −14.5995 −1.78361 −0.891805 0.452419i \(-0.850561\pi\)
−0.891805 + 0.452419i \(0.850561\pi\)
\(68\) 0 0
\(69\) −5.85742 −0.705150
\(70\) 0 0
\(71\) −11.0065 −1.30623 −0.653117 0.757257i \(-0.726539\pi\)
−0.653117 + 0.757257i \(0.726539\pi\)
\(72\) −16.6154 −1.95814
\(73\) 0.471385 0.0551714 0.0275857 0.999619i \(-0.491218\pi\)
0.0275857 + 0.999619i \(0.491218\pi\)
\(74\) −4.09952 −0.476560
\(75\) 0 0
\(76\) −11.1111 −1.27453
\(77\) −0.938783 −0.106984
\(78\) −5.17405 −0.585846
\(79\) 4.31667 0.485663 0.242831 0.970069i \(-0.421924\pi\)
0.242831 + 0.970069i \(0.421924\pi\)
\(80\) 0 0
\(81\) 16.1453 1.79392
\(82\) −5.70544 −0.630061
\(83\) −15.4238 −1.69298 −0.846489 0.532407i \(-0.821288\pi\)
−0.846489 + 0.532407i \(0.821288\pi\)
\(84\) 19.0703 2.08073
\(85\) 0 0
\(86\) 2.60370 0.280764
\(87\) −12.6340 −1.35451
\(88\) −0.570036 −0.0607661
\(89\) 3.68913 0.391047 0.195523 0.980699i \(-0.437359\pi\)
0.195523 + 0.980699i \(0.437359\pi\)
\(90\) 0 0
\(91\) 9.57059 1.00327
\(92\) 2.82405 0.294428
\(93\) −0.407012 −0.0422052
\(94\) −0.919804 −0.0948706
\(95\) 0 0
\(96\) 18.1885 1.85636
\(97\) 9.00621 0.914442 0.457221 0.889353i \(-0.348845\pi\)
0.457221 + 0.889353i \(0.348845\pi\)
\(98\) 6.69729 0.676528
\(99\) 1.55577 0.156361
\(100\) 0 0
\(101\) −6.94560 −0.691113 −0.345556 0.938398i \(-0.612310\pi\)
−0.345556 + 0.938398i \(0.612310\pi\)
\(102\) 0 0
\(103\) 1.04422 0.102891 0.0514453 0.998676i \(-0.483617\pi\)
0.0514453 + 0.998676i \(0.483617\pi\)
\(104\) 5.81134 0.569849
\(105\) 0 0
\(106\) −5.81607 −0.564907
\(107\) −10.0027 −0.966999 −0.483500 0.875345i \(-0.660635\pi\)
−0.483500 + 0.875345i \(0.660635\pi\)
\(108\) −17.5243 −1.68628
\(109\) 8.14200 0.779863 0.389931 0.920844i \(-0.372499\pi\)
0.389931 + 0.920844i \(0.372499\pi\)
\(110\) 0 0
\(111\) −18.1651 −1.72416
\(112\) −5.16530 −0.488075
\(113\) −13.0656 −1.22911 −0.614556 0.788873i \(-0.710665\pi\)
−0.614556 + 0.788873i \(0.710665\pi\)
\(114\) 16.2267 1.51977
\(115\) 0 0
\(116\) 6.09127 0.565560
\(117\) −15.8606 −1.46631
\(118\) 1.61779 0.148930
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9466 −0.995148
\(122\) −6.28624 −0.569130
\(123\) −25.2811 −2.27952
\(124\) 0.196234 0.0176223
\(125\) 0 0
\(126\) −19.2670 −1.71644
\(127\) −0.745900 −0.0661879 −0.0330939 0.999452i \(-0.510536\pi\)
−0.0330939 + 0.999452i \(0.510536\pi\)
\(128\) −10.5594 −0.933325
\(129\) 11.5371 1.01578
\(130\) 0 0
\(131\) −5.67574 −0.495891 −0.247946 0.968774i \(-0.579755\pi\)
−0.247946 + 0.968774i \(0.579755\pi\)
\(132\) −1.08425 −0.0943720
\(133\) −30.0150 −2.60263
\(134\) −10.2797 −0.888027
\(135\) 0 0
\(136\) 0 0
\(137\) 19.6850 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(138\) −4.12427 −0.351081
\(139\) 5.64706 0.478977 0.239489 0.970899i \(-0.423020\pi\)
0.239489 + 0.970899i \(0.423020\pi\)
\(140\) 0 0
\(141\) −4.07569 −0.343235
\(142\) −7.74981 −0.650350
\(143\) −0.544142 −0.0455034
\(144\) 8.56005 0.713338
\(145\) 0 0
\(146\) 0.331907 0.0274688
\(147\) 29.6760 2.44763
\(148\) 8.75802 0.719905
\(149\) −19.0000 −1.55654 −0.778269 0.627931i \(-0.783902\pi\)
−0.778269 + 0.627931i \(0.783902\pi\)
\(150\) 0 0
\(151\) 6.95236 0.565775 0.282887 0.959153i \(-0.408708\pi\)
0.282887 + 0.959153i \(0.408708\pi\)
\(152\) −18.2254 −1.47827
\(153\) 0 0
\(154\) −0.661007 −0.0532655
\(155\) 0 0
\(156\) 11.0536 0.884996
\(157\) 7.18338 0.573296 0.286648 0.958036i \(-0.407459\pi\)
0.286648 + 0.958036i \(0.407459\pi\)
\(158\) 3.03941 0.241802
\(159\) −25.7713 −2.04379
\(160\) 0 0
\(161\) 7.62878 0.601232
\(162\) 11.3681 0.893159
\(163\) 12.3259 0.965443 0.482721 0.875774i \(-0.339648\pi\)
0.482721 + 0.875774i \(0.339648\pi\)
\(164\) 12.1888 0.951788
\(165\) 0 0
\(166\) −10.8600 −0.842902
\(167\) 2.10123 0.162598 0.0812990 0.996690i \(-0.474093\pi\)
0.0812990 + 0.996690i \(0.474093\pi\)
\(168\) 31.2807 2.41336
\(169\) −7.45265 −0.573281
\(170\) 0 0
\(171\) 49.7415 3.80383
\(172\) −5.56242 −0.424130
\(173\) −2.38845 −0.181590 −0.0907952 0.995870i \(-0.528941\pi\)
−0.0907952 + 0.995870i \(0.528941\pi\)
\(174\) −8.89573 −0.674384
\(175\) 0 0
\(176\) 0.293677 0.0221367
