Properties

Label 7225.2.a.bi.1.6
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,3,3,0,9,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.1397493.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3x^{4} + 10x^{3} + 3x^{2} - 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1445)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.05432\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.40162 q^{2} +3.14741 q^{3} +3.76778 q^{4} +7.55888 q^{6} -2.45595 q^{7} +4.24555 q^{8} +6.90618 q^{9} +2.67294 q^{11} +11.8588 q^{12} +2.57085 q^{13} -5.89825 q^{14} +2.66063 q^{16} +16.5860 q^{18} -6.25456 q^{19} -7.72986 q^{21} +6.41940 q^{22} +3.11473 q^{23} +13.3625 q^{24} +6.17420 q^{26} +12.2943 q^{27} -9.25348 q^{28} -0.710678 q^{29} +3.99271 q^{31} -2.10127 q^{32} +8.41285 q^{33} +26.0210 q^{36} +3.63287 q^{37} -15.0211 q^{38} +8.09151 q^{39} +8.29741 q^{41} -18.5642 q^{42} +12.7653 q^{43} +10.0711 q^{44} +7.48040 q^{46} -2.78467 q^{47} +8.37409 q^{48} -0.968329 q^{49} +9.68640 q^{52} -0.165984 q^{53} +29.5263 q^{54} -10.4268 q^{56} -19.6857 q^{57} -1.70678 q^{58} -12.2972 q^{59} -0.680871 q^{61} +9.58898 q^{62} -16.9612 q^{63} -10.3677 q^{64} +20.2045 q^{66} +1.50354 q^{67} +9.80333 q^{69} -2.51376 q^{71} +29.3205 q^{72} -8.24985 q^{73} +8.72478 q^{74} -23.5658 q^{76} -6.56461 q^{77} +19.4327 q^{78} +4.47987 q^{79} +17.9768 q^{81} +19.9272 q^{82} -12.1257 q^{83} -29.1245 q^{84} +30.6575 q^{86} -2.23680 q^{87} +11.3481 q^{88} +1.16707 q^{89} -6.31386 q^{91} +11.7356 q^{92} +12.5667 q^{93} -6.68772 q^{94} -6.61356 q^{96} -3.12613 q^{97} -2.32556 q^{98} +18.4598 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 9 q^{6} + 6 q^{7} + 6 q^{8} + 3 q^{9} + 6 q^{11} + 6 q^{12} + 9 q^{13} - 18 q^{14} - 3 q^{16} + 15 q^{18} - 21 q^{19} - 12 q^{21} - 3 q^{22} + 18 q^{23} - 6 q^{26} + 12 q^{27}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.40162 1.69820 0.849101 0.528230i \(-0.177144\pi\)
0.849101 + 0.528230i \(0.177144\pi\)
\(3\) 3.14741 1.81716 0.908579 0.417714i \(-0.137169\pi\)
0.908579 + 0.417714i \(0.137169\pi\)
\(4\) 3.76778 1.88389
\(5\) 0 0
\(6\) 7.55888 3.08590
\(7\) −2.45595 −0.928260 −0.464130 0.885767i \(-0.653633\pi\)
−0.464130 + 0.885767i \(0.653633\pi\)
\(8\) 4.24555 1.50103
\(9\) 6.90618 2.30206
\(10\) 0 0
\(11\) 2.67294 0.805923 0.402962 0.915217i \(-0.367981\pi\)
0.402962 + 0.915217i \(0.367981\pi\)
\(12\) 11.8588 3.42333
\(13\) 2.57085 0.713025 0.356512 0.934291i \(-0.383966\pi\)
0.356512 + 0.934291i \(0.383966\pi\)
\(14\) −5.89825 −1.57637
\(15\) 0 0
\(16\) 2.66063 0.665158
\(17\) 0 0
\(18\) 16.5860 3.90936
\(19\) −6.25456 −1.43490 −0.717448 0.696613i \(-0.754690\pi\)
−0.717448 + 0.696613i \(0.754690\pi\)
\(20\) 0 0
\(21\) −7.72986 −1.68679
\(22\) 6.41940 1.36862
\(23\) 3.11473 0.649466 0.324733 0.945806i \(-0.394725\pi\)
0.324733 + 0.945806i \(0.394725\pi\)
\(24\) 13.3625 2.72760
\(25\) 0 0
\(26\) 6.17420 1.21086
\(27\) 12.2943 2.36605
\(28\) −9.25348 −1.74874
\(29\) −0.710678 −0.131970 −0.0659848 0.997821i \(-0.521019\pi\)
−0.0659848 + 0.997821i \(0.521019\pi\)
\(30\) 0 0
\(31\) 3.99271 0.717112 0.358556 0.933508i \(-0.383269\pi\)
0.358556 + 0.933508i \(0.383269\pi\)
\(32\) −2.10127 −0.371456
\(33\) 8.41285 1.46449
\(34\) 0 0
\(35\) 0 0
\(36\) 26.0210 4.33683
\(37\) 3.63287 0.597240 0.298620 0.954372i \(-0.403474\pi\)
0.298620 + 0.954372i \(0.403474\pi\)
\(38\) −15.0211 −2.43674
\(39\) 8.09151 1.29568
\(40\) 0 0
\(41\) 8.29741 1.29584 0.647919 0.761709i \(-0.275640\pi\)
0.647919 + 0.761709i \(0.275640\pi\)
\(42\) −18.5642 −2.86452
\(43\) 12.7653 1.94669 0.973347 0.229338i \(-0.0736563\pi\)
0.973347 + 0.229338i \(0.0736563\pi\)
\(44\) 10.0711 1.51827
\(45\) 0 0
\(46\) 7.48040 1.10293
\(47\) −2.78467 −0.406185 −0.203093 0.979160i \(-0.565099\pi\)
−0.203093 + 0.979160i \(0.565099\pi\)
\(48\) 8.37409 1.20870
