Properties

Label 7225.2.a.bn.1.3
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-3,-3,21,0,-9,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 18 x^{10} + 55 x^{9} + 114 x^{8} - 354 x^{7} - 309 x^{6} + 936 x^{5} + 396 x^{4} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1445)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.27524\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.27524 q^{2} +1.70271 q^{3} +3.17670 q^{4} -3.87408 q^{6} +2.70724 q^{7} -2.67727 q^{8} -0.100765 q^{9} +2.17632 q^{11} +5.40901 q^{12} -5.37970 q^{13} -6.15962 q^{14} -0.261974 q^{16} +0.229265 q^{18} +8.53588 q^{19} +4.60966 q^{21} -4.95164 q^{22} -5.32570 q^{23} -4.55863 q^{24} +12.2401 q^{26} -5.27972 q^{27} +8.60011 q^{28} -1.31247 q^{29} -0.757667 q^{31} +5.95060 q^{32} +3.70565 q^{33} -0.320102 q^{36} -8.20380 q^{37} -19.4212 q^{38} -9.16010 q^{39} -0.0130696 q^{41} -10.4881 q^{42} +0.330596 q^{43} +6.91352 q^{44} +12.1172 q^{46} -11.3395 q^{47} -0.446067 q^{48} +0.329174 q^{49} -17.0897 q^{52} +8.04151 q^{53} +12.0126 q^{54} -7.24803 q^{56} +14.5342 q^{57} +2.98619 q^{58} -13.1546 q^{59} -7.20639 q^{61} +1.72387 q^{62} -0.272797 q^{63} -13.0151 q^{64} -8.43123 q^{66} -2.67143 q^{67} -9.06814 q^{69} +1.87106 q^{71} +0.269777 q^{72} +11.9780 q^{73} +18.6656 q^{74} +27.1160 q^{76} +5.89183 q^{77} +20.8414 q^{78} +17.0477 q^{79} -8.68755 q^{81} +0.0297365 q^{82} +3.35585 q^{83} +14.6435 q^{84} -0.752183 q^{86} -2.23477 q^{87} -5.82660 q^{88} -10.8909 q^{89} -14.5642 q^{91} -16.9182 q^{92} -1.29009 q^{93} +25.8001 q^{94} +10.1322 q^{96} -10.9119 q^{97} -0.748948 q^{98} -0.219298 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} - 3 q^{3} + 21 q^{4} - 9 q^{6} - 6 q^{7} - 12 q^{8} + 21 q^{9} - 6 q^{11} - 6 q^{12} - 9 q^{13} - 18 q^{14} + 39 q^{16} + 9 q^{18} + 27 q^{19} + 6 q^{21} - 15 q^{22} - 18 q^{23} - 36 q^{24}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.27524 −1.60884 −0.804418 0.594064i \(-0.797522\pi\)
−0.804418 + 0.594064i \(0.797522\pi\)
\(3\) 1.70271 0.983062 0.491531 0.870860i \(-0.336437\pi\)
0.491531 + 0.870860i \(0.336437\pi\)
\(4\) 3.17670 1.58835
\(5\) 0 0
\(6\) −3.87408 −1.58159
\(7\) 2.70724 1.02324 0.511621 0.859211i \(-0.329045\pi\)
0.511621 + 0.859211i \(0.329045\pi\)
\(8\) −2.67727 −0.946559
\(9\) −0.100765 −0.0335885
\(10\) 0 0
\(11\) 2.17632 0.656185 0.328093 0.944646i \(-0.393594\pi\)
0.328093 + 0.944646i \(0.393594\pi\)
\(12\) 5.40901 1.56145
\(13\) −5.37970 −1.49206 −0.746031 0.665912i \(-0.768043\pi\)
−0.746031 + 0.665912i \(0.768043\pi\)
\(14\) −6.15962 −1.64623
\(15\) 0 0
\(16\) −0.261974 −0.0654935
\(17\) 0 0
\(18\) 0.229265 0.0540384
\(19\) 8.53588 1.95827 0.979133 0.203220i \(-0.0651406\pi\)
0.979133 + 0.203220i \(0.0651406\pi\)
\(20\) 0 0
\(21\) 4.60966 1.00591
\(22\) −4.95164 −1.05569
\(23\) −5.32570 −1.11049 −0.555243 0.831688i \(-0.687375\pi\)
−0.555243 + 0.831688i \(0.687375\pi\)
\(24\) −4.55863 −0.930526
\(25\) 0 0
\(26\) 12.2401 2.40048
\(27\) −5.27972 −1.01608
\(28\) 8.60011 1.62527
\(29\) −1.31247 −0.243720 −0.121860 0.992547i \(-0.538886\pi\)
−0.121860 + 0.992547i \(0.538886\pi\)
\(30\) 0 0
\(31\) −0.757667 −0.136081 −0.0680405 0.997683i \(-0.521675\pi\)
−0.0680405 + 0.997683i \(0.521675\pi\)
\(32\) 5.95060 1.05193
\(33\) 3.70565 0.645071
\(34\) 0 0
\(35\) 0 0
\(36\) −0.320102 −0.0533503
\(37\) −8.20380 −1.34870 −0.674348 0.738414i \(-0.735575\pi\)
−0.674348 + 0.738414i \(0.735575\pi\)
\(38\) −19.4212 −3.15053
\(39\) −9.16010 −1.46679
\(40\) 0 0
\(41\) −0.0130696 −0.00204113 −0.00102057 0.999999i \(-0.500325\pi\)
−0.00102057 + 0.999999i \(0.500325\pi\)
\(42\) −10.4881 −1.61834
\(43\) 0.330596 0.0504154 0.0252077 0.999682i \(-0.491975\pi\)
0.0252077 + 0.999682i \(0.491975\pi\)
\(44\) 6.91352 1.04225
\(45\) 0 0
\(46\) 12.1172 1.78659
\(47\) −11.3395 −1.65404 −0.827019 0.562175i \(-0.809965\pi\)
−0.827019 + 0.562175i \(0.809965\pi\)
\(48\) −0.446067 −0.0643842
\(49\) 0.329174 0.0470248
\(50\) 0 0
\(51\) 0 0
\(52\) −17.0897 −2.36992
\(53\) 8.04151 1.10459 0.552293 0.833650i \(-0.313753\pi\)
0.552293 + 0.833650i \(0.313753\pi\)
\(54\) 12.0126 1.63471
\(55\) 0 0
\(56\) −7.24803 −0.968559
\(57\) 14.5342 1.92510
\(58\) 2.98619 0.392106
\(59\) −13.1546 −1.71259 −0.856293 0.516490i \(-0.827238\pi\)
−0.856293 + 0.516490i \(0.827238\pi\)
\(60\) 0 0
\(61\) −7.20639 −0.922684 −0.461342 0.887222i \(-0.652632\pi\)
−0.461342 + 0.887222i \(0.652632\pi\)
\(62\) 1.72387 0.218932
\(63\) −0.272797 −0.0343692
\(64\) −13.0151 −1.62688
\(65\) 0 0
\(66\) −8.43123 −1.03781
\(67\) −2.67143 −0.326367 −0.163184 0.986596i \(-0.552176\pi\)
−0.163184 + 0.986596i \(0.552176\pi\)
\(68\) 0 0
\(69\) −9.06814 −1.09168
\(70\) 0 0