\(177\) 7.16852 0.538819
\(178\) 2.59755 0.194695
\(179\) −2.06564 −0.154394 −0.0771968 0.997016i \(-0.524597\pi\)
−0.0771968 + 0.997016i \(0.524597\pi\)
\(180\) 0 0
\(181\) 10.0975 0.750542 0.375271 0.926915i \(-0.377550\pi\)
0.375271 + 0.926915i \(0.377550\pi\)
\(182\) 6.73875 0.499510
\(183\) −27.8546 −2.05907
\(184\) 4.63225 0.341494
\(185\) 0 0
\(186\) −0.286582 −0.0210132
\(187\) 0 0
\(188\) 1.96503 0.143314
\(189\) −47.3394 −3.44343
\(190\) 0 0
\(191\) −26.5500 −1.92109 −0.960547 0.278119i \(-0.910289\pi\)
−0.960547 + 0.278119i \(0.910289\pi\)
\(192\) 4.87485 0.351812
\(193\) −6.80795 −0.490047 −0.245023 0.969517i \(-0.578796\pi\)
−0.245023 + 0.969517i \(0.578796\pi\)
\(194\) 6.34137 0.455284
\(195\) 0 0
\(196\) −14.3078 −1.02198
\(197\) −6.05995 −0.431753 −0.215877 0.976421i \(-0.569261\pi\)
−0.215877 + 0.976421i \(0.569261\pi\)
\(198\) 1.09543 0.0778492
\(199\) −11.3467 −0.804343 −0.402172 0.915564i \(-0.631745\pi\)
−0.402172 + 0.915564i \(0.631745\pi\)
\(200\) 0 0
\(201\) −45.5496 −3.21282
\(202\) −4.89047 −0.344092
\(203\) 16.4547 1.15489
\(204\) 0 0
\(205\) 0 0
\(206\) 0.735250 0.0512273
\(207\) −12.6426 −0.878720
\(208\) −2.99394 −0.207592
\(209\) 1.70652 0.118043
\(210\) 0 0
\(211\) 13.7348 0.945543 0.472772 0.881185i \(-0.343254\pi\)
0.472772 + 0.881185i \(0.343254\pi\)
\(212\) 12.4252 0.853365
\(213\) −34.3397 −2.35292
\(214\) −7.04302 −0.481451
\(215\) 0 0
\(216\) −28.7449 −1.95584
\(217\) 0.530099 0.0359854
\(218\) 5.73287 0.388279
\(219\) 1.47069 0.0993802
\(220\) 0 0
\(221\) 0 0
\(222\) −12.7903 −0.858427
\(223\) 3.57068 0.239110 0.119555 0.992828i \(-0.461853\pi\)
0.119555 + 0.992828i \(0.461853\pi\)
\(224\) −23.6890 −1.58279
\(225\) 0 0
\(226\) −9.19966 −0.611952
\(227\) −23.3475 −1.54963 −0.774816 0.632187i \(-0.782157\pi\)
−0.774816 + 0.632187i \(0.782157\pi\)
\(228\) −34.6660 −2.29581
\(229\) 25.2530 1.66877 0.834384 0.551184i \(-0.185824\pi\)
0.834384 + 0.551184i \(0.185824\pi\)
\(230\) 0 0
\(231\) −2.92895 −0.192711
\(232\) 9.99142 0.655969
\(233\) −1.76097 −0.115365 −0.0576824 0.998335i \(-0.518371\pi\)
−0.0576824 + 0.998335i \(0.518371\pi\)
\(234\) −11.1676 −0.730049
\(235\) 0 0
\(236\) −3.45618 −0.224978
\(237\) 13.4678 0.874825
\(238\) 0 0
\(239\) 21.2916 1.37724 0.688621 0.725122i \(-0.258216\pi\)
0.688621 + 0.725122i \(0.258216\pi\)
\(240\) 0 0
\(241\) −10.1369 −0.652972 −0.326486 0.945202i \(-0.605865\pi\)
−0.326486 + 0.945202i \(0.605865\pi\)
\(242\) −7.70763 −0.495465
\(243\) 15.4223 0.989340
\(244\) 13.4296 0.859744
\(245\) 0 0
\(246\) −17.8007 −1.13493
\(247\) −17.3975 −1.10697
\(248\) 0.321880 0.0204394
\(249\) −48.1213 −3.04956
\(250\) 0 0
\(251\) 17.5960 1.11065 0.555326 0.831633i \(-0.312593\pi\)
0.555326 + 0.831633i \(0.312593\pi\)
\(252\) 41.1610 2.59290
\(253\) −0.433739 −0.0272689
\(254\) −0.525196 −0.0329537
\(255\) 0 0
\(256\) −10.5599 −0.659995
\(257\) −10.0995 −0.629990 −0.314995 0.949093i \(-0.602003\pi\)
−0.314995 + 0.949093i \(0.602003\pi\)
\(258\) 8.12339 0.505740
\(259\) 23.6585 1.47007
\(260\) 0 0
\(261\) −27.2691 −1.68791
\(262\) −3.99635 −0.246895
\(263\) 16.0060 0.986973 0.493487 0.869753i \(-0.335722\pi\)
0.493487 + 0.869753i \(0.335722\pi\)
\(264\) −1.77848 −0.109458
\(265\) 0 0
\(266\) −21.1339 −1.29580
\(267\) 11.5099 0.704393
\(268\) 21.9610 1.34148
\(269\) −13.0629 −0.796457 −0.398229 0.917286i \(-0.630375\pi\)
−0.398229 + 0.917286i \(0.630375\pi\)
\(270\) 0 0
\(271\) 17.3388 1.05325 0.526627 0.850096i \(-0.323456\pi\)
0.526627 + 0.850096i \(0.323456\pi\)
\(272\) 0 0
\(273\) 29.8597 1.80719
\(274\) 13.8604 0.837337
\(275\) 0 0
\(276\) 8.81089 0.530353
\(277\) 10.9525 0.658075 0.329037 0.944317i \(-0.393276\pi\)
0.329037 + 0.944317i \(0.393276\pi\)
\(278\) 3.97615 0.238474
\(279\) −0.878491 −0.0525939
\(280\) 0 0
\(281\) −3.09350 −0.184543 −0.0922714 0.995734i \(-0.529413\pi\)
−0.0922714 + 0.995734i \(0.529413\pi\)
\(282\) −2.86974 −0.170890
\(283\) 0.469462 0.0279066 0.0139533 0.999903i \(-0.495558\pi\)
0.0139533 + 0.999903i \(0.495558\pi\)
\(284\) 16.5563 0.982437
\(285\) 0 0
\(286\) −0.383136 −0.0226553
\(287\) 32.9264 1.94358