\(49\) −0.968329 −0.138333
\(50\) 0 0
\(51\) 0 0
\(52\) 9.68640 1.34326
\(53\) −0.165984 −0.0227996 −0.0113998 0.999935i \(-0.503629\pi\)
−0.0113998 + 0.999935i \(0.503629\pi\)
\(54\) 29.5263 4.01803
\(55\) 0 0
\(56\) −10.4268 −1.39334
\(57\) −19.6857 −2.60743
\(58\) −1.70678 −0.224111
\(59\) −12.2972 −1.60095 −0.800476 0.599364i \(-0.795420\pi\)
−0.800476 + 0.599364i \(0.795420\pi\)
\(60\) 0 0
\(61\) −0.680871 −0.0871767 −0.0435883 0.999050i \(-0.513879\pi\)
−0.0435883 + 0.999050i \(0.513879\pi\)
\(62\) 9.58898 1.21780
\(63\) −16.9612 −2.13691
\(64\) −10.3677 −1.29596
\(65\) 0 0
\(66\) 20.2045 2.48700
\(67\) 1.50354 0.183687 0.0918433 0.995773i \(-0.470724\pi\)
0.0918433 + 0.995773i \(0.470724\pi\)
\(68\) 0 0
\(69\) 9.80333 1.18018
\(70\) 0 0
\(71\) −2.51376 −0.298328 −0.149164 0.988812i \(-0.547658\pi\)
−0.149164 + 0.988812i \(0.547658\pi\)
\(72\) 29.3205 3.45546
\(73\) −8.24985 −0.965572 −0.482786 0.875738i \(-0.660375\pi\)
−0.482786 + 0.875738i \(0.660375\pi\)
\(74\) 8.72478 1.01423
\(75\) 0 0
\(76\) −23.5658 −2.70319
\(77\) −6.56461 −0.748107
\(78\) 19.4327 2.20032
\(79\) 4.47987 0.504025 0.252012 0.967724i \(-0.418908\pi\)
0.252012 + 0.967724i \(0.418908\pi\)
\(80\) 0 0
\(81\) 17.9768 1.99742
\(82\) 19.9272 2.20060
\(83\) −12.1257 −1.33097 −0.665484 0.746412i \(-0.731775\pi\)
−0.665484 + 0.746412i \(0.731775\pi\)
\(84\) −29.1245 −3.17774
\(85\) 0 0
\(86\) 30.6575 3.30588
\(87\) −2.23680 −0.239810
\(88\) 11.3481 1.20971
\(89\) 1.16707 0.123709 0.0618546 0.998085i \(-0.480298\pi\)
0.0618546 + 0.998085i \(0.480298\pi\)
\(90\) 0 0
\(91\) −6.31386 −0.661873
\(92\) 11.7356 1.22352
\(93\) 12.5667 1.30310
\(94\) −6.68772 −0.689785
\(95\) 0 0
\(96\) −6.61356 −0.674993
\(97\) −3.12613 −0.317410 −0.158705 0.987326i \(-0.550732\pi\)
−0.158705 + 0.987326i \(0.550732\pi\)
\(98\) −2.32556 −0.234917
\(99\) 18.4598 1.85528
\(100\) 0 0
\(101\) 0.963333 0.0958553 0.0479276 0.998851i \(-0.484738\pi\)
0.0479276 + 0.998851i \(0.484738\pi\)
\(102\) 0 0
\(103\) 13.1842 1.29908 0.649539 0.760329i \(-0.274962\pi\)
0.649539 + 0.760329i \(0.274962\pi\)
\(104\) 10.9147 1.07027
\(105\) 0 0
\(106\) −0.398630 −0.0387184
\(107\) −1.20156 −0.116159 −0.0580797 0.998312i \(-0.518498\pi\)
−0.0580797 + 0.998312i \(0.518498\pi\)
\(108\) 46.3224 4.45738
\(109\) −18.8394 −1.80449 −0.902243 0.431227i \(-0.858081\pi\)
−0.902243 + 0.431227i \(0.858081\pi\)
\(110\) 0 0
\(111\) 11.4341 1.08528
\(112\) −6.53436 −0.617439
\(113\) 11.1118 1.04531 0.522656 0.852544i \(-0.324941\pi\)
0.522656 + 0.852544i \(0.324941\pi\)
\(114\) −47.2775 −4.42794
\(115\) 0 0
\(116\) −2.67768 −0.248617
\(117\) 17.7547 1.64143
\(118\) −29.5331 −2.71874
\(119\) 0 0
\(120\) 0 0
\(121\) −3.85537 −0.350488
\(122\) −1.63520 −0.148044
\(123\) 26.1153 2.35474
\(124\) 15.0437 1.35096
\(125\) 0 0
\(126\) −40.7344 −3.62891
\(127\) −1.62949 −0.144594 −0.0722970 0.997383i \(-0.523033\pi\)
−0.0722970 + 0.997383i \(0.523033\pi\)
\(128\) −20.6968 −1.82935
\(129\) 40.1777 3.53745
\(130\) 0 0
\(131\) 14.1257 1.23417 0.617083 0.786898i \(-0.288314\pi\)
0.617083 + 0.786898i \(0.288314\pi\)
\(132\) 31.6978 2.75894
\(133\) 15.3609 1.33196
\(134\) 3.61093 0.311937
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0396 −1.02861 −0.514305 0.857607i \(-0.671950\pi\)
−0.514305 + 0.857607i \(0.671950\pi\)
\(138\) 23.5439 2.00419
\(139\) −12.7907 −1.08489 −0.542447 0.840090i \(-0.682502\pi\)
−0.542447 + 0.840090i \(0.682502\pi\)
\(140\) 0 0
\(141\) −8.76448 −0.738103
\(142\) −6.03709 −0.506622
\(143\) 6.87173 0.574643
\(144\) 18.3748 1.53123
\(145\) 0 0
\(146\) −19.8130 −1.63974
\(147\) −3.04773 −0.251372
\(148\) 13.6879 1.12514
\(149\) 5.52099 0.452297 0.226149 0.974093i \(-0.427386\pi\)
0.226149 + 0.974093i \(0.427386\pi\)
\(150\) 0 0
\(151\) −20.1224 −1.63754 −0.818769 0.574123i \(-0.805343\pi\)