\(71\) 1.87106 0.222054 0.111027 0.993817i \(-0.464586\pi\)
0.111027 + 0.993817i \(0.464586\pi\)
\(72\) 0.269777 0.0317935
\(73\) 11.9780 1.40192 0.700962 0.713199i \(-0.252754\pi\)
0.700962 + 0.713199i \(0.252754\pi\)
\(74\) 18.6656 2.16983
\(75\) 0 0
\(76\) 27.1160 3.11041
\(77\) 5.89183 0.671437
\(78\) 20.8414 2.35982
\(79\) 17.0477 1.91802 0.959009 0.283375i \(-0.0914541\pi\)
0.959009 + 0.283375i \(0.0914541\pi\)
\(80\) 0 0
\(81\) −8.68755 −0.965283
\(82\) 0.0297365 0.00328385
\(83\) 3.35585 0.368352 0.184176 0.982893i \(-0.441038\pi\)
0.184176 + 0.982893i \(0.441038\pi\)
\(84\) 14.6435 1.59774
\(85\) 0 0
\(86\) −0.752183 −0.0811100
\(87\) −2.23477 −0.239592
\(88\) −5.82660 −0.621118
\(89\) −10.8909 −1.15444 −0.577218 0.816590i \(-0.695862\pi\)
−0.577218 + 0.816590i \(0.695862\pi\)
\(90\) 0 0
\(91\) −14.5642 −1.52674
\(92\) −16.9182 −1.76384
\(93\) −1.29009 −0.133776
\(94\) 25.8001 2.66107
\(95\) 0 0
\(96\) 10.1322 1.03411
\(97\) −10.9119 −1.10793 −0.553965 0.832540i \(-0.686886\pi\)
−0.553965 + 0.832540i \(0.686886\pi\)
\(98\) −0.748948 −0.0756552
\(99\) −0.219298 −0.0220403
\(100\) 0 0
\(101\) −3.95599 −0.393636 −0.196818 0.980440i \(-0.563061\pi\)
−0.196818 + 0.980440i \(0.563061\pi\)
\(102\) 0 0
\(103\) −7.16779 −0.706263 −0.353132 0.935574i \(-0.614883\pi\)
−0.353132 + 0.935574i \(0.614883\pi\)
\(104\) 14.4029 1.41232
\(105\) 0 0
\(106\) −18.2963 −1.77710
\(107\) −3.70041 −0.357732 −0.178866 0.983873i \(-0.557243\pi\)
−0.178866 + 0.983873i \(0.557243\pi\)
\(108\) −16.7721 −1.61389
\(109\) 2.73869 0.262319 0.131160 0.991361i \(-0.458130\pi\)
0.131160 + 0.991361i \(0.458130\pi\)
\(110\) 0 0
\(111\) −13.9687 −1.32585
\(112\) −0.709227 −0.0670157
\(113\) −1.51487 −0.142507 −0.0712536 0.997458i \(-0.522700\pi\)
−0.0712536 + 0.997458i \(0.522700\pi\)
\(114\) −33.0687 −3.09716
\(115\) 0 0
\(116\) −4.16934 −0.387114
\(117\) 0.542088 0.0501161
\(118\) 29.9299 2.75527
\(119\) 0 0
\(120\) 0 0
\(121\) −6.26363 −0.569421
\(122\) 16.3963 1.48445
\(123\) −0.0222538 −0.00200656
\(124\) −2.40688 −0.216144
\(125\) 0 0
\(126\) 0.620677 0.0552943
\(127\) −4.15113 −0.368353 −0.184176 0.982893i \(-0.558962\pi\)
−0.184176 + 0.982893i \(0.558962\pi\)
\(128\) 17.7112 1.56546
\(129\) 0.562910 0.0495614
\(130\) 0 0
\(131\) −12.3436 −1.07847 −0.539234 0.842156i \(-0.681286\pi\)
−0.539234 + 0.842156i \(0.681286\pi\)
\(132\) 11.7717 1.02460
\(133\) 23.1087 2.00378
\(134\) 6.07814 0.525071
\(135\) 0 0
\(136\) 0 0
\(137\) −13.1700 −1.12519 −0.562594 0.826733i \(-0.690197\pi\)
−0.562594 + 0.826733i \(0.690197\pi\)
\(138\) 20.6322 1.75633
\(139\) 0.706325 0.0599097 0.0299548 0.999551i \(-0.490464\pi\)
0.0299548 + 0.999551i \(0.490464\pi\)
\(140\) 0 0
\(141\) −19.3079 −1.62602
\(142\) −4.25710 −0.357248
\(143\) −11.7080 −0.979069
\(144\) 0.0263979 0.00219983
\(145\) 0 0
\(146\) −27.2529 −2.25546
\(147\) 0.560489 0.0462283
\(148\) −26.0610 −2.14220
\(149\) 7.41327 0.607319 0.303659 0.952781i \(-0.401792\pi\)
0.303659 + 0.952781i \(0.401792\pi\)
\(150\) 0 0
\(151\) −2.19280 −0.178448 −0.0892238 0.996012i \(-0.528439\pi\)
−0.0892238 + 0.996012i \(0.528439\pi\)
\(152\) −22.8529 −1.85361
\(153\) 0 0
\(154\) −13.4053 −1.08023
\(155\) 0 0
\(156\) −29.0989 −2.32978
\(157\) −5.33731 −0.425963 −0.212982 0.977056i \(-0.568317\pi\)
−0.212982 + 0.977056i \(0.568317\pi\)
\(158\) −38.7876 −3.08578
\(159\) 13.6924 1.08588
\(160\) 0 0
\(161\) −14.4180 −1.13630
\(162\) 19.7662 1.55298
\(163\) 7.78483 0.609755 0.304878 0.952392i \(-0.401384\pi\)
0.304878 + 0.952392i \(0.401384\pi\)
\(164\) −0.0415183 −0.00324204
\(165\) 0 0
\(166\) −7.63534 −0.592617
\(167\) 4.42165 0.342157 0.171079 0.985257i \(-0.445275\pi\)
0.171079 + 0.985257i \(0.445275\pi\)
\(168\) −12.3413 −0.952154
\(169\) 15.9412 1.22625
\(170\) 0 0
\(171\) −0.860123 −0.0657752
\(172\) 1.05020 0.0800773
\(173\) 14.6188 1.11145 0.555724 0.831367i \(-0.312441\pi\)
0.555724 + 0.831367i \(0.312441\pi\)
\(174\) 5.08463 0.385465
\(175\) 0 0
\(176\) −0.570139 −0.0429759
\(177\) −22.3986 −1.68358
\(178\) 24.7794 1.85730
\(179\) −5.42912 −0.405791 −0.202896 0.979200i \(-0.565035\pi\)
−0.202896 + 0.979200i \(0.565035\pi\)
\(180\) 0 0
\(181\) −18.3483 −1.36382 −0.681909 0.731437i \(-0.738850\pi\)
−0.681909 + 0.731437i \(0.738850\pi\)
\(182\) 33.1369 2.45627
\(183\) −12.2704 −0.907056
\(184\) 14.2583 1.05114
\(185\) 0 0
\(186\) 2.93526 0.215224
\(187\) 0 0
\(188\) −36.0222 −2.62719
\(189\) −14.2935 −1.03970
\(190\) 0 0
\(191\) 4.91654 0.355748 0.177874 0.984053i \(-0.443078\pi\)
0.177874 + 0.984053i \(0.443078\pi\)
\(192\) −22.1609 −1.59933
\(193\) 17.5487 1.26318 0.631591 0.775302i \(-0.282402\pi\)
0.631591 + 0.775302i \(0.282402\pi\)
\(194\) 24.8270 1.78248