\(288\) 39.2579 2.31330
\(289\) 0 0
\(290\) 0 0
\(291\) 28.0989 1.64718
\(292\) −0.709070 −0.0414952
\(293\) 20.6954 1.20904 0.604520 0.796590i \(-0.293365\pi\)
0.604520 + 0.796590i \(0.293365\pi\)
\(294\) 20.8952 1.21863
\(295\) 0 0
\(296\) 14.3657 0.834987
\(297\) 2.69151 0.156177
\(298\) −13.3781 −0.774971
\(299\) 4.42183 0.255721
\(300\) 0 0
\(301\) −15.0261 −0.866088
\(302\) 4.89523 0.281689
\(303\) −21.6699 −1.24490
\(304\) 9.38951 0.538525
\(305\) 0 0
\(306\) 0 0
\(307\) −21.9900 −1.25504 −0.627519 0.778601i \(-0.715929\pi\)
−0.627519 + 0.778601i \(0.715929\pi\)
\(308\) 1.41214 0.0804644
\(309\) 3.25792 0.185337
\(310\) 0 0
\(311\) 24.4834 1.38833 0.694163 0.719817i \(-0.255774\pi\)
0.694163 + 0.719817i \(0.255774\pi\)
\(312\) 18.1310 1.02647
\(313\) −2.87540 −0.162527 −0.0812635 0.996693i \(-0.525896\pi\)
−0.0812635 + 0.996693i \(0.525896\pi\)
\(314\) 5.05790 0.285434
\(315\) 0 0
\(316\) −6.49325 −0.365274
\(317\) −23.5740 −1.32405 −0.662025 0.749482i \(-0.730303\pi\)
−0.662025 + 0.749482i \(0.730303\pi\)
\(318\) −18.1458 −1.01757
\(319\) −0.935542 −0.0523803
\(320\) 0 0
\(321\) −31.2079 −1.74186
\(322\) 5.37150 0.299342
\(323\) 0 0
\(324\) −24.2862 −1.34923
\(325\) 0 0
\(326\) 8.67883 0.480676
\(327\) 25.4026 1.40477
\(328\) 19.9932 1.10394
\(329\) 5.30824 0.292653
\(330\) 0 0
\(331\) 25.0816 1.37861 0.689306 0.724471i \(-0.257916\pi\)
0.689306 + 0.724471i \(0.257916\pi\)
\(332\) 23.2009 1.27331
\(333\) −39.2074 −2.14855
\(334\) 1.47950 0.0809545
\(335\) 0 0
\(336\) −16.1155 −0.879171
\(337\) −16.4774 −0.897581 −0.448790 0.893637i \(-0.648145\pi\)
−0.448790 + 0.893637i \(0.648145\pi\)
\(338\) −5.24749 −0.285426
\(339\) −40.7641 −2.21400
\(340\) 0 0
\(341\) −0.0301391 −0.00163212
\(342\) 35.0235 1.89386
\(343\) −10.2062 −0.551082
\(344\) −9.12395 −0.491930
\(345\) 0 0
\(346\) −1.68173 −0.0904105
\(347\) −17.0278 −0.914100 −0.457050 0.889441i \(-0.651094\pi\)
−0.457050 + 0.889441i \(0.651094\pi\)
\(348\) 19.0044 1.01874
\(349\) −6.72216 −0.359829 −0.179915 0.983682i \(-0.557582\pi\)
−0.179915 + 0.983682i \(0.557582\pi\)
\(350\) 0 0
\(351\) −27.4391 −1.46459
\(352\) 1.34685 0.0717875
\(353\) −2.22223 −0.118277 −0.0591386 0.998250i \(-0.518835\pi\)
−0.0591386 + 0.998250i \(0.518835\pi\)
\(354\) 5.04743 0.268268
\(355\) 0 0
\(356\) −5.54929 −0.294112
\(357\) 0 0
\(358\) −1.45444 −0.0768696
\(359\) 16.7305 0.883000 0.441500 0.897261i \(-0.354447\pi\)
0.441500 + 0.897261i \(0.354447\pi\)
\(360\) 0 0
\(361\) 35.5614 1.87165
\(362\) 7.10977 0.373681
\(363\) −34.1529 −1.79256
\(364\) −14.3964 −0.754574
\(365\) 0 0
\(366\) −19.6127 −1.02517
\(367\) −17.8974 −0.934237 −0.467119 0.884195i \(-0.654708\pi\)
−0.467119 + 0.884195i \(0.654708\pi\)
\(368\) −2.38649 −0.124404
\(369\) −54.5664 −2.84061
\(370\) 0 0
\(371\) 33.5648 1.74260
\(372\) 0.612240 0.0317431
\(373\) −16.3386 −0.845983 −0.422991 0.906134i \(-0.639020\pi\)
−0.422991 + 0.906134i \(0.639020\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3.22320 0.166224
\(377\) 9.53755 0.491209
\(378\) −33.3322 −1.71442
\(379\) 14.5126 0.745464 0.372732 0.927939i \(-0.378421\pi\)
0.372732 + 0.927939i \(0.378421\pi\)
\(380\) 0 0
\(381\) −2.32717 −0.119224
\(382\) −18.6942 −0.956476
\(383\) 1.18611 0.0606074 0.0303037 0.999541i \(-0.490353\pi\)
0.0303037 + 0.999541i \(0.490353\pi\)
\(384\) −32.9446 −1.68120
\(385\) 0 0
\(386\) −4.79355 −0.243985
\(387\) 24.9015 1.26582
\(388\) −13.5474 −0.687765
\(389\) −23.1832 −1.17543 −0.587717 0.809066i \(-0.699973\pi\)
−0.587717 + 0.809066i \(0.699973\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −23.4688 −1.18535
\(393\) −17.7080 −0.893249
\(394\) −4.26687 −0.214962
\(395\) 0 0
\(396\) −2.34023 −0.117601
\(397\) 35.2709 1.77019 0.885097 0.465406i \(-0.154092\pi\)
0.885097 + 0.465406i \(0.154092\pi\)
\(398\) −7.98930 −0.400468
\(399\) −93.6452 −4.68812
\(400\) 0 0
\(401\) 33.6355 1.67968 0.839838 0.542837i \(-0.182650\pi\)
0.839838 + 0.542837i \(0.182650\pi\)
\(402\) −32.0719 −1.59960
\(403\) 0.307258 0.0153056
\(404\) 10.4478 0.519796
\(405\) 0 0
\(406\) 11.5859 0.575000
\(407\) −1.34512 −0.0666752
\(408\) 0 0