−0.818769 + 0.574123i \(0.805343\pi\)
\(152\) −26.5540 −2.15382
\(153\) 0 0
\(154\) −15.7657 −1.27044
\(155\) 0 0
\(156\) 30.4871 2.44092
\(157\) −6.77751 −0.540904 −0.270452 0.962733i \(-0.587173\pi\)
−0.270452 + 0.962733i \(0.587173\pi\)
\(158\) 10.7589 0.855936
\(159\) −0.522418 −0.0414305
\(160\) 0 0
\(161\) −7.64961 −0.602874
\(162\) 43.1734 3.39202
\(163\) −15.3503 −1.20233 −0.601165 0.799125i \(-0.705296\pi\)
−0.601165 + 0.799125i \(0.705296\pi\)
\(164\) 31.2629 2.44122
\(165\) 0 0
\(166\) −29.1213 −2.26025
\(167\) 25.4830 1.97193 0.985965 0.166950i \(-0.0533918\pi\)
0.985965 + 0.166950i \(0.0533918\pi\)
\(168\) −32.8175 −2.53193
\(169\) −6.39074 −0.491596
\(170\) 0 0
\(171\) −43.1951 −3.30321
\(172\) 48.0970 3.66736
\(173\) −4.03225 −0.306566 −0.153283 0.988182i \(-0.548985\pi\)
−0.153283 + 0.988182i \(0.548985\pi\)
\(174\) −5.37193 −0.407245
\(175\) 0 0
\(176\) 7.11172 0.536066
\(177\) −38.7042 −2.90918
\(178\) 2.80286 0.210083
\(179\) −21.2384 −1.58743 −0.793717 0.608287i \(-0.791857\pi\)
−0.793717 + 0.608287i \(0.791857\pi\)
\(180\) 0 0
\(181\) −11.0451 −0.820973 −0.410486 0.911867i \(-0.634641\pi\)
−0.410486 + 0.911867i \(0.634641\pi\)
\(182\) −15.1635 −1.12399
\(183\) −2.14298 −0.158414
\(184\) 13.2237 0.974867
\(185\) 0 0
\(186\) 30.1804 2.21294
\(187\) 0 0
\(188\) −10.4920 −0.765210
\(189\) −30.1942 −2.19631
\(190\) 0 0
\(191\) −11.9621 −0.865544 −0.432772 0.901503i \(-0.642464\pi\)
−0.432772 + 0.901503i \(0.642464\pi\)
\(192\) −32.6314 −2.35497
\(193\) −0.567470 −0.0408474 −0.0204237 0.999791i \(-0.506502\pi\)
−0.0204237 + 0.999791i \(0.506502\pi\)
\(194\) −7.50778 −0.539027
\(195\) 0 0
\(196\) −3.64846 −0.260604
\(197\) −8.93316 −0.636461 −0.318231 0.948013i \(-0.603089\pi\)
−0.318231 + 0.948013i \(0.603089\pi\)
\(198\) 44.3335 3.15065
\(199\) 16.6697 1.18168 0.590840 0.806789i \(-0.298796\pi\)
0.590840 + 0.806789i \(0.298796\pi\)
\(200\) 0 0
\(201\) 4.73225 0.333787
\(202\) 2.31356 0.162782
\(203\) 1.74539 0.122502
\(204\) 0 0
\(205\) 0 0
\(206\) 31.6634 2.20610
\(207\) 21.5109 1.49511
\(208\) 6.84007 0.474274
\(209\) −16.7181 −1.15642
\(210\) 0 0
\(211\) −19.6063 −1.34975 −0.674876 0.737931i \(-0.735803\pi\)
−0.674876 + 0.737931i \(0.735803\pi\)
\(212\) −0.625391 −0.0429520
\(213\) −7.91182 −0.542109
\(214\) −2.88570 −0.197262
\(215\) 0 0
\(216\) 52.1962 3.55150
\(217\) −9.80588 −0.665666
\(218\) −45.2451 −3.06438
\(219\) −25.9657 −1.75460
\(220\) 0 0
\(221\) 0 0
\(222\) 27.4604 1.84302
\(223\) −17.7907 −1.19135 −0.595677 0.803224i \(-0.703116\pi\)
−0.595677 + 0.803224i \(0.703116\pi\)
\(224\) 5.16061 0.344808
\(225\) 0 0
\(226\) 26.6864 1.77515
\(227\) −2.74184 −0.181982 −0.0909911 0.995852i \(-0.529003\pi\)
−0.0909911 + 0.995852i \(0.529003\pi\)
\(228\) −74.1713 −4.91212
\(229\) 28.4081 1.87726 0.938630 0.344925i \(-0.112096\pi\)
0.938630 + 0.344925i \(0.112096\pi\)
\(230\) 0 0
\(231\) −20.6615 −1.35943
\(232\) −3.01722 −0.198090
\(233\) 14.7458 0.966032 0.483016 0.875611i \(-0.339541\pi\)
0.483016 + 0.875611i \(0.339541\pi\)
\(234\) 42.6401 2.78747
\(235\) 0 0
\(236\) −46.3330 −3.01602
\(237\) 14.1000 0.915892
\(238\) 0 0
\(239\) 8.93034 0.577656 0.288828 0.957381i \(-0.406734\pi\)
0.288828 + 0.957381i \(0.406734\pi\)
\(240\) 0 0
\(241\) 25.4005 1.63619 0.818095 0.575083i \(-0.195030\pi\)
0.818095 + 0.575083i \(0.195030\pi\)
\(242\) −9.25913 −0.595199
\(243\) 19.6972 1.26358
\(244\) −2.56538 −0.164231
\(245\) 0 0
\(246\) 62.7192 3.99883
\(247\) −16.0795 −1.02312
\(248\) 16.9512 1.07640
\(249\) −38.1645 −2.41858
\(250\) 0 0
\(251\) −0.459279 −0.0289894 −0.0144947 0.999895i \(-0.504614\pi\)
−0.0144947 + 0.999895i \(0.504614\pi\)
\(252\) −63.9062 −4.02571
\(253\) 8.32550 0.523420
\(254\) −3.91342 −0.245550
\(255\) 0 0
\(256\) −28.9704 −1.81065
\(257\) −18.6397 −1.16271 −0.581357 0.813648i \(-0.697478\pi\)