\(195\) 0 0
\(196\) 1.04569 0.0746919
\(197\) −21.7620 −1.55048 −0.775239 0.631668i \(-0.782371\pi\)
−0.775239 + 0.631668i \(0.782371\pi\)
\(198\) 0.498955 0.0354592
\(199\) 0.241280 0.0171039 0.00855196 0.999963i \(-0.497278\pi\)
0.00855196 + 0.999963i \(0.497278\pi\)
\(200\) 0 0
\(201\) −4.54869 −0.320840
\(202\) 9.00082 0.633295
\(203\) −3.55319 −0.249385
\(204\) 0 0
\(205\) 0 0
\(206\) 16.3084 1.13626
\(207\) 0.536647 0.0372995
\(208\) 1.40934 0.0977203
\(209\) 18.5768 1.28499
\(210\) 0 0
\(211\) 9.41485 0.648145 0.324072 0.946032i \(-0.394948\pi\)
0.324072 + 0.946032i \(0.394948\pi\)
\(212\) 25.5455 1.75447
\(213\) 3.18588 0.218293
\(214\) 8.41931 0.575532
\(215\) 0 0
\(216\) 14.1352 0.961781
\(217\) −2.05119 −0.139244
\(218\) −6.23118 −0.422029
\(219\) 20.3952 1.37818
\(220\) 0 0
\(221\) 0 0
\(222\) 31.7821 2.13308
\(223\) 14.8338 0.993345 0.496672 0.867938i \(-0.334555\pi\)
0.496672 + 0.867938i \(0.334555\pi\)
\(224\) 16.1097 1.07638
\(225\) 0 0
\(226\) 3.44669 0.229271
\(227\) −9.83158 −0.652545 −0.326272 0.945276i \(-0.605793\pi\)
−0.326272 + 0.945276i \(0.605793\pi\)
\(228\) 46.1707 3.05773
\(229\) −12.4315 −0.821500 −0.410750 0.911748i \(-0.634733\pi\)
−0.410750 + 0.911748i \(0.634733\pi\)
\(230\) 0 0
\(231\) 10.0321 0.660064
\(232\) 3.51385 0.230696
\(233\) −12.5812 −0.824224 −0.412112 0.911133i \(-0.635209\pi\)
−0.412112 + 0.911133i \(0.635209\pi\)
\(234\) −1.23338 −0.0806285
\(235\) 0 0
\(236\) −41.7883 −2.72019
\(237\) 29.0274 1.88553
\(238\) 0 0
\(239\) −15.7966 −1.02179 −0.510897 0.859642i \(-0.670687\pi\)
−0.510897 + 0.859642i \(0.670687\pi\)
\(240\) 0 0
\(241\) −8.45284 −0.544496 −0.272248 0.962227i \(-0.587767\pi\)
−0.272248 + 0.962227i \(0.587767\pi\)
\(242\) 14.2512 0.916104
\(243\) 1.04674 0.0671482
\(244\) −22.8926 −1.46555
\(245\) 0 0
\(246\) 0.0506328 0.00322823
\(247\) −45.9205 −2.92185
\(248\) 2.02848 0.128809
\(249\) 5.71404 0.362113
\(250\) 0 0
\(251\) 14.7900 0.933540 0.466770 0.884379i \(-0.345418\pi\)
0.466770 + 0.884379i \(0.345418\pi\)
\(252\) −0.866594 −0.0545903
\(253\) −11.5904 −0.728684
\(254\) 9.44480 0.592619
\(255\) 0 0
\(256\) −14.2669 −0.891684
\(257\) −13.8681 −0.865070 −0.432535 0.901617i \(-0.642381\pi\)
−0.432535 + 0.901617i \(0.642381\pi\)
\(258\) −1.28075 −0.0797362
\(259\) −22.2097 −1.38004
\(260\) 0 0
\(261\) 0.132252 0.00818620
\(262\) 28.0847 1.73508
\(263\) −0.382638 −0.0235945 −0.0117972 0.999930i \(-0.503755\pi\)
−0.0117972 + 0.999930i \(0.503755\pi\)
\(264\) −9.92104 −0.610598
\(265\) 0 0
\(266\) −52.5778 −3.22375
\(267\) −18.5441 −1.13488
\(268\) −8.48634 −0.518386
\(269\) −21.8946 −1.33494 −0.667468 0.744638i \(-0.732622\pi\)
−0.667468 + 0.744638i \(0.732622\pi\)
\(270\) 0 0
\(271\) 16.9450 1.02933 0.514667 0.857390i \(-0.327916\pi\)
0.514667 + 0.857390i \(0.327916\pi\)
\(272\) 0 0
\(273\) −24.7986 −1.50088
\(274\) 29.9648 1.81024
\(275\) 0 0
\(276\) −28.8068 −1.73396
\(277\) 24.4581 1.46954 0.734771 0.678315i \(-0.237290\pi\)
0.734771 + 0.678315i \(0.237290\pi\)
\(278\) −1.60706 −0.0963848
\(279\) 0.0763467 0.00457076
\(280\) 0 0
\(281\) −13.2014 −0.787529 −0.393765 0.919211i \(-0.628827\pi\)
−0.393765 + 0.919211i \(0.628827\pi\)
\(282\) 43.9301 2.61600
\(283\) −13.7732 −0.818730 −0.409365 0.912371i \(-0.634250\pi\)
−0.409365 + 0.912371i \(0.634250\pi\)
\(284\) 5.94379 0.352699
\(285\) 0 0
\(286\) 26.6384 1.57516
\(287\) −0.0353827 −0.00208857
\(288\) −0.599615 −0.0353326
\(289\) 0 0
\(290\) 0 0
\(291\) −18.5798 −1.08916
\(292\) 38.0507 2.22675
\(293\) −21.1370 −1.23483 −0.617417 0.786636i \(-0.711821\pi\)
−0.617417 + 0.786636i \(0.711821\pi\)
\(294\) −1.27524 −0.0743737
\(295\) 0 0
\(296\) 21.9638 1.27662
\(297\) −11.4904 −0.666738
\(298\) −16.8669 −0.977076
\(299\) 28.6507 1.65691
\(300\) 0 0
\(301\) 0.895003 0.0515871
\(302\) 4.98914 0.287093
\(303\) −6.73592 −0.386969
\(304\) −2.23618 −0.128254
\(305\) 0 0
\(306\) 0 0
\(307\) 23.2068 1.32448 0.662242 0.749290i \(-0.269605\pi\)
0.662242 + 0.749290i \(0.269605\pi\)
\(308\) 18.7166 1.06648
\(309\) −12.2047 −0.694301
\(310\) 0 0
\(311\) −19.0929 −1.08266 −0.541330 0.840810i \(-0.682079\pi\)
−0.541330 + 0.840810i \(0.682079\pi\)
\(312\) 24.5241 1.38840
\(313\) 31.9061 1.80344 0.901720 0.432320i \(-0.142305\pi\)
0.901720 + 0.432320i \(0.142305\pi\)
\(314\) 12.1436 0.685305
\(315\) 0 0
\(316\) 54.1555 3.04649
\(317\) 7.35179 0.412917 0.206459 0.978455i \(-0.433806\pi\)
0.206459 + 0.978455i \(0.433806\pi\)
\(318\) −31.1534 −1.74700
\(319\) −2.85637 −0.159926
\(320\) 0 0
\(321\) −6.30074 −0.351673
\(322\) 32.8043 1.82811
\(323\) 0 0
\(324\) −27.5977 −1.53321
\(325\) 0 0
\(326\) −17.7123 −0.980995
\(327\) 4.66321 0.257876
\(328\) 0.0349910 0.00193205