\(409\) 18.0019 0.890135 0.445068 0.895497i \(-0.353180\pi\)
0.445068 + 0.895497i \(0.353180\pi\)
\(410\) 0 0
\(411\) 61.4160 3.02943
\(412\) −1.57075 −0.0773854
\(413\) −9.33638 −0.459413
\(414\) −8.90177 −0.437498
\(415\) 0 0
\(416\) −13.7307 −0.673205
\(417\) 17.6185 0.862782
\(418\) 1.20158 0.0587712
\(419\) 6.34658 0.310051 0.155025 0.987910i \(-0.450454\pi\)
0.155025 + 0.987910i \(0.450454\pi\)
\(420\) 0 0
\(421\) −22.0829 −1.07625 −0.538127 0.842864i \(-0.680868\pi\)
−0.538127 + 0.842864i \(0.680868\pi\)
\(422\) 9.67082 0.470768
\(423\) −8.79692 −0.427721
\(424\) 20.3808 0.989781
\(425\) 0 0
\(426\) −24.1790 −1.17148
\(427\) 36.2782 1.75563
\(428\) 15.0464 0.727294
\(429\) −1.69769 −0.0819654
\(430\) 0 0
\(431\) −32.7753 −1.57873 −0.789365 0.613924i \(-0.789590\pi\)
−0.789365 + 0.613924i \(0.789590\pi\)
\(432\) 14.8090 0.712500
\(433\) −2.69414 −0.129472 −0.0647361 0.997902i \(-0.520621\pi\)
−0.0647361 + 0.997902i \(0.520621\pi\)
\(434\) 0.373248 0.0179165
\(435\) 0 0
\(436\) −12.2474 −0.586546
\(437\) −13.8676 −0.663378
\(438\) 1.03553 0.0494796
\(439\) −24.3493 −1.16213 −0.581063 0.813858i \(-0.697363\pi\)
−0.581063 + 0.813858i \(0.697363\pi\)
\(440\) 0 0
\(441\) 64.0522 3.05011
\(442\) 0 0
\(443\) 31.9645 1.51868 0.759341 0.650693i \(-0.225522\pi\)
0.759341 + 0.650693i \(0.225522\pi\)
\(444\) 27.3245 1.29676
\(445\) 0 0
\(446\) 2.51415 0.119048
\(447\) −59.2788 −2.80379
\(448\) −6.34907 −0.299965
\(449\) −35.8993 −1.69419 −0.847097 0.531438i \(-0.821652\pi\)
−0.847097 + 0.531438i \(0.821652\pi\)
\(450\) 0 0
\(451\) −1.87205 −0.0881515
\(452\) 19.6537 0.924433
\(453\) 21.6910 1.01913
\(454\) −16.4393 −0.771532
\(455\) 0 0
\(456\) −56.8621 −2.66281
\(457\) −42.0589 −1.96743 −0.983717 0.179724i \(-0.942480\pi\)
−0.983717 + 0.179724i \(0.942480\pi\)
\(458\) 17.7809 0.830848
\(459\) 0 0
\(460\) 0 0
\(461\) −24.5172 −1.14188 −0.570940 0.820992i \(-0.693421\pi\)
−0.570940 + 0.820992i \(0.693421\pi\)
\(462\) −2.06230 −0.0959471
\(463\) −12.9662 −0.602590 −0.301295 0.953531i \(-0.597419\pi\)
−0.301295 + 0.953531i \(0.597419\pi\)
\(464\) −5.14747 −0.238966
\(465\) 0 0
\(466\) −1.23992 −0.0574380
\(467\) 32.3125 1.49524 0.747622 0.664124i \(-0.231195\pi\)
0.747622 + 0.664124i \(0.231195\pi\)
\(468\) 23.8579 1.10283
\(469\) 59.3244 2.73935
\(470\) 0 0
\(471\) 22.4118 1.03268
\(472\) −5.66912 −0.260942
\(473\) 0.854317 0.0392815
\(474\) 9.48279 0.435559
\(475\) 0 0
\(476\) 0 0
\(477\) −55.6244 −2.54687
\(478\) 14.9917 0.685703
\(479\) −14.4494 −0.660209 −0.330104 0.943944i \(-0.607084\pi\)
−0.330104 + 0.943944i \(0.607084\pi\)
\(480\) 0 0
\(481\) 13.7131 0.625263
\(482\) −7.13747 −0.325103
\(483\) 23.8014 1.08300
\(484\) 16.4662 0.748465
\(485\) 0 0
\(486\) 10.8590 0.492574
\(487\) −35.3420 −1.60150 −0.800750 0.598998i \(-0.795566\pi\)
−0.800750 + 0.598998i \(0.795566\pi\)
\(488\) 22.0284 0.997181
\(489\) 38.4563 1.73905
\(490\) 0 0
\(491\) 38.2821 1.72765 0.863825 0.503793i \(-0.168063\pi\)
0.863825 + 0.503793i \(0.168063\pi\)
\(492\) 38.0285 1.71446
\(493\) 0 0
\(494\) −12.2497 −0.551141
\(495\) 0 0
\(496\) −0.165829 −0.00744595
\(497\) 44.7246 2.00617
\(498\) −33.8827 −1.51832
\(499\) 25.5250 1.14266 0.571329 0.820721i \(-0.306428\pi\)
0.571329 + 0.820721i \(0.306428\pi\)
\(500\) 0 0
\(501\) 6.55572 0.292888
\(502\) 12.3896 0.552973
\(503\) 37.8180 1.68622 0.843110 0.537742i \(-0.180722\pi\)
0.843110 + 0.537742i \(0.180722\pi\)
\(504\) 67.5158 3.00739
\(505\) 0 0
\(506\) −0.305400 −0.0135767
\(507\) −23.2518 −1.03265
\(508\) 1.12200 0.0497809
\(509\) 16.2321 0.719476 0.359738 0.933053i \(-0.382866\pi\)
0.359738 + 0.933053i \(0.382866\pi\)
\(510\) 0 0
\(511\) −1.91545 −0.0847346
\(512\) 13.6834 0.604726
\(513\) 86.0537 3.79937
\(514\) −7.11117 −0.313660
\(515\) 0 0
\(516\) −17.3544 −0.763986
\(517\) −0.301803 −0.0132733
\(518\) 16.6582 0.731921
\(519\) −7.45183 −0.327099
\(520\) 0 0
\(521\) −17.6650 −0.773916 −0.386958 0.922097i \(-0.626474\pi\)
−0.386958 + 0.922097i \(0.626474\pi\)
\(522\) −19.2004 −0.840381
\(523\) −9.51295 −0.415972 −0.207986 0.978132i \(-0.566691\pi\)
−0.207986 + 0.978132i \(0.566691\pi\)