−0.581357 + 0.813648i \(0.697478\pi\)
\(258\) 96.4916 6.00730
\(259\) −8.92213 −0.554394
\(260\) 0 0
\(261\) −4.90807 −0.303802
\(262\) 33.9245 2.09586
\(263\) 16.5539 1.02076 0.510379 0.859950i \(-0.329505\pi\)
0.510379 + 0.859950i \(0.329505\pi\)
\(264\) 35.7172 2.19824
\(265\) 0 0
\(266\) 36.8910 2.26193
\(267\) 3.67325 0.224799
\(268\) 5.66501 0.346046
\(269\) 7.70877 0.470012 0.235006 0.971994i \(-0.424489\pi\)
0.235006 + 0.971994i \(0.424489\pi\)
\(270\) 0 0
\(271\) −21.0971 −1.28156 −0.640780 0.767725i \(-0.721389\pi\)
−0.640780 + 0.767725i \(0.721389\pi\)
\(272\) 0 0
\(273\) −19.8723 −1.20273
\(274\) −28.9145 −1.74679
\(275\) 0 0
\(276\) 36.9368 2.22334
\(277\) −6.30787 −0.379003 −0.189501 0.981880i \(-0.560687\pi\)
−0.189501 + 0.981880i \(0.560687\pi\)
\(278\) −30.7184 −1.84237
\(279\) 27.5744 1.65083
\(280\) 0 0
\(281\) −23.6264 −1.40943 −0.704716 0.709490i \(-0.748925\pi\)
−0.704716 + 0.709490i \(0.748925\pi\)
\(282\) −21.0490 −1.25345
\(283\) 19.3219 1.14857 0.574283 0.818657i \(-0.305281\pi\)
0.574283 + 0.818657i \(0.305281\pi\)
\(284\) −9.47130 −0.562018
\(285\) 0 0
\(286\) 16.5033 0.975861
\(287\) −20.3780 −1.20288
\(288\) −14.5118 −0.855113
\(289\) 0 0
\(290\) 0 0
\(291\) −9.83920 −0.576784
\(292\) −31.0837 −1.81903
\(293\) 11.1159 0.649397 0.324698 0.945818i \(-0.394737\pi\)
0.324698 + 0.945818i \(0.394737\pi\)
\(294\) −7.31949 −0.426881
\(295\) 0 0
\(296\) 15.4235 0.896474
\(297\) 32.8621 1.90685
\(298\) 13.2593 0.768093
\(299\) 8.00750 0.463086
\(300\) 0 0
\(301\) −31.3509 −1.80704
\(302\) −48.3264 −2.78087
\(303\) 3.03200 0.174184
\(304\) −16.6411 −0.954431
\(305\) 0 0
\(306\) 0 0
\(307\) 8.08367 0.461359 0.230680 0.973030i \(-0.425905\pi\)
0.230680 + 0.973030i \(0.425905\pi\)
\(308\) −24.7340 −1.40935
\(309\) 41.4960 2.36063
\(310\) 0 0
\(311\) −13.5612 −0.768988 −0.384494 0.923128i \(-0.625624\pi\)
−0.384494 + 0.923128i \(0.625624\pi\)
\(312\) 34.3529 1.94485
\(313\) 9.12199 0.515605 0.257803 0.966198i \(-0.417002\pi\)
0.257803 + 0.966198i \(0.417002\pi\)
\(314\) −16.2770 −0.918565
\(315\) 0 0
\(316\) 16.8792 0.949528
\(317\) −33.7435 −1.89522 −0.947611 0.319426i \(-0.896510\pi\)
−0.947611 + 0.319426i \(0.896510\pi\)
\(318\) −1.25465 −0.0703573
\(319\) −1.89960 −0.106357
\(320\) 0 0
\(321\) −3.78181 −0.211080
\(322\) −18.3715 −1.02380
\(323\) 0 0
\(324\) 67.7326 3.76292
\(325\) 0 0
\(326\) −36.8656 −2.04180
\(327\) −59.2953 −3.27904
\(328\) 35.2271 1.94509
\(329\) 6.83899 0.377046
\(330\) 0 0
\(331\) −21.2983 −1.17066 −0.585329 0.810796i \(-0.699035\pi\)
−0.585329 + 0.810796i \(0.699035\pi\)
\(332\) −45.6870 −2.50740
\(333\) 25.0892 1.37488
\(334\) 61.2004 3.34874
\(335\) 0 0
\(336\) −20.5663 −1.12198
\(337\) 22.4073 1.22061 0.610303 0.792168i \(-0.291048\pi\)
0.610303 + 0.792168i \(0.291048\pi\)
\(338\) −15.3481 −0.834829
\(339\) 34.9734 1.89949
\(340\) 0 0
\(341\) 10.6723 0.577937
\(342\) −103.738 −5.60953
\(343\) 19.5698 1.05667
\(344\) 54.1958 2.92204
\(345\) 0 0
\(346\) −9.68393 −0.520611
\(347\) 18.0764 0.970393 0.485197 0.874405i \(-0.338748\pi\)
0.485197 + 0.874405i \(0.338748\pi\)
\(348\) −8.42776 −0.451775
\(349\) −9.00587 −0.482073 −0.241037 0.970516i \(-0.577487\pi\)
−0.241037 + 0.970516i \(0.577487\pi\)
\(350\) 0 0
\(351\) 31.6069 1.68705
\(352\) −5.61658 −0.299365
\(353\) 27.4982 1.46358 0.731791 0.681530i \(-0.238685\pi\)
0.731791 + 0.681530i \(0.238685\pi\)
\(354\) −92.9527 −4.94038
\(355\) 0 0
\(356\) 4.39727 0.233055
\(357\) 0 0
\(358\) −51.0066 −2.69578
\(359\) 24.2551 1.28013 0.640066 0.768320i \(-0.278907\pi\)
0.640066 + 0.768320i \(0.278907\pi\)
\(360\) 0 0
\(361\) 20.1195 1.05892
\(362\) −26.5261 −1.39418
\(363\) −12.1344 −0.636891
\(364\) −23.7893 −1.24690
\(365\) 0 0
\(366\) −5.14663 −0.269019
\(367\) 25.1930 1.31506 0.657532 0.753427i \(-0.271601\pi\)
0.657532 + 0.753427i \(0.271601\pi\)