\(329\) −30.6988 −1.69248
\(330\) 0 0
\(331\) 16.3546 0.898930 0.449465 0.893298i \(-0.351615\pi\)
0.449465 + 0.893298i \(0.351615\pi\)
\(332\) 10.6605 0.585072
\(333\) 0.826660 0.0453007
\(334\) −10.0603 −0.550475
\(335\) 0 0
\(336\) −1.20761 −0.0658806
\(337\) −2.73232 −0.148839 −0.0744196 0.997227i \(-0.523710\pi\)
−0.0744196 + 0.997227i \(0.523710\pi\)
\(338\) −36.2700 −1.97283
\(339\) −2.57939 −0.140093
\(340\) 0 0
\(341\) −1.64893 −0.0892944
\(342\) 1.95698 0.105821
\(343\) −18.0596 −0.975125
\(344\) −0.885095 −0.0477211
\(345\) 0 0
\(346\) −33.2613 −1.78814
\(347\) 18.9609 1.01788 0.508938 0.860803i \(-0.330038\pi\)
0.508938 + 0.860803i \(0.330038\pi\)
\(348\) −7.09919 −0.380557
\(349\) −32.3382 −1.73102 −0.865511 0.500890i \(-0.833006\pi\)
−0.865511 + 0.500890i \(0.833006\pi\)
\(350\) 0 0
\(351\) 28.4033 1.51606
\(352\) 12.9504 0.690259
\(353\) 13.0916 0.696796 0.348398 0.937347i \(-0.386726\pi\)
0.348398 + 0.937347i \(0.386726\pi\)
\(354\) 50.9620 2.70860
\(355\) 0 0
\(356\) −34.5972 −1.83365
\(357\) 0 0
\(358\) 12.3525 0.652851
\(359\) 8.64264 0.456141 0.228071 0.973645i \(-0.426758\pi\)
0.228071 + 0.973645i \(0.426758\pi\)
\(360\) 0 0
\(361\) 53.8613 2.83481
\(362\) 41.7467 2.19416
\(363\) −10.6652 −0.559776
\(364\) −46.2660 −2.42500
\(365\) 0 0
\(366\) 27.9181 1.45930
\(367\) 6.61035 0.345057 0.172529 0.985005i \(-0.444806\pi\)
0.172529 + 0.985005i \(0.444806\pi\)
\(368\) 1.39519 0.0727295
\(369\) 0.00131697 6.85586e−5 0
\(370\) 0 0
\(371\) 21.7703 1.13026
\(372\) −4.09823 −0.212483
\(373\) 7.14349 0.369876 0.184938 0.982750i \(-0.440792\pi\)
0.184938 + 0.982750i \(0.440792\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 30.3589 1.56564
\(377\) 7.06073 0.363646
\(378\) 32.5211 1.67270
\(379\) 7.19225 0.369441 0.184720 0.982791i \(-0.440862\pi\)
0.184720 + 0.982791i \(0.440862\pi\)
\(380\) 0 0
\(381\) −7.06818 −0.362114
\(382\) −11.1863 −0.572340
\(383\) 12.2903 0.628006 0.314003 0.949422i \(-0.398330\pi\)
0.314003 + 0.949422i \(0.398330\pi\)
\(384\) 30.1570 1.53895
\(385\) 0 0
\(386\) −39.9274 −2.03225
\(387\) −0.0333126 −0.00169338
\(388\) −34.6637 −1.75978
\(389\) 10.6413 0.539536 0.269768 0.962925i \(-0.413053\pi\)
0.269768 + 0.962925i \(0.413053\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.881288 −0.0445117
\(393\) −21.0177 −1.06020
\(394\) 49.5137 2.49446
\(395\) 0 0
\(396\) −0.696644 −0.0350077
\(397\) −24.0554 −1.20731 −0.603654 0.797247i \(-0.706289\pi\)
−0.603654 + 0.797247i \(0.706289\pi\)
\(398\) −0.548970 −0.0275174
\(399\) 39.3476 1.96984
\(400\) 0 0
\(401\) −22.9193 −1.14453 −0.572267 0.820067i \(-0.693936\pi\)
−0.572267 + 0.820067i \(0.693936\pi\)
\(402\) 10.3493 0.516178
\(403\) 4.07603 0.203041
\(404\) −12.5670 −0.625232
\(405\) 0 0
\(406\) 8.08435 0.401220
\(407\) −17.8541 −0.884995
\(408\) 0 0
\(409\) −7.50913 −0.371303 −0.185651 0.982616i \(-0.559439\pi\)
−0.185651 + 0.982616i \(0.559439\pi\)
\(410\) 0 0
\(411\) −22.4247 −1.10613
\(412\) −22.7699 −1.12179
\(413\) −35.6128 −1.75239
\(414\) −1.22100 −0.0600088
\(415\) 0 0
\(416\) −32.0124 −1.56954
\(417\) 1.20267 0.0588949
\(418\) −42.2667 −2.06733
\(419\) −13.3993 −0.654598 −0.327299 0.944921i \(-0.606138\pi\)
−0.327299 + 0.944921i \(0.606138\pi\)
\(420\) 0 0
\(421\) −20.5078 −0.999491 −0.499745 0.866172i \(-0.666573\pi\)
−0.499745 + 0.866172i \(0.666573\pi\)
\(422\) −21.4210 −1.04276
\(423\) 1.14263 0.0555566
\(424\) −21.5293 −1.04556
\(425\) 0 0
\(426\) −7.24862 −0.351197
\(427\) −19.5095 −0.944130
\(428\) −11.7551 −0.568204
\(429\) −19.9353 −0.962486
\(430\) 0 0
\(431\) −8.98646 −0.432863 −0.216431 0.976298i \(-0.569442\pi\)
−0.216431 + 0.976298i \(0.569442\pi\)
\(432\) 1.38315 0.0665467
\(433\) −26.3738 −1.26744 −0.633721 0.773562i \(-0.718473\pi\)
−0.633721 + 0.773562i \(0.718473\pi\)
\(434\) 4.66694 0.224020
\(435\) 0 0
\(436\) 8.70001 0.416655
\(437\) −45.4596 −2.17463
\(438\) −46.4039 −2.21726
\(439\) 29.3558 1.40108 0.700538 0.713615i \(-0.252943\pi\)
0.700538 + 0.713615i \(0.252943\pi\)
\(440\) 0 0
\(441\) −0.0331693 −0.00157949
\(442\) 0 0
\(443\) 23.4483 1.11406 0.557030 0.830492i \(-0.311941\pi\)
0.557030 + 0.830492i \(0.311941\pi\)
\(444\) −44.3744 −2.10592
\(445\) 0 0
\(446\) −33.7504 −1.59813
\(447\) 12.6227 0.597032
\(448\) −35.2350 −1.66470
\(449\) 11.8222 0.557926 0.278963 0.960302i \(-0.410009\pi\)
0.278963 + 0.960302i \(0.410009\pi\)
\(450\) 0 0
\(451\) −0.0284437 −0.00133936
\(452\) −4.81230 −0.226351
\(453\) −3.73371 −0.175425
\(454\) 22.3692 1.04984
\(455\) 0 0
\(456\) −38.9119 −1.82222
\(457\) 3.31478 0.155059 0.0775293 0.996990i \(-0.475297\pi\)
0.0775293 + 0.996990i \(0.475297\pi\)
\(458\) 28.2847 1.32166
\(459\) 0 0
\(460\) 0 0