\(524\) 8.53760 0.372967
\(525\) 0 0
\(526\) 11.2700 0.491396
\(527\) 0 0
\(528\) 0.916255 0.0398749
\(529\) −19.4753 −0.846753
\(530\) 0 0
\(531\) 15.4724 0.671447
\(532\) 45.1494 1.95748
\(533\) 19.0850 0.826662
\(534\) 8.10422 0.350704
\(535\) 0 0
\(536\) 36.0222 1.55592
\(537\) −6.44469 −0.278109
\(538\) −9.19770 −0.396541
\(539\) 2.19749 0.0946527
\(540\) 0 0
\(541\) 12.2201 0.525382 0.262691 0.964880i \(-0.415390\pi\)
0.262691 + 0.964880i \(0.415390\pi\)
\(542\) 12.2084 0.524396
\(543\) 31.5037 1.35195
\(544\) 0 0
\(545\) 0 0
\(546\) 21.0245 0.899767
\(547\) 14.8127 0.633345 0.316672 0.948535i \(-0.397434\pi\)
0.316672 + 0.948535i \(0.397434\pi\)
\(548\) −29.6107 −1.26491
\(549\) −60.1211 −2.56591
\(550\) 0 0
\(551\) −29.9114 −1.27427
\(552\) 14.4524 0.615134
\(553\) −17.5406 −0.745902
\(554\) 7.71180 0.327643
\(555\) 0 0
\(556\) −8.49447 −0.360246
\(557\) −18.6501 −0.790230 −0.395115 0.918632i \(-0.629295\pi\)
−0.395115 + 0.918632i \(0.629295\pi\)
\(558\) −0.618555 −0.0261855
\(559\) −8.70949 −0.368372
\(560\) 0 0
\(561\) 0 0
\(562\) −2.17817 −0.0918804
\(563\) 12.5501 0.528923 0.264461 0.964396i \(-0.414806\pi\)
0.264461 + 0.964396i \(0.414806\pi\)
\(564\) 6.13077 0.258152
\(565\) 0 0
\(566\) 0.330553 0.0138942
\(567\) −65.6057 −2.75518
\(568\) 27.1571 1.13949
\(569\) 13.8442 0.580377 0.290189 0.956969i \(-0.406282\pi\)
0.290189 + 0.956969i \(0.406282\pi\)
\(570\) 0 0
\(571\) −45.4021 −1.90002 −0.950009 0.312224i \(-0.898926\pi\)
−0.950009 + 0.312224i \(0.898926\pi\)
\(572\) 0.818514 0.0342238
\(573\) −82.8346 −3.46047
\(574\) 23.1838 0.967675
\(575\) 0 0
\(576\) 10.5218 0.438409
\(577\) 18.7645 0.781177 0.390588 0.920565i \(-0.372272\pi\)
0.390588 + 0.920565i \(0.372272\pi\)
\(578\) 0 0
\(579\) −21.2404 −0.882722
\(580\) 0 0
\(581\) 62.6738 2.60015
\(582\) 19.7847 0.820103
\(583\) −1.90835 −0.0790358
\(584\) −1.16308 −0.0481285
\(585\) 0 0
\(586\) 14.5719 0.601959
\(587\) 26.4900 1.09336 0.546679 0.837342i \(-0.315892\pi\)
0.546679 + 0.837342i \(0.315892\pi\)
\(588\) −44.6394 −1.84090
\(589\) −0.963615 −0.0397051
\(590\) 0 0
\(591\) −18.9067 −0.777717
\(592\) −7.40103 −0.304181
\(593\) 33.8360 1.38948 0.694740 0.719261i \(-0.255520\pi\)
0.694740 + 0.719261i \(0.255520\pi\)
\(594\) 1.89512 0.0777578
\(595\) 0 0
\(596\) 28.5803 1.17069
\(597\) −35.4009 −1.44886
\(598\) 3.11346 0.127319
\(599\) 10.9189 0.446133 0.223067 0.974803i \(-0.428393\pi\)
0.223067 + 0.974803i \(0.428393\pi\)
\(600\) 0 0
\(601\) −13.7204 −0.559667 −0.279833 0.960049i \(-0.590279\pi\)
−0.279833 + 0.960049i \(0.590279\pi\)
\(602\) −10.5800 −0.431209
\(603\) −98.3137 −4.00364
\(604\) −10.4579 −0.425527
\(605\) 0 0
\(606\) −15.2580 −0.619813
\(607\) 26.5777 1.07876 0.539379 0.842063i \(-0.318659\pi\)
0.539379 + 0.842063i \(0.318659\pi\)
\(608\) 43.0620 1.74639
\(609\) 51.3377 2.08031
\(610\) 0 0
\(611\) 3.07679 0.124473
\(612\) 0 0
\(613\) −11.9043 −0.480812 −0.240406 0.970672i \(-0.577281\pi\)
−0.240406 + 0.970672i \(0.577281\pi\)
\(614\) −15.4834 −0.624860
\(615\) 0 0
\(616\) 2.31632 0.0933272
\(617\) 7.85884 0.316385 0.158193 0.987408i \(-0.449433\pi\)
0.158193 + 0.987408i \(0.449433\pi\)
\(618\) 2.29394 0.0922757
\(619\) 32.7760 1.31738 0.658689 0.752416i \(-0.271111\pi\)
0.658689 + 0.752416i \(0.271111\pi\)
\(620\) 0 0
\(621\) −21.8719 −0.877688
\(622\) 17.2390 0.691222
\(623\) −14.9906 −0.600587
\(624\) −9.34092 −0.373936
\(625\) 0 0
\(626\) −2.02460 −0.0809192
\(627\) 5.32426 0.212630
\(628\) −10.8054 −0.431184
\(629\) 0 0
\(630\) 0 0
\(631\) −12.5294 −0.498789 −0.249395 0.968402i \(-0.580232\pi\)
−0.249395 + 0.968402i \(0.580232\pi\)
\(632\) −10.6508 −0.423666
\(633\) 42.8518 1.70321
\(634\) −16.5987 −0.659220
\(635\) 0 0
\(636\) 38.7659 1.53717
\(637\) −22.4027 −0.887628
\(638\) −0.658725 −0.0260792
\(639\) −74.1185 −2.93208
\(640\) 0 0
\(641\) 19.4356 0.767660 0.383830 0.923404i \(-0.374605\pi\)
0.383830 + 0.923404i \(0.374605\pi\)
\(642\) −21.9738 −0.867238
\(643\) 16.0075 0.631276 0.315638 0.948880i \(-0.397782\pi\)
0.315638 + 0.948880i \(0.397782\pi\)
\(644\) −11.4754 −0.452195
\(645\) 0 0
\(646\) 0 0