\(368\) 8.28715 0.431997
\(369\) 57.3034 2.98310
\(370\) 0 0
\(371\) 0.407647 0.0211640
\(372\) 47.3486 2.45491
\(373\) 12.3570 0.639823 0.319911 0.947447i \(-0.396347\pi\)
0.319911 + 0.947447i \(0.396347\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −11.8224 −0.609696
\(377\) −1.82705 −0.0940976
\(378\) −72.5151 −3.72977
\(379\) −1.73645 −0.0891957 −0.0445978 0.999005i \(-0.514201\pi\)
−0.0445978 + 0.999005i \(0.514201\pi\)
\(380\) 0 0
\(381\) −5.12867 −0.262750
\(382\) −28.7283 −1.46987
\(383\) −17.5969 −0.899158 −0.449579 0.893241i \(-0.648426\pi\)
−0.449579 + 0.893241i \(0.648426\pi\)
\(384\) −65.1412 −3.32422
\(385\) 0 0
\(386\) −1.36285 −0.0693671
\(387\) 88.1596 4.48140
\(388\) −11.7786 −0.597967
\(389\) −11.0817 −0.561866 −0.280933 0.959727i \(-0.590644\pi\)
−0.280933 + 0.959727i \(0.590644\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −4.11109 −0.207641
\(393\) 44.4593 2.24267
\(394\) −21.4541 −1.08084
\(395\) 0 0
\(396\) 69.5527 3.49515
\(397\) 8.03226 0.403128 0.201564 0.979475i \(-0.435398\pi\)
0.201564 + 0.979475i \(0.435398\pi\)
\(398\) 40.0342 2.00673
\(399\) 48.3469 2.42037
\(400\) 0 0
\(401\) −10.9609 −0.547360 −0.273680 0.961821i \(-0.588241\pi\)
−0.273680 + 0.961821i \(0.588241\pi\)
\(402\) 11.3651 0.566838
\(403\) 10.2646 0.511319
\(404\) 3.62963 0.180581
\(405\) 0 0
\(406\) 4.19176 0.208034
\(407\) 9.71046 0.481330
\(408\) 0 0
\(409\) 8.43948 0.417306 0.208653 0.977990i \(-0.433092\pi\)
0.208653 + 0.977990i \(0.433092\pi\)
\(410\) 0 0
\(411\) −37.8935 −1.86915
\(412\) 49.6752 2.44732
\(413\) 30.2011 1.48610
\(414\) 51.6610 2.53900
\(415\) 0 0
\(416\) −5.40205 −0.264857
\(417\) −40.2576 −1.97142
\(418\) −40.1505 −1.96383
\(419\) −14.4828 −0.707533 −0.353767 0.935334i \(-0.615099\pi\)
−0.353767 + 0.935334i \(0.615099\pi\)
\(420\) 0 0
\(421\) 1.51690 0.0739292 0.0369646 0.999317i \(-0.488231\pi\)
0.0369646 + 0.999317i \(0.488231\pi\)
\(422\) −47.0869 −2.29215
\(423\) −19.2314 −0.935063
\(424\) −0.704692 −0.0342229
\(425\) 0 0
\(426\) −19.0012 −0.920611
\(427\) 1.67218 0.0809226
\(428\) −4.52723 −0.218832
\(429\) 21.6282 1.04422
\(430\) 0 0
\(431\) −19.7875 −0.953129 −0.476564 0.879140i \(-0.658118\pi\)
−0.476564 + 0.879140i \(0.658118\pi\)
\(432\) 32.7107 1.57379
\(433\) −9.49722 −0.456407 −0.228204 0.973613i \(-0.573285\pi\)
−0.228204 + 0.973613i \(0.573285\pi\)
\(434\) −23.5500 −1.13044
\(435\) 0 0
\(436\) −70.9828 −3.39946
\(437\) −19.4813 −0.931916
\(438\) −62.3597 −2.97966
\(439\) 20.0395 0.956433 0.478217 0.878242i \(-0.341283\pi\)
0.478217 + 0.878242i \(0.341283\pi\)
\(440\) 0 0
\(441\) −6.68745 −0.318450
\(442\) 0 0
\(443\) 13.1946 0.626894 0.313447 0.949606i \(-0.398516\pi\)
0.313447 + 0.949606i \(0.398516\pi\)
\(444\) 43.0813 2.04455
\(445\) 0 0
\(446\) −42.7265 −2.02316
\(447\) 17.3768 0.821895
\(448\) 25.4626 1.20299
\(449\) −16.1247 −0.760973 −0.380486 0.924786i \(-0.624243\pi\)
−0.380486 + 0.924786i \(0.624243\pi\)
\(450\) 0 0
\(451\) 22.1785 1.04435
\(452\) 41.8669 1.96925
\(453\) −63.3334 −2.97566
\(454\) −6.58486 −0.309043
\(455\) 0 0
\(456\) −83.5764 −3.91382
\(457\) 8.78267 0.410836 0.205418 0.978674i \(-0.434145\pi\)
0.205418 + 0.978674i \(0.434145\pi\)
\(458\) 68.2255 3.18797
\(459\) 0 0
\(460\) 0 0
\(461\) 18.3746 0.855789 0.427895 0.903829i \(-0.359255\pi\)
0.427895 + 0.903829i \(0.359255\pi\)
\(462\) −49.6211 −2.30858
\(463\) 29.1662 1.35547 0.677735 0.735306i \(-0.262962\pi\)
0.677735 + 0.735306i \(0.262962\pi\)
\(464\) −1.89085 −0.0877806
\(465\) 0 0
\(466\) 35.4139 1.64052
\(467\) 8.21883 0.380322 0.190161 0.981753i \(-0.439099\pi\)
0.190161 + 0.981753i \(0.439099\pi\)
\(468\) 66.8960 3.09227
\(469\) −3.69261 −0.170509
\(470\) 0 0
\(471\) −21.3316 −0.982908
\(472\) −52.2082 −2.40307
\(473\) 34.1210 1.56889
\(474\) 33.8628 1.55537
\(475\) 0 0
\(476\) 0 0
\(477\) −1.14631 −0.0524861