\(461\) 36.2559 1.68860 0.844302 0.535868i \(-0.180016\pi\)
0.844302 + 0.535868i \(0.180016\pi\)
\(462\) −22.8254 −1.06193
\(463\) −10.9581 −0.509268 −0.254634 0.967038i \(-0.581955\pi\)
−0.254634 + 0.967038i \(0.581955\pi\)
\(464\) 0.343834 0.0159621
\(465\) 0 0
\(466\) 28.6253 1.32604
\(467\) 34.3919 1.59147 0.795734 0.605647i \(-0.207086\pi\)
0.795734 + 0.605647i \(0.207086\pi\)
\(468\) 1.72205 0.0796019
\(469\) −7.23222 −0.333953
\(470\) 0 0
\(471\) −9.08791 −0.418749
\(472\) 35.2185 1.62106
\(473\) 0.719482 0.0330818
\(474\) −66.0442 −3.03351
\(475\) 0 0
\(476\) 0 0
\(477\) −0.810307 −0.0371014
\(478\) 35.9409 1.64390
\(479\) −27.5154 −1.25721 −0.628606 0.777724i \(-0.716374\pi\)
−0.628606 + 0.777724i \(0.716374\pi\)
\(480\) 0 0
\(481\) 44.1340 2.01234
\(482\) 19.2322 0.876004
\(483\) −24.5497 −1.11705
\(484\) −19.8977 −0.904440
\(485\) 0 0
\(486\) −2.38158 −0.108030
\(487\) 10.6229 0.481368 0.240684 0.970604i \(-0.422628\pi\)
0.240684 + 0.970604i \(0.422628\pi\)
\(488\) 19.2935 0.873375
\(489\) 13.2553 0.599427
\(490\) 0 0
\(491\) 36.2103 1.63415 0.817074 0.576533i \(-0.195595\pi\)
0.817074 + 0.576533i \(0.195595\pi\)
\(492\) −0.0706938 −0.00318712
\(493\) 0 0
\(494\) 104.480 4.70078
\(495\) 0 0
\(496\) 0.198489 0.00891242
\(497\) 5.06541 0.227215
\(498\) −13.0008 −0.582580
\(499\) 20.8740 0.934447 0.467224 0.884139i \(-0.345254\pi\)
0.467224 + 0.884139i \(0.345254\pi\)
\(500\) 0 0
\(501\) 7.52880 0.336362
\(502\) −33.6509 −1.50191
\(503\) 7.63988 0.340645 0.170323 0.985388i \(-0.445519\pi\)
0.170323 + 0.985388i \(0.445519\pi\)
\(504\) 0.730351 0.0325324
\(505\) 0 0
\(506\) 26.3710 1.17233
\(507\) 27.1433 1.20548
\(508\) −13.1869 −0.585074
\(509\) −20.9805 −0.929945 −0.464972 0.885325i \(-0.653936\pi\)
−0.464972 + 0.885325i \(0.653936\pi\)
\(510\) 0 0
\(511\) 32.4275 1.43451
\(512\) −2.96165 −0.130888
\(513\) −45.0671 −1.98976
\(514\) 31.5533 1.39175
\(515\) 0 0
\(516\) 1.78820 0.0787209
\(517\) −24.6784 −1.08536
\(518\) 50.5323 2.22026
\(519\) 24.8917 1.09262
\(520\) 0 0
\(521\) 6.11774 0.268023 0.134012 0.990980i \(-0.457214\pi\)
0.134012 + 0.990980i \(0.457214\pi\)
\(522\) −0.300905 −0.0131703
\(523\) 5.40916 0.236526 0.118263 0.992982i \(-0.462267\pi\)
0.118263 + 0.992982i \(0.462267\pi\)
\(524\) −39.2120 −1.71298
\(525\) 0 0
\(526\) 0.870591 0.0379596
\(527\) 0 0
\(528\) −0.970784 −0.0422480
\(529\) 5.36307 0.233177
\(530\) 0 0
\(531\) 1.32553 0.0575232
\(532\) 73.4095 3.18271
\(533\) 0.0703107 0.00304550
\(534\) 42.1923 1.82584
\(535\) 0 0
\(536\) 7.15215 0.308926
\(537\) −9.24423 −0.398918
\(538\) 49.8154 2.14769
\(539\) 0.716388 0.0308570
\(540\) 0 0
\(541\) 20.4944 0.881124 0.440562 0.897722i \(-0.354779\pi\)
0.440562 + 0.897722i \(0.354779\pi\)
\(542\) −38.5538 −1.65603
\(543\) −31.2419 −1.34072
\(544\) 0 0
\(545\) 0 0
\(546\) 56.4227 2.41467
\(547\) 10.1545 0.434175 0.217088 0.976152i \(-0.430344\pi\)
0.217088 + 0.976152i \(0.430344\pi\)
\(548\) −41.8371 −1.78719
\(549\) 0.726156 0.0309916
\(550\) 0 0
\(551\) −11.2031 −0.477270
\(552\) 24.2779 1.03334
\(553\) 46.1523 1.96260
\(554\) −55.6479 −2.36425
\(555\) 0 0
\(556\) 2.24378 0.0951575
\(557\) −30.1117 −1.27587 −0.637937 0.770088i \(-0.720212\pi\)
−0.637937 + 0.770088i \(0.720212\pi\)
\(558\) −0.173707 −0.00735360
\(559\) −1.77851 −0.0752228
\(560\) 0 0
\(561\) 0 0
\(562\) 30.0363 1.26700
\(563\) −12.8482 −0.541486 −0.270743 0.962652i \(-0.587269\pi\)
−0.270743 + 0.962652i \(0.587269\pi\)
\(564\) −61.3355 −2.58269
\(565\) 0 0
\(566\) 31.3372 1.31720
\(567\) −23.5193 −0.987719
\(568\) −5.00933 −0.210187
\(569\) 19.6602 0.824196 0.412098 0.911139i \(-0.364796\pi\)
0.412098 + 0.911139i \(0.364796\pi\)
\(570\) 0 0
\(571\) 20.2253 0.846403 0.423202 0.906036i \(-0.360906\pi\)
0.423202 + 0.906036i \(0.360906\pi\)
\(572\) −37.1927 −1.55510
\(573\) 8.37146 0.349723
\(574\) 0.0805040 0.00336017
\(575\) 0 0
\(576\) 1.31147 0.0546446
\(577\) −34.5597 −1.43874 −0.719369 0.694628i \(-0.755569\pi\)
−0.719369 + 0.694628i \(0.755569\pi\)
\(578\) 0 0
\(579\) 29.8804 1.24179
\(580\) 0 0
\(581\) 9.08509 0.376913
\(582\) 42.2734 1.75229
\(583\) 17.5009 0.724814
\(584\) −32.0685 −1.32700
\(585\) 0 0
\(586\) 48.0916 1.98665
\(587\) −23.7081 −0.978540 −0.489270 0.872132i \(-0.662737\pi\)
−0.489270 + 0.872132i \(0.662737\pi\)
\(588\) 1.78050 0.0734268
\(589\) −6.46736 −0.266483
\(590\) 0 0
\(591\) −37.0545 −1.52422
\(592\) 2.14918 0.0883308
\(593\) 11.5371 0.473770 0.236885 0.971538i \(-0.423873\pi\)
0.236885 + 0.971538i \(0.423873\pi\)
\(594\) 26.1433 1.07267
\(595\) 0 0
\(596\) 23.5497 0.964635
\(597\) 0.410831 0.0168142
\(598\) −65.1871 −2.66570
\(599\) −9.83844 −0.401988 −0.200994 0.979593i \(-0.564417\pi\)