\(647\) 41.3567 1.62590 0.812949 0.582335i \(-0.197861\pi\)
0.812949 + 0.582335i \(0.197861\pi\)
\(648\) −39.8363 −1.56492
\(649\) 0.530826 0.0208367
\(650\) 0 0
\(651\) 1.65388 0.0648206
\(652\) −18.5410 −0.726123
\(653\) 5.21693 0.204154 0.102077 0.994776i \(-0.467451\pi\)
0.102077 + 0.994776i \(0.467451\pi\)
\(654\) 17.8862 0.699407
\(655\) 0 0
\(656\) −10.3003 −0.402158
\(657\) 3.17433 0.123842
\(658\) 3.73759 0.145706
\(659\) −10.7781 −0.419854 −0.209927 0.977717i \(-0.567323\pi\)
−0.209927 + 0.977717i \(0.567323\pi\)
\(660\) 0 0
\(661\) −10.3851 −0.403935 −0.201968 0.979392i \(-0.564734\pi\)
−0.201968 + 0.979392i \(0.564734\pi\)
\(662\) 17.6602 0.686385
\(663\) 0 0
\(664\) 38.0560 1.47686
\(665\) 0 0
\(666\) −27.6064 −1.06973
\(667\) 7.60245 0.294368
\(668\) −3.16073 −0.122292
\(669\) 11.1403 0.430709
\(670\) 0 0
\(671\) −2.06262 −0.0796267
\(672\) −73.9084 −2.85108
\(673\) 13.1346 0.506302 0.253151 0.967427i \(-0.418533\pi\)
0.253151 + 0.967427i \(0.418533\pi\)
\(674\) −11.6019 −0.446889
\(675\) 0 0
\(676\) 11.2105 0.431172
\(677\) 18.9820 0.729539 0.364769 0.931098i \(-0.381148\pi\)
0.364769 + 0.931098i \(0.381148\pi\)
\(678\) −28.7024 −1.10231
\(679\) −36.5964 −1.40444
\(680\) 0 0
\(681\) −72.8430 −2.79135
\(682\) −0.0212213 −0.000812604 0
\(683\) −14.9579 −0.572347 −0.286173 0.958178i \(-0.592383\pi\)
−0.286173 + 0.958178i \(0.592383\pi\)
\(684\) −74.8226 −2.86091
\(685\) 0 0
\(686\) −7.18628 −0.274373
\(687\) 78.7880 3.00595
\(688\) 4.70056 0.179207
\(689\) 19.4550 0.741177
\(690\) 0 0
\(691\) −11.3095 −0.430233 −0.215116 0.976588i \(-0.569013\pi\)
−0.215116 + 0.976588i \(0.569013\pi\)
\(692\) 3.59277 0.136577
\(693\) −6.32181 −0.240146
\(694\) −11.9895 −0.455113
\(695\) 0 0
\(696\) 31.1727 1.18160
\(697\) 0 0
\(698\) −4.73315 −0.179152
\(699\) −5.49412 −0.207807
\(700\) 0 0
\(701\) −13.0707 −0.493674 −0.246837 0.969057i \(-0.579391\pi\)
−0.246837 + 0.969057i \(0.579391\pi\)
\(702\) −19.3202 −0.729192
\(703\) −43.0066 −1.62202
\(704\) 0.360980 0.0136050
\(705\) 0 0
\(706\) −1.56469 −0.0588880
\(707\) 28.2232 1.06144
\(708\) −10.7831 −0.405253
\(709\) 48.6798 1.82821 0.914105 0.405479i \(-0.132895\pi\)
0.914105 + 0.405479i \(0.132895\pi\)
\(710\) 0 0
\(711\) 29.0686 1.09016
\(712\) −9.10242 −0.341128
\(713\) 0.244918 0.00917224
\(714\) 0 0
\(715\) 0 0
\(716\) 3.10720 0.116122
\(717\) 66.4287 2.48083
\(718\) 11.7801 0.439629
\(719\) 31.8171 1.18658 0.593289 0.804990i \(-0.297829\pi\)
0.593289 + 0.804990i \(0.297829\pi\)
\(720\) 0 0
\(721\) −4.24316 −0.158024
\(722\) 25.0392 0.931861
\(723\) −31.6264 −1.17620
\(724\) −15.1890 −0.564493
\(725\) 0 0
\(726\) −24.0474 −0.892482
\(727\) −6.69618 −0.248348 −0.124174 0.992260i \(-0.539628\pi\)
−0.124174 + 0.992260i \(0.539628\pi\)
\(728\) −23.6141 −0.875198
\(729\) −0.319170 −0.0118211
\(730\) 0 0
\(731\) 0 0
\(732\) 41.8997 1.54866
\(733\) 38.7110 1.42982 0.714912 0.699215i \(-0.246467\pi\)
0.714912 + 0.699215i \(0.246467\pi\)
\(734\) −12.6018 −0.465139
\(735\) 0 0
\(736\) −10.9449 −0.403433
\(737\) −3.37293 −0.124243
\(738\) −38.4207 −1.41429
\(739\) 19.1997 0.706271 0.353136 0.935572i \(-0.385115\pi\)
0.353136 + 0.935572i \(0.385115\pi\)
\(740\) 0 0
\(741\) −54.2791 −1.99399
\(742\) 23.6334 0.867608
\(743\) −2.12614 −0.0780004 −0.0390002 0.999239i \(-0.512417\pi\)
−0.0390002 + 0.999239i \(0.512417\pi\)
\(744\) 1.00425 0.0368175
\(745\) 0 0
\(746\) −11.5042 −0.421199
\(747\) −103.864 −3.80020
\(748\) 0 0
\(749\) 40.6456 1.48516
\(750\) 0 0
\(751\) −9.76463 −0.356316 −0.178158 0.984002i \(-0.557014\pi\)
−0.178158 + 0.984002i \(0.557014\pi\)
\(752\) −1.66056 −0.0605544
\(753\) 54.8987 2.00062
\(754\) 6.71549 0.244564
\(755\) 0 0
\(756\) 71.2093 2.58986
\(757\) 29.2324 1.06247 0.531236 0.847224i \(-0.321728\pi\)
0.531236 + 0.847224i \(0.321728\pi\)
\(758\) 10.2185 0.371153
\(759\) −1.35324 −0.0491196
\(760\) 0 0
\(761\) −11.3975 −0.413161 −0.206580 0.978430i \(-0.566234\pi\)
−0.206580 + 0.978430i \(0.566234\pi\)
\(762\) −1.63858 −0.0593595
\(763\) −33.0847 −1.19775
\(764\) 39.9373 1.44488
\(765\) 0 0
\(766\) 0.835153 0.0301753
\(767\) −5.41160 −0.195401