\(478\) 21.4473 0.980977
\(479\) −36.3883 −1.66262 −0.831312 0.555807i \(-0.812410\pi\)
−0.831312 + 0.555807i \(0.812410\pi\)
\(480\) 0 0
\(481\) 9.33955 0.425847
\(482\) 61.0024 2.77858
\(483\) −24.0765 −1.09552
\(484\) −14.5262 −0.660281
\(485\) 0 0
\(486\) 47.3052 2.14581
\(487\) 33.0821 1.49909 0.749547 0.661951i \(-0.230271\pi\)
0.749547 + 0.661951i \(0.230271\pi\)
\(488\) −2.89067 −0.130855
\(489\) −48.3137 −2.18482
\(490\) 0 0
\(491\) 12.1162 0.546797 0.273398 0.961901i \(-0.411852\pi\)
0.273398 + 0.961901i \(0.411852\pi\)
\(492\) 98.3970 4.43608
\(493\) 0 0
\(494\) −38.6169 −1.73746
\(495\) 0 0
\(496\) 10.6231 0.476992
\(497\) 6.17365 0.276926
\(498\) −91.6567 −4.10723
\(499\) 4.93983 0.221137 0.110568 0.993869i \(-0.464733\pi\)
0.110568 + 0.993869i \(0.464733\pi\)
\(500\) 0 0
\(501\) 80.2053 3.58331
\(502\) −1.10301 −0.0492299
\(503\) 22.7414 1.01399 0.506995 0.861949i \(-0.330756\pi\)
0.506995 + 0.861949i \(0.330756\pi\)
\(504\) −72.0096 −3.20756
\(505\) 0 0
\(506\) 19.9947 0.888873
\(507\) −20.1143 −0.893306
\(508\) −6.13957 −0.272399
\(509\) −28.2780 −1.25340 −0.626701 0.779260i \(-0.715595\pi\)
−0.626701 + 0.779260i \(0.715595\pi\)
\(510\) 0 0
\(511\) 20.2612 0.896303
\(512\) −28.1824 −1.24550
\(513\) −76.8957 −3.39503
\(514\) −44.7656 −1.97452
\(515\) 0 0
\(516\) 151.381 6.66417
\(517\) −7.44326 −0.327354
\(518\) −21.4276 −0.941474
\(519\) −12.6911 −0.557079
\(520\) 0 0
\(521\) 15.0564 0.659632 0.329816 0.944045i \(-0.393013\pi\)
0.329816 + 0.944045i \(0.393013\pi\)
\(522\) −11.7873 −0.515917
\(523\) −15.3033 −0.669165 −0.334583 0.942366i \(-0.608595\pi\)
−0.334583 + 0.942366i \(0.608595\pi\)
\(524\) 53.2225 2.32504
\(525\) 0 0
\(526\) 39.7562 1.73345
\(527\) 0 0
\(528\) 22.3835 0.974116
\(529\) −13.2984 −0.578193
\(530\) 0 0
\(531\) −84.9263 −3.68549
\(532\) 57.8764 2.50926
\(533\) 21.3314 0.923965
\(534\) 8.82175 0.381755
\(535\) 0 0
\(536\) 6.38335 0.275719
\(537\) −66.8460 −2.88462
\(538\) 18.5136 0.798176
\(539\) −2.58829 −0.111486
\(540\) 0 0
\(541\) 5.89759 0.253557 0.126779 0.991931i \(-0.459536\pi\)
0.126779 + 0.991931i \(0.459536\pi\)
\(542\) −50.6673 −2.17635
\(543\) −34.7633 −1.49184
\(544\) 0 0
\(545\) 0 0
\(546\) −47.7257 −2.04247
\(547\) −13.6997 −0.585758 −0.292879 0.956149i \(-0.594613\pi\)
−0.292879 + 0.956149i \(0.594613\pi\)
\(548\) −45.3625 −1.93779
\(549\) −4.70222 −0.200686
\(550\) 0 0
\(551\) 4.44498 0.189363
\(552\) 41.6205 1.77149
\(553\) −11.0023 −0.467866
\(554\) −15.1491 −0.643624
\(555\) 0 0
\(556\) −48.1926 −2.04382
\(557\) −26.3831 −1.11789 −0.558943 0.829206i \(-0.688793\pi\)
−0.558943 + 0.829206i \(0.688793\pi\)
\(558\) 66.2232 2.80345
\(559\) 32.8177 1.38804
\(560\) 0 0
\(561\) 0 0
\(562\) −56.7416 −2.39350
\(563\) 22.3909 0.943666 0.471833 0.881688i \(-0.343593\pi\)
0.471833 + 0.881688i \(0.343593\pi\)
\(564\) −33.0227 −1.39051
\(565\) 0 0
\(566\) 46.4038 1.95050
\(567\) −44.1500 −1.85412
\(568\) −10.6723 −0.447799
\(569\) 1.33840 0.0561085 0.0280542 0.999606i \(-0.491069\pi\)
0.0280542 + 0.999606i \(0.491069\pi\)
\(570\) 0 0
\(571\) 29.2226 1.22293 0.611464 0.791272i \(-0.290581\pi\)
0.611464 + 0.791272i \(0.290581\pi\)
\(572\) 25.8912 1.08257
\(573\) −37.6495 −1.57283
\(574\) −48.9402 −2.04273
\(575\) 0 0
\(576\) −71.6013 −2.98339
\(577\) −14.0956 −0.586809 −0.293405 0.955988i \(-0.594788\pi\)
−0.293405 + 0.955988i \(0.594788\pi\)
\(578\) 0 0
\(579\) −1.78606 −0.0742261
\(580\) 0 0
\(581\) 29.7800 1.23548
\(582\) −23.6300 −0.979497
\(583\) −0.443665 −0.0183747
\(584\) −35.0252 −1.44935
\(585\) 0 0
\(586\) 26.6961 1.10281
\(587\) 2.14440 0.0885089 0.0442545 0.999020i \(-0.485909\pi\)
0.0442545 + 0.999020i \(0.485909\pi\)
\(588\) −11.4832 −0.473558
\(589\) −24.9727 −1.02898
\(590\) 0 0
\(591\) −28.1163 −1.15655
\(592\) 9.66572 0.397259
\(593\) −20.0106 −0.821736 −0.410868 0.911695i \(-0.634774\pi\)