−0.200994 + 0.979593i \(0.564417\pi\)
\(600\) 0 0
\(601\) −10.1246 −0.412991 −0.206496 0.978448i \(-0.566206\pi\)
−0.206496 + 0.978448i \(0.566206\pi\)
\(602\) −2.03634 −0.0829952
\(603\) 0.269188 0.0109622
\(604\) −6.96587 −0.283437
\(605\) 0 0
\(606\) 15.3258 0.622569
\(607\) −0.707519 −0.0287173 −0.0143587 0.999897i \(-0.504571\pi\)
−0.0143587 + 0.999897i \(0.504571\pi\)
\(608\) 50.7936 2.05995
\(609\) −6.05007 −0.245161
\(610\) 0 0
\(611\) 61.0032 2.46792
\(612\) 0 0
\(613\) 28.1775 1.13808 0.569039 0.822310i \(-0.307315\pi\)
0.569039 + 0.822310i \(0.307315\pi\)
\(614\) −52.8010 −2.13088
\(615\) 0 0
\(616\) −15.7740 −0.635554
\(617\) −39.8676 −1.60501 −0.802505 0.596645i \(-0.796500\pi\)
−0.802505 + 0.596645i \(0.796500\pi\)
\(618\) 27.7686 1.11702
\(619\) −37.4591 −1.50561 −0.752804 0.658244i \(-0.771299\pi\)
−0.752804 + 0.658244i \(0.771299\pi\)
\(620\) 0 0
\(621\) 28.1182 1.12834
\(622\) 43.4409 1.74182
\(623\) −29.4844 −1.18127
\(624\) 2.39971 0.0960651
\(625\) 0 0
\(626\) −72.5940 −2.90144
\(627\) 31.6310 1.26322
\(628\) −16.9550 −0.676579
\(629\) 0 0
\(630\) 0 0
\(631\) −10.5005 −0.418020 −0.209010 0.977913i \(-0.567024\pi\)
−0.209010 + 0.977913i \(0.567024\pi\)
\(632\) −45.6414 −1.81552
\(633\) 16.0308 0.637167
\(634\) −16.7271 −0.664316
\(635\) 0 0
\(636\) 43.4966 1.72475
\(637\) −1.77086 −0.0701639
\(638\) 6.49891 0.257294
\(639\) −0.188538 −0.00745845
\(640\) 0 0
\(641\) −44.9746 −1.77639 −0.888195 0.459466i \(-0.848041\pi\)
−0.888195 + 0.459466i \(0.848041\pi\)
\(642\) 14.3357 0.565784
\(643\) 3.17835 0.125342 0.0626710 0.998034i \(-0.480038\pi\)
0.0626710 + 0.998034i \(0.480038\pi\)
\(644\) −45.8016 −1.80484
\(645\) 0 0
\(646\) 0 0
\(647\) −3.28494 −0.129144 −0.0645721 0.997913i \(-0.520568\pi\)
−0.0645721 + 0.997913i \(0.520568\pi\)
\(648\) 23.2589 0.913697
\(649\) −28.6287 −1.12377
\(650\) 0 0
\(651\) −3.49259 −0.136885
\(652\) 24.7301 0.968505
\(653\) −33.9120 −1.32708 −0.663540 0.748140i \(-0.730947\pi\)
−0.663540 + 0.748140i \(0.730947\pi\)
\(654\) −10.6099 −0.414880
\(655\) 0 0
\(656\) 0.00342390 0.000133681 0
\(657\) −1.20697 −0.0470885
\(658\) 69.8471 2.72292
\(659\) 27.5756 1.07419 0.537097 0.843521i \(-0.319521\pi\)
0.537097 + 0.843521i \(0.319521\pi\)
\(660\) 0 0
\(661\) −19.4561 −0.756756 −0.378378 0.925651i \(-0.623518\pi\)
−0.378378 + 0.925651i \(0.623518\pi\)
\(662\) −37.2106 −1.44623
\(663\) 0 0
\(664\) −8.98451 −0.348667
\(665\) 0 0
\(666\) −1.88085 −0.0728813
\(667\) 6.98985 0.270648
\(668\) 14.0463 0.543466
\(669\) 25.2577 0.976520
\(670\) 0 0
\(671\) −15.6834 −0.605452
\(672\) 27.4302 1.05814
\(673\) −2.96580 −0.114323 −0.0571616 0.998365i \(-0.518205\pi\)
−0.0571616 + 0.998365i \(0.518205\pi\)
\(674\) 6.21668 0.239458
\(675\) 0 0
\(676\) 50.6404 1.94771
\(677\) 4.50634 0.173193 0.0865964 0.996243i \(-0.472401\pi\)
0.0865964 + 0.996243i \(0.472401\pi\)
\(678\) 5.86873 0.225387
\(679\) −29.5411 −1.13368
\(680\) 0 0
\(681\) −16.7404 −0.641492
\(682\) 3.75170 0.143660
\(683\) 48.5495 1.85769 0.928847 0.370464i \(-0.120801\pi\)
0.928847 + 0.370464i \(0.120801\pi\)
\(684\) −2.73235 −0.104474
\(685\) 0 0
\(686\) 41.0898 1.56881
\(687\) −21.1674 −0.807585
\(688\) −0.0866074 −0.00330188
\(689\) −43.2609 −1.64811
\(690\) 0 0
\(691\) 1.63196 0.0620827 0.0310413 0.999518i \(-0.490118\pi\)
0.0310413 + 0.999518i \(0.490118\pi\)
\(692\) 46.4396 1.76537
\(693\) −0.593693 −0.0225525
\(694\) −43.1406 −1.63759
\(695\) 0 0
\(696\) 5.98309 0.226788
\(697\) 0 0
\(698\) 73.5769 2.78493
\(699\) −21.4222 −0.810264
\(700\) 0 0
\(701\) −40.4449 −1.52758 −0.763792 0.645463i \(-0.776664\pi\)
−0.763792 + 0.645463i \(0.776664\pi\)
\(702\) −64.6242 −2.43908
\(703\) −70.0267 −2.64111
\(704\) −28.3250 −1.06754
\(705\) 0 0
\(706\) −29.7865 −1.12103
\(707\) −10.7098 −0.402785
\(708\) −71.1535 −2.67411
\(709\) 47.3049 1.77657 0.888286 0.459291i \(-0.151897\pi\)
0.888286 + 0.459291i \(0.151897\pi\)
\(710\) 0 0
\(711\) −1.71782 −0.0644234
\(712\) 29.1580 1.09274
\(713\) 4.03511 0.151116
\(714\) 0 0
\(715\) 0 0
\(716\) −17.2467 −0.644539
\(717\) −26.8970 −1.00449
\(718\) −19.6640 −0.733856
\(719\) −8.17117 −0.304733 −0.152367 0.988324i \(-0.548689\pi\)
−0.152367 + 0.988324i \(0.548689\pi\)
\(720\) 0 0
\(721\) −19.4050 −0.722679
\(722\) −122.547 −4.56074
\(723\) −14.3928 −0.535273
\(724\) −58.2871 −2.16622
\(725\) 0 0
\(726\) 24.2658 0.900587
\(727\) 18.8237 0.698133 0.349067 0.937098i \(-0.386499\pi\)
0.349067 + 0.937098i \(0.386499\pi\)
\(728\) 38.9923 1.44515
\(729\) 27.8449 1.03129
\(730\) 0 0
\(731\) 0 0
\(732\) −38.9795 −1.44072
\(733\) −25.9444 −0.958278 −0.479139 0.877739i \(-0.659051\pi\)
−0.479139 + 0.877739i \(0.659051\pi\)
\(734\) −15.0401 −0.555140