\(768\) −32.9464 −1.18885
\(769\) 14.6414 0.527984 0.263992 0.964525i \(-0.414961\pi\)
0.263992 + 0.964525i \(0.414961\pi\)
\(770\) 0 0
\(771\) −31.5099 −1.13480
\(772\) 10.2407 0.368571
\(773\) −16.8387 −0.605646 −0.302823 0.953047i \(-0.597929\pi\)
−0.302823 + 0.953047i \(0.597929\pi\)
\(774\) 17.5334 0.630226
\(775\) 0 0
\(776\) −22.2216 −0.797709
\(777\) 73.8133 2.64804
\(778\) −16.3235 −0.585227
\(779\) −59.8538 −2.14448
\(780\) 0 0
\(781\) −2.54284 −0.0909901
\(782\) 0 0
\(783\) −47.1760 −1.68593
\(784\) 12.0909 0.431817
\(785\) 0 0
\(786\) −12.4684 −0.444732
\(787\) 17.4487 0.621979 0.310990 0.950413i \(-0.399340\pi\)
0.310990 + 0.950413i \(0.399340\pi\)
\(788\) 9.11554 0.324728
\(789\) 49.9379 1.77784
\(790\) 0 0
\(791\) 53.0917 1.88772
\(792\) −3.83865 −0.136401
\(793\) 21.0278 0.746718
\(794\) 24.8346 0.881347
\(795\) 0 0
\(796\) 17.0680 0.604958
\(797\) −25.0208 −0.886282 −0.443141 0.896452i \(-0.646136\pi\)
−0.443141 + 0.896452i \(0.646136\pi\)
\(798\) −65.9366 −2.33413
\(799\) 0 0
\(800\) 0 0
\(801\) 24.8428 0.877776
\(802\) 23.6831 0.836279
\(803\) 0.108904 0.00384315
\(804\) 68.5170 2.41641
\(805\) 0 0
\(806\) 0.216344 0.00762039
\(807\) −40.7554 −1.43466
\(808\) 17.1373 0.602889
\(809\) 19.6531 0.690966 0.345483 0.938425i \(-0.387715\pi\)
0.345483 + 0.938425i \(0.387715\pi\)
\(810\) 0 0
\(811\) −30.7782 −1.08077 −0.540385 0.841418i \(-0.681721\pi\)
−0.540385 + 0.841418i \(0.681721\pi\)
\(812\) −24.7516 −0.868612
\(813\) 54.0960 1.89723
\(814\) −0.947114 −0.0331963
\(815\) 0 0
\(816\) 0 0
\(817\) 27.3144 0.955612
\(818\) 12.6753 0.443182
\(819\) 64.4488 2.25202
\(820\) 0 0
\(821\) −35.0315 −1.22261 −0.611303 0.791397i \(-0.709354\pi\)
−0.611303 + 0.791397i \(0.709354\pi\)
\(822\) 43.2437 1.50830
\(823\) −30.1072 −1.04947 −0.524736 0.851265i \(-0.675836\pi\)
−0.524736 + 0.851265i \(0.675836\pi\)
\(824\) −2.57648 −0.0897560
\(825\) 0 0
\(826\) −6.57384 −0.228733
\(827\) 20.7366 0.721082 0.360541 0.932743i \(-0.382592\pi\)
0.360541 + 0.932743i \(0.382592\pi\)
\(828\) 19.0173 0.660898
\(829\) 54.3221 1.88669 0.943343 0.331820i \(-0.107663\pi\)
0.943343 + 0.331820i \(0.107663\pi\)
\(830\) 0 0
\(831\) 34.1713 1.18539
\(832\) −3.68008 −0.127584
\(833\) 0 0
\(834\) 12.4054 0.429563
\(835\) 0 0
\(836\) −2.56700 −0.0887816
\(837\) −1.51980 −0.0525321
\(838\) 4.46870 0.154369
\(839\) −10.7461 −0.370997 −0.185498 0.982645i \(-0.559390\pi\)
−0.185498 + 0.982645i \(0.559390\pi\)
\(840\) 0 0
\(841\) −12.6021 −0.434555
\(842\) −15.5488 −0.535847
\(843\) −9.65155 −0.332417
\(844\) −20.6603 −0.711156
\(845\) 0 0
\(846\) −6.19401 −0.212954
\(847\) 44.4812 1.52839
\(848\) −10.5000 −0.360571
\(849\) 1.46469 0.0502682
\(850\) 0 0
\(851\) 10.9308 0.374703
\(852\) 51.6548 1.76966
\(853\) −43.7616 −1.49837 −0.749184 0.662362i \(-0.769554\pi\)
−0.749184 + 0.662362i \(0.769554\pi\)
\(854\) 25.5439 0.874094
\(855\) 0 0
\(856\) 24.6803 0.843557
\(857\) 0.857197 0.0292813 0.0146406 0.999893i \(-0.495340\pi\)
0.0146406 + 0.999893i \(0.495340\pi\)
\(858\) −1.19536 −0.0408090
\(859\) −38.5994 −1.31700 −0.658498 0.752583i \(-0.728808\pi\)
−0.658498 + 0.752583i \(0.728808\pi\)
\(860\) 0 0
\(861\) 102.729 3.50098
\(862\) −23.0774 −0.786021
\(863\) −18.0234 −0.613522 −0.306761 0.951787i \(-0.599245\pi\)
−0.306761 + 0.951787i \(0.599245\pi\)
\(864\) 67.9169 2.31058
\(865\) 0 0
\(866\) −1.89697 −0.0644618
\(867\) 0 0
\(868\) −0.797389 −0.0270652
\(869\) 0.997281 0.0338305
\(870\) 0 0
\(871\) 34.3859 1.16512
\(872\) −20.0893 −0.680309
\(873\) 60.6483 2.05263
\(874\) −9.76434 −0.330284
\(875\) 0 0
\(876\) −2.21226 −0.0747453
\(877\) −26.7943 −0.904780 −0.452390 0.891820i \(-0.649428\pi\)
−0.452390 + 0.891820i \(0.649428\pi\)
\(878\) −17.1446 −0.578601
\(879\) 64.5686 2.17785
\(880\) 0 0
\(881\) −21.6063 −0.727933 −0.363967 0.931412i \(-0.618578\pi\)
−0.363967 + 0.931412i \(0.618578\pi\)
\(882\) 45.0999 1.51859
\(883\) −20.8987 −0.703297 −0.351649 0.936132i \(-0.614379\pi\)
−0.351649 + 0.936132i \(0.614379\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 22.5066 0.756123
\(887\) −33.8887 −1.13787 −0.568936 0.822382i \(-0.692645\pi\)