−0.410868 + 0.911695i \(0.634774\pi\)
\(594\) 78.9223 3.23822
\(595\) 0 0
\(596\) 20.8019 0.852079
\(597\) 52.4662 2.14730
\(598\) 19.2310 0.786413
\(599\) 18.2512 0.745724 0.372862 0.927887i \(-0.378377\pi\)
0.372862 + 0.927887i \(0.378377\pi\)
\(600\) 0 0
\(601\) −11.2285 −0.458020 −0.229010 0.973424i \(-0.573549\pi\)
−0.229010 + 0.973424i \(0.573549\pi\)
\(602\) −75.2931 −3.06872
\(603\) 10.3837 0.422857
\(604\) −75.8169 −3.08495
\(605\) 0 0
\(606\) 7.28172 0.295800
\(607\) 25.4461 1.03282 0.516412 0.856340i \(-0.327267\pi\)
0.516412 + 0.856340i \(0.327267\pi\)
\(608\) 13.1425 0.533000
\(609\) 5.49345 0.222606
\(610\) 0 0
\(611\) −7.15895 −0.289620
\(612\) 0 0
\(613\) 38.4941 1.55476 0.777380 0.629031i \(-0.216548\pi\)
0.777380 + 0.629031i \(0.216548\pi\)
\(614\) 19.4139 0.783482
\(615\) 0 0
\(616\) −27.8704 −1.12293
\(617\) −23.0835 −0.929305 −0.464653 0.885493i \(-0.653821\pi\)
−0.464653 + 0.885493i \(0.653821\pi\)
\(618\) 99.6578 4.00882
\(619\) 7.27540 0.292423 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(620\) 0 0
\(621\) 38.2936 1.53667
\(622\) −32.5690 −1.30590
\(623\) −2.86626 −0.114834
\(624\) 21.5285 0.861830
\(625\) 0 0
\(626\) 21.9076 0.875602
\(627\) −52.6187 −2.10139
\(628\) −25.5362 −1.01901
\(629\) 0 0
\(630\) 0 0
\(631\) 33.2465 1.32352 0.661761 0.749715i \(-0.269809\pi\)
0.661761 + 0.749715i \(0.269809\pi\)
\(632\) 19.0195 0.756555
\(633\) −61.7090 −2.45271
\(634\) −81.0390 −3.21847
\(635\) 0 0
\(636\) −1.96836 −0.0780505
\(637\) −2.48943 −0.0986347
\(638\) −4.56213 −0.180616
\(639\) −17.3605 −0.686769
\(640\) 0 0
\(641\) −21.4007 −0.845276 −0.422638 0.906299i \(-0.638896\pi\)
−0.422638 + 0.906299i \(0.638896\pi\)
\(642\) −9.08247 −0.358457
\(643\) −12.3392 −0.486610 −0.243305 0.969950i \(-0.578232\pi\)
−0.243305 + 0.969950i \(0.578232\pi\)
\(644\) −28.8221 −1.13575
\(645\) 0 0
\(646\) 0 0
\(647\) 2.48180 0.0975696 0.0487848 0.998809i \(-0.484465\pi\)
0.0487848 + 0.998809i \(0.484465\pi\)
\(648\) 76.3212 2.99818
\(649\) −32.8696 −1.29024
\(650\) 0 0
\(651\) −30.8631 −1.20962
\(652\) −57.8367 −2.26506
\(653\) −24.2220 −0.947882 −0.473941 0.880557i \(-0.657169\pi\)
−0.473941 + 0.880557i \(0.657169\pi\)
\(654\) −142.405 −5.56847
\(655\) 0 0
\(656\) 22.0763 0.861936
\(657\) −56.9750 −2.22281
\(658\) 16.4247 0.640300
\(659\) −0.298916 −0.0116441 −0.00582205 0.999983i \(-0.501853\pi\)
−0.00582205 + 0.999983i \(0.501853\pi\)
\(660\) 0 0
\(661\) 45.7248 1.77849 0.889244 0.457434i \(-0.151231\pi\)
0.889244 + 0.457434i \(0.151231\pi\)
\(662\) −51.1504 −1.98802
\(663\) 0 0
\(664\) −51.4802 −1.99782
\(665\) 0 0
\(666\) 60.2549 2.33483
\(667\) −2.21357 −0.0857099
\(668\) 96.0143 3.71491
\(669\) −55.9946 −2.16488
\(670\) 0 0
\(671\) −1.81993 −0.0702577
\(672\) 16.2425 0.626570
\(673\) −24.6536 −0.950325 −0.475162 0.879898i \(-0.657611\pi\)
−0.475162 + 0.879898i \(0.657611\pi\)
\(674\) 53.8139 2.07284
\(675\) 0 0
\(676\) −24.0789 −0.926113
\(677\) 34.2463 1.31619 0.658097 0.752933i \(-0.271362\pi\)
0.658097 + 0.752933i \(0.271362\pi\)
\(678\) 83.9929 3.22573
\(679\) 7.67760 0.294639
\(680\) 0 0
\(681\) −8.62969 −0.330690
\(682\) 25.6308 0.981454
\(683\) −46.3391 −1.77312 −0.886558 0.462618i \(-0.846910\pi\)
−0.886558 + 0.462618i \(0.846910\pi\)
\(684\) −162.750 −6.22290
\(685\) 0 0
\(686\) 46.9992 1.79444
\(687\) 89.4119 3.41128
\(688\) 33.9638 1.29486
\(689\) −0.426719 −0.0162567
\(690\) 0 0
\(691\) −25.0441 −0.952724 −0.476362 0.879249i \(-0.658045\pi\)
−0.476362 + 0.879249i \(0.658045\pi\)
\(692\) −15.1926 −0.577537
\(693\) −45.3364 −1.72219
\(694\) 43.4127 1.64792
\(695\) 0 0
\(696\) −9.49642 −0.359961
\(697\) 0 0
\(698\) −21.6287 −0.818658
\(699\) 46.4112 1.75543
\(700\) 0 0
\(701\) −45.8247 −1.73078 −0.865388 0.501102i \(-0.832928\pi\)
−0.865388 + 0.501102i \(0.832928\pi\)
\(702\) 75.9077 2.86495