\(735\) 0 0
\(736\) −31.6911 −1.16815
\(737\) −5.81389 −0.214158
\(738\) −0.00299641 −0.000110299 0
\(739\) 18.9248 0.696162 0.348081 0.937465i \(-0.386833\pi\)
0.348081 + 0.937465i \(0.386833\pi\)
\(740\) 0 0
\(741\) −78.1895 −2.87236
\(742\) −49.5327 −1.81840
\(743\) −0.0747338 −0.00274172 −0.00137086 0.999999i \(-0.500436\pi\)
−0.00137086 + 0.999999i \(0.500436\pi\)
\(744\) 3.45392 0.126627
\(745\) 0 0
\(746\) −16.2531 −0.595069
\(747\) −0.338153 −0.0123724
\(748\) 0 0
\(749\) −10.0179 −0.366047
\(750\) 0 0
\(751\) 31.3032 1.14227 0.571135 0.820856i \(-0.306503\pi\)
0.571135 + 0.820856i \(0.306503\pi\)
\(752\) 2.97066 0.108329
\(753\) 25.1832 0.917728
\(754\) −16.0648 −0.585046
\(755\) 0 0
\(756\) −45.4061 −1.65140
\(757\) 10.9290 0.397223 0.198612 0.980078i \(-0.436357\pi\)
0.198612 + 0.980078i \(0.436357\pi\)
\(758\) −16.3641 −0.594369
\(759\) −19.7352 −0.716342
\(760\) 0 0
\(761\) −34.7125 −1.25833 −0.629164 0.777272i \(-0.716603\pi\)
−0.629164 + 0.777272i \(0.716603\pi\)
\(762\) 16.0818 0.582582
\(763\) 7.41431 0.268416
\(764\) 15.6184 0.565053
\(765\) 0 0
\(766\) −27.9634 −1.01036
\(767\) 70.7680 2.55528
\(768\) −24.2925 −0.876581
\(769\) 28.5727 1.03036 0.515178 0.857083i \(-0.327726\pi\)
0.515178 + 0.857083i \(0.327726\pi\)
\(770\) 0 0
\(771\) −23.6135 −0.850418
\(772\) 55.7469 2.00638
\(773\) −31.3773 −1.12856 −0.564281 0.825583i \(-0.690847\pi\)
−0.564281 + 0.825583i \(0.690847\pi\)
\(774\) 0.0757941 0.00272436
\(775\) 0 0
\(776\) 29.2140 1.04872
\(777\) −37.8167 −1.35667
\(778\) −24.2115 −0.868025
\(779\) −0.111561 −0.00399708
\(780\) 0 0
\(781\) 4.07202 0.145708
\(782\) 0 0
\(783\) 6.92950 0.247640
\(784\) −0.0862349 −0.00307982
\(785\) 0 0
\(786\) 47.8201 1.70569
\(787\) −19.5079 −0.695380 −0.347690 0.937610i \(-0.613034\pi\)
−0.347690 + 0.937610i \(0.613034\pi\)
\(788\) −69.1314 −2.46270
\(789\) −0.651523 −0.0231948
\(790\) 0 0
\(791\) −4.10113 −0.145819
\(792\) 0.587121 0.0208624
\(793\) 38.7683 1.37670
\(794\) 54.7318 1.94236
\(795\) 0 0
\(796\) 0.766476 0.0271670
\(797\) 16.1734 0.572892 0.286446 0.958096i \(-0.407526\pi\)
0.286446 + 0.958096i \(0.407526\pi\)
\(798\) −89.5250 −3.16915
\(799\) 0 0
\(800\) 0 0
\(801\) 1.09743 0.0387757
\(802\) 52.1468 1.84137
\(803\) 26.0681 0.919922
\(804\) −14.4498 −0.509606
\(805\) 0 0
\(806\) −9.27392 −0.326660
\(807\) −37.2802 −1.31233
\(808\) 10.5913 0.372600
\(809\) −37.5852 −1.32143 −0.660713 0.750639i \(-0.729746\pi\)
−0.660713 + 0.750639i \(0.729746\pi\)
\(810\) 0 0
\(811\) −34.8967 −1.22539 −0.612695 0.790320i \(-0.709915\pi\)
−0.612695 + 0.790320i \(0.709915\pi\)
\(812\) −11.2874 −0.396111
\(813\) 28.8524 1.01190
\(814\) 40.6223 1.42381
\(815\) 0 0
\(816\) 0 0
\(817\) 2.82193 0.0987267
\(818\) 17.0850 0.597365
\(819\) 1.46757 0.0512809
\(820\) 0 0
\(821\) −30.8990 −1.07838 −0.539191 0.842184i \(-0.681270\pi\)
−0.539191 + 0.842184i \(0.681270\pi\)
\(822\) 51.0215 1.77958
\(823\) 42.4684 1.48035 0.740177 0.672412i \(-0.234742\pi\)
0.740177 + 0.672412i \(0.234742\pi\)
\(824\) 19.1901 0.668520
\(825\) 0 0
\(826\) 81.0275 2.81931
\(827\) 20.4596 0.711449 0.355724 0.934591i \(-0.384234\pi\)
0.355724 + 0.934591i \(0.384234\pi\)
\(828\) 1.70477 0.0592447
\(829\) −38.1368 −1.32455 −0.662273 0.749263i \(-0.730408\pi\)
−0.662273 + 0.749263i \(0.730408\pi\)
\(830\) 0 0
\(831\) 41.6451 1.44465
\(832\) 70.0172 2.42741
\(833\) 0 0
\(834\) −2.73636 −0.0947522
\(835\) 0 0
\(836\) 59.0130 2.04101
\(837\) 4.00027 0.138270
\(838\) 30.4866 1.05314
\(839\) −37.7486 −1.30323 −0.651613 0.758552i \(-0.725907\pi\)
−0.651613 + 0.758552i \(0.725907\pi\)
\(840\) 0 0
\(841\) −27.2774 −0.940600
\(842\) 46.6602 1.60802
\(843\) −22.4782 −0.774190
\(844\) 29.9082 1.02948
\(845\) 0 0
\(846\) −2.59976 −0.0893814
\(847\) −16.9572 −0.582655
\(848\) −2.10667 −0.0723432
\(849\) −23.4518 −0.804863
\(850\) 0 0
\(851\) 43.6910 1.49771
\(852\) 10.1206 0.346725
\(853\) −19.5859 −0.670608 −0.335304 0.942110i \(-0.608839\pi\)
−0.335304 + 0.942110i \(0.608839\pi\)
\(854\) 44.3887 1.51895
\(855\) 0 0
\(856\) 9.90701 0.338615
\(857\) −14.2754 −0.487639 −0.243820 0.969821i \(-0.578401\pi\)
−0.243820 + 0.969821i \(0.578401\pi\)
\(858\) 45.3575 1.54848
\(859\) 50.2428 1.71426 0.857130 0.515099i \(-0.172245\pi\)
0.857130 + 0.515099i \(0.172245\pi\)
\(860\) 0 0
\(861\) −0.0602466 −0.00205320
\(862\) 20.4463 0.696405
\(863\) −13.1930 −0.449095 −0.224548 0.974463i \(-0.572090\pi\)
−0.224548 + 0.974463i \(0.572090\pi\)
\(864\) −31.4175 −1.06884
\(865\) 0 0
\(866\) 60.0065 2.03910
\(867\) 0 0
\(868\) −6.51602 −0.221168
\(869\) 37.1013 1.25858
\(870\) 0 0
\(871\) 14.3715 0.486960
\(872\) −7.33223 −0.248301
\(873\) 1.09954 0.0372137
\(874\) 103.431 3.49861