−0.568936 + 0.822382i \(0.692645\pi\)
\(888\) 44.8200 1.50406
\(889\) 3.03093 0.101654
\(890\) 0 0
\(891\) 3.73005 0.124961
\(892\) −5.37111 −0.179838
\(893\) −9.64933 −0.322903
\(894\) −41.7388 −1.39596
\(895\) 0 0
\(896\) 42.9076 1.43344
\(897\) 13.7959 0.460631
\(898\) −25.2771 −0.843508
\(899\) 0.528269 0.0176187
\(900\) 0 0
\(901\) 0 0
\(902\) −1.31813 −0.0438890
\(903\) −46.8805 −1.56009
\(904\) 32.2377 1.07221
\(905\) 0 0
\(906\) 15.2728 0.507406
\(907\) −17.3527 −0.576187 −0.288093 0.957602i \(-0.593021\pi\)
−0.288093 + 0.957602i \(0.593021\pi\)
\(908\) 35.1200 1.16550
\(909\) −46.7720 −1.55133
\(910\) 0 0
\(911\) 44.2282 1.46535 0.732673 0.680581i \(-0.238273\pi\)
0.732673 + 0.680581i \(0.238273\pi\)
\(912\) 29.2947 0.970046
\(913\) −3.56336 −0.117930
\(914\) −29.6141 −0.979549
\(915\) 0 0
\(916\) −37.9863 −1.25510
\(917\) 23.0631 0.761611
\(918\) 0 0
\(919\) 4.31977 0.142496 0.0712480 0.997459i \(-0.477302\pi\)
0.0712480 + 0.997459i \(0.477302\pi\)
\(920\) 0 0
\(921\) −68.6077 −2.26070
\(922\) −17.2628 −0.568521
\(923\) 25.9235 0.853282
\(924\) 4.40581 0.144941
\(925\) 0 0
\(926\) −9.12963 −0.300018
\(927\) 7.03186 0.230957
\(928\) −23.6072 −0.774945
\(929\) 9.99294 0.327858 0.163929 0.986472i \(-0.447583\pi\)
0.163929 + 0.986472i \(0.447583\pi\)
\(930\) 0 0
\(931\) 70.2588 2.30264
\(932\) 2.64890 0.0867676
\(933\) 76.3869 2.50079
\(934\) 22.7516 0.744454
\(935\) 0 0
\(936\) 39.1338 1.27913
\(937\) −41.6190 −1.35964 −0.679818 0.733381i \(-0.737941\pi\)
−0.679818 + 0.733381i \(0.737941\pi\)
\(938\) 41.7709 1.36387
\(939\) −8.97108 −0.292760
\(940\) 0 0
\(941\) 22.4168 0.730767 0.365384 0.930857i \(-0.380938\pi\)
0.365384 + 0.930857i \(0.380938\pi\)
\(942\) 15.7804 0.514152
\(943\) 15.2128 0.495395
\(944\) 2.92067 0.0950597
\(945\) 0 0
\(946\) 0.601533 0.0195575
\(947\) −44.0389 −1.43107 −0.715535 0.698577i \(-0.753817\pi\)
−0.715535 + 0.698577i \(0.753817\pi\)
\(948\) −20.2586 −0.657968
\(949\) −1.11024 −0.0360400
\(950\) 0 0
\(951\) −73.5497 −2.38501
\(952\) 0 0
\(953\) 43.8375 1.42004 0.710019 0.704183i \(-0.248686\pi\)
0.710019 + 0.704183i \(0.248686\pi\)
\(954\) −39.1657 −1.26804
\(955\) 0 0
\(956\) −32.0275 −1.03584
\(957\) −2.91884 −0.0943527
\(958\) −10.1740 −0.328706
\(959\) −79.9891 −2.58298
\(960\) 0 0
\(961\) −30.9830 −0.999451
\(962\) 9.65553 0.311307
\(963\) −67.3588 −2.17061
\(964\) 15.2481 0.491110
\(965\) 0 0
\(966\) 16.7588 0.539205
\(967\) 9.41429 0.302743 0.151372 0.988477i \(-0.451631\pi\)
0.151372 + 0.988477i \(0.451631\pi\)
\(968\) 27.0093 0.868112
\(969\) 0 0
\(970\) 0 0
\(971\) −14.2960 −0.458780 −0.229390 0.973335i \(-0.573673\pi\)
−0.229390 + 0.973335i \(0.573673\pi\)
\(972\) −23.1986 −0.744097
\(973\) −22.9466 −0.735634
\(974\) −24.8847 −0.797357
\(975\) 0 0
\(976\) −11.3488 −0.363267
\(977\) 2.92222 0.0934900 0.0467450 0.998907i \(-0.485115\pi\)
0.0467450 + 0.998907i \(0.485115\pi\)
\(978\) 27.0775 0.865842
\(979\) 0.852301 0.0272397
\(980\) 0 0
\(981\) 54.8287 1.75054
\(982\) 26.9549 0.860164
\(983\) −1.35448 −0.0432013 −0.0216007 0.999767i \(-0.506876\pi\)
−0.0216007 + 0.999767i \(0.506876\pi\)
\(984\) 62.3776 1.98853
\(985\) 0 0
\(986\) 0 0
\(987\) 16.5614 0.527155
\(988\) 26.1697 0.832571
\(989\) −6.94239 −0.220755
\(990\) 0 0
\(991\) −49.6083 −1.57586 −0.787930 0.615765i \(-0.788847\pi\)
−0.787930 + 0.615765i \(0.788847\pi\)
\(992\) −0.760522 −0.0241466
\(993\) 78.2533 2.48329
\(994\) 31.4910 0.998835
\(995\) 0 0
\(996\) 72.3854 2.29362
\(997\) −12.3189 −0.390143 −0.195072 0.980789i \(-0.562494\pi\)
−0.195072 + 0.980789i \(0.562494\pi\)
\(998\) 17.9724 0.568908
\(999\) −67.8296 −2.14603
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bn.1.8 12
5.4 even 2 1445.2.a.s.1.5 yes 12
17.16 even 2 7225.2.a.bo.1.8 12
85.4 even 4 1445.2.d.i.866.15 24
85.64 even 4 1445.2.d.i.866.16 24
85.84 even 2 1445.2.a.r.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.r.1.5 12 85.84 even 2
1445.2.a.s.1.5 yes 12 5.4 even 2
1445.2.d.i.866.15 24 85.4 even 4
1445.2.d.i.866.16 24 85.64 even 4
7225.2.a.bn.1.8 12 1.1 even 1 trivial
7225.2.a.bo.1.8 12 17.16 even 2