\(703\) −22.7220 −0.856977
\(704\) −27.7123 −1.04445
\(705\) 0 0
\(706\) 66.0402 2.48546
\(707\) −2.36589 −0.0889786
\(708\) −145.829 −5.48059
\(709\) −19.9724 −0.750078 −0.375039 0.927009i \(-0.622371\pi\)
−0.375039 + 0.927009i \(0.622371\pi\)
\(710\) 0 0
\(711\) 30.9388 1.16029
\(712\) 4.95486 0.185691
\(713\) 12.4362 0.465740
\(714\) 0 0
\(715\) 0 0
\(716\) −80.0218 −2.99055
\(717\) 28.1074 1.04969
\(718\) 58.2514 2.17392
\(719\) 33.6934 1.25655 0.628277 0.777990i \(-0.283761\pi\)
0.628277 + 0.777990i \(0.283761\pi\)
\(720\) 0 0
\(721\) −32.3797 −1.20588
\(722\) 48.3195 1.79827
\(723\) 79.9457 2.97321
\(724\) −41.6154 −1.54662
\(725\) 0 0
\(726\) −29.1423 −1.08157
\(727\) 6.28209 0.232990 0.116495 0.993191i \(-0.462834\pi\)
0.116495 + 0.993191i \(0.462834\pi\)
\(728\) −26.8058 −0.993489
\(729\) 8.06486 0.298699
\(730\) 0 0
\(731\) 0 0
\(732\) −8.07429 −0.298434
\(733\) −10.1710 −0.375675 −0.187837 0.982200i \(-0.560148\pi\)
−0.187837 + 0.982200i \(0.560148\pi\)
\(734\) 60.5040 2.23324
\(735\) 0 0
\(736\) −6.54489 −0.241248
\(737\) 4.01888 0.148037
\(738\) 137.621 5.06590
\(739\) −14.2869 −0.525552 −0.262776 0.964857i \(-0.584638\pi\)
−0.262776 + 0.964857i \(0.584638\pi\)
\(740\) 0 0
\(741\) −50.6088 −1.85916
\(742\) 0.979014 0.0359407
\(743\) 21.9933 0.806855 0.403428 0.915012i \(-0.367819\pi\)
0.403428 + 0.915012i \(0.367819\pi\)
\(744\) 53.3525 1.95600
\(745\) 0 0
\(746\) 29.6769 1.08655
\(747\) −83.7422 −3.06397
\(748\) 0 0
\(749\) 2.95097 0.107826
\(750\) 0 0
\(751\) 11.9963 0.437751 0.218876 0.975753i \(-0.429761\pi\)
0.218876 + 0.975753i \(0.429761\pi\)
\(752\) −7.40897 −0.270177
\(753\) −1.44554 −0.0526784
\(754\) −4.38787 −0.159797
\(755\) 0 0
\(756\) −113.765 −4.13761
\(757\) 41.6081 1.51227 0.756135 0.654415i \(-0.227085\pi\)
0.756135 + 0.654415i \(0.227085\pi\)
\(758\) −4.17031 −0.151472
\(759\) 26.2038 0.951136
\(760\) 0 0
\(761\) 50.6689 1.83675 0.918374 0.395715i \(-0.129503\pi\)
0.918374 + 0.395715i \(0.129503\pi\)
\(762\) −12.3171 −0.446203
\(763\) 46.2685 1.67503
\(764\) −45.0705 −1.63059
\(765\) 0 0
\(766\) −42.2610 −1.52695
\(767\) −31.6141 −1.14152
\(768\) −91.1817 −3.29024
\(769\) 36.4245 1.31350 0.656750 0.754108i \(-0.271931\pi\)
0.656750 + 0.754108i \(0.271931\pi\)
\(770\) 0 0
\(771\) −58.6668 −2.11283
\(772\) −2.13810 −0.0769521
\(773\) −40.5949 −1.46010 −0.730049 0.683395i \(-0.760503\pi\)
−0.730049 + 0.683395i \(0.760503\pi\)
\(774\) 211.726 7.61033
\(775\) 0 0
\(776\) −13.2721 −0.476442
\(777\) −28.0816 −1.00742
\(778\) −26.6141 −0.954163
\(779\) −51.8967 −1.85939
\(780\) 0 0
\(781\) −6.71913 −0.240430
\(782\) 0 0
\(783\) −8.73732 −0.312246
\(784\) −2.57637 −0.0920131
\(785\) 0 0
\(786\) 106.774 3.80851
\(787\) 9.86307 0.351580 0.175790 0.984428i \(-0.443752\pi\)
0.175790 + 0.984428i \(0.443752\pi\)
\(788\) −33.6582 −1.19902
\(789\) 52.1019 1.85488
\(790\) 0 0
\(791\) −27.2900 −0.970321
\(792\) 78.3721 2.78483
\(793\) −1.75042 −0.0621591
\(794\) 19.2904 0.684592
\(795\) 0 0
\(796\) 62.8076 2.22616
\(797\) 39.4185 1.39628 0.698138 0.715964i \(-0.254012\pi\)
0.698138 + 0.715964i \(0.254012\pi\)
\(798\) 116.111 4.11028
\(799\) 0 0
\(800\) 0 0
\(801\) 8.06000 0.284786
\(802\) −26.3239 −0.929528
\(803\) −22.0514 −0.778177
\(804\) 17.8301 0.628819
\(805\) 0 0
\(806\) 24.6518 0.868322
\(807\) 24.2627 0.854086
\(808\) 4.08988 0.143881
\(809\) −9.42731 −0.331447 −0.165723 0.986172i \(-0.552996\pi\)
−0.165723 + 0.986172i \(0.552996\pi\)
\(810\) 0 0
\(811\) 22.2187 0.780203 0.390101 0.920772i \(-0.372440\pi\)
0.390101 + 0.920772i \(0.372440\pi\)
\(812\) 6.57624 0.230781
\(813\) −66.4013 −2.32880
\(814\) 23.3208 0.817395
\(815\) 0 0
\(816\) 0 0
\(817\) −79.8415 −2.79330
\(818\) 20.2684 0.708670
\(819\) −43.6047 −1.52367
\(820\) 0 0
\(821\) −14.1242 −0.492938 −0.246469 0.969151i \(-0.579270\pi\)
−0.246469 + 0