\(875\) 0 0
\(876\) 64.7894 2.18903
\(877\) 6.22918 0.210345 0.105172 0.994454i \(-0.466461\pi\)
0.105172 + 0.994454i \(0.466461\pi\)
\(878\) −66.7914 −2.25410
\(879\) −35.9902 −1.21392
\(880\) 0 0
\(881\) 30.3408 1.02221 0.511104 0.859519i \(-0.329237\pi\)
0.511104 + 0.859519i \(0.329237\pi\)
\(882\) 0.0754681 0.00254114
\(883\) −27.0762 −0.911185 −0.455593 0.890188i \(-0.650573\pi\)
−0.455593 + 0.890188i \(0.650573\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −53.3504 −1.79234
\(887\) −28.1506 −0.945205 −0.472603 0.881276i \(-0.656685\pi\)
−0.472603 + 0.881276i \(0.656685\pi\)
\(888\) 37.3981 1.25500
\(889\) −11.2381 −0.376914
\(890\) 0 0
\(891\) −18.9069 −0.633405
\(892\) 47.1225 1.57778
\(893\) −96.7927 −3.23905
\(894\) −28.7196 −0.960526
\(895\) 0 0
\(896\) 47.9484 1.60185
\(897\) 48.7839 1.62885
\(898\) −26.8984 −0.897611
\(899\) 0.994419 0.0331657
\(900\) 0 0
\(901\) 0 0
\(902\) 0.0647162 0.00215481
\(903\) 1.52393 0.0507134
\(904\) 4.05573 0.134891
\(905\) 0 0
\(906\) 8.49507 0.282230
\(907\) −37.7225 −1.25256 −0.626278 0.779600i \(-0.715423\pi\)
−0.626278 + 0.779600i \(0.715423\pi\)
\(908\) −31.2320 −1.03647
\(909\) 0.398628 0.0132216
\(910\) 0 0
\(911\) −17.9517 −0.594765 −0.297383 0.954758i \(-0.596114\pi\)
−0.297383 + 0.954758i \(0.596114\pi\)
\(912\) −3.80757 −0.126081
\(913\) 7.30340 0.241707
\(914\) −7.54190 −0.249464
\(915\) 0 0
\(916\) −39.4913 −1.30483
\(917\) −33.4172 −1.10353
\(918\) 0 0
\(919\) −25.0436 −0.826112 −0.413056 0.910706i \(-0.635539\pi\)
−0.413056 + 0.910706i \(0.635539\pi\)
\(920\) 0 0
\(921\) 39.5146 1.30205
\(922\) −82.4906 −2.71668
\(923\) −10.0657 −0.331318
\(924\) 31.8690 1.04841
\(925\) 0 0
\(926\) 24.9324 0.819328
\(927\) 0.722266 0.0237223
\(928\) −7.81001 −0.256376
\(929\) −21.1573 −0.694148 −0.347074 0.937838i \(-0.612825\pi\)
−0.347074 + 0.937838i \(0.612825\pi\)
\(930\) 0 0
\(931\) 2.80979 0.0920871
\(932\) −39.9668 −1.30916
\(933\) −32.5098 −1.06432
\(934\) −78.2497 −2.56041
\(935\) 0 0
\(936\) −1.45132 −0.0474378
\(937\) 6.56252 0.214388 0.107194 0.994238i \(-0.465813\pi\)
0.107194 + 0.994238i \(0.465813\pi\)
\(938\) 16.4550 0.537275
\(939\) 54.3270 1.77289
\(940\) 0 0
\(941\) −18.5109 −0.603439 −0.301719 0.953397i \(-0.597561\pi\)
−0.301719 + 0.953397i \(0.597561\pi\)
\(942\) 20.6771 0.673698
\(943\) 0.0696049 0.00226665
\(944\) 3.44617 0.112163
\(945\) 0 0
\(946\) −1.63699 −0.0532232
\(947\) 30.7922 1.00061 0.500307 0.865848i \(-0.333221\pi\)
0.500307 + 0.865848i \(0.333221\pi\)
\(948\) 92.2113 2.99488
\(949\) −64.4383 −2.09176
\(950\) 0 0
\(951\) 12.5180 0.405924
\(952\) 0 0
\(953\) 12.7261 0.412240 0.206120 0.978527i \(-0.433916\pi\)
0.206120 + 0.978527i \(0.433916\pi\)
\(954\) 1.84364 0.0596900
\(955\) 0 0
\(956\) −50.1809 −1.62297
\(957\) −4.86358 −0.157217
\(958\) 62.6041 2.02265
\(959\) −35.6544 −1.15134
\(960\) 0 0
\(961\) −30.4259 −0.981482
\(962\) −100.415 −3.23752
\(963\) 0.372874 0.0120157
\(964\) −26.8522 −0.864850
\(965\) 0 0
\(966\) 55.8563 1.79715
\(967\) −6.17919 −0.198709 −0.0993547 0.995052i \(-0.531678\pi\)
−0.0993547 + 0.995052i \(0.531678\pi\)
\(968\) 16.7694 0.538990
\(969\) 0 0
\(970\) 0 0
\(971\) 8.79368 0.282202 0.141101 0.989995i \(-0.454936\pi\)
0.141101 + 0.989995i \(0.454936\pi\)
\(972\) 3.32517 0.106655
\(973\) 1.91219 0.0613021
\(974\) −24.1695 −0.774442
\(975\) 0 0
\(976\) 1.88789 0.0604298
\(977\) 14.5316 0.464906 0.232453 0.972608i \(-0.425325\pi\)
0.232453 + 0.972608i \(0.425325\pi\)
\(978\) −30.1590 −0.964380
\(979\) −23.7021 −0.757524
\(980\) 0 0
\(981\) −0.275966 −0.00881091
\(982\) −82.3870 −2.62907
\(983\) −22.7184 −0.724603 −0.362302 0.932061i \(-0.618009\pi\)
−0.362302 + 0.932061i \(0.618009\pi\)
\(984\) 0.0595796 0.00189933
\(985\) 0 0
\(986\) 0 0
\(987\) −52.2713 −1.66381
\(988\) −145.876 −4.64093
\(989\) −1.76065 −0.0559855
\(990\) 0 0
\(991\) 3.88859 0.123525 0.0617626 0.998091i \(-0.480328\pi\)
0.0617626 + 0.998091i \(0.480328\pi\)
\(992\) −4.50857 −0.143147
\(993\) 27.8472 0.883705
\(994\) −11.5250 −0.365551
\(995\) 0 0
\(996\) 18.1518 0.575162
\(997\) 31.1914 0.987842 0.493921 0.869507i \(-0.335563\pi\)
0.493921 + 0.869507i \(0.335563\pi\)
\(998\) −47.4932 −1.50337
\(999\) 43.3137 1.37039
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bn.1.3 12
5.4 even 2 1445.2.a.s.1.10 yes 12
17.16 even 2 7225.2.a.bo.1.3 12
85.4 even 4 1445.2.d.i.866.6 24
85.64 even 4 1445.2.d.i.866.5 24
85.84 even 2 1445.2.a.r.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.r.1.10 12 85.84 even 2
1445.2.a.s.1.10 yes 12 5.4 even 2
1445.2.d.i.866.5 24 85.64 even 4
1445.2.d.i.866.6 24 85.4 even 4
7225.2.a.bn.1.3 12 1.1 even 1 trivial
7225.2.a.bo.1.3 12 17.16 even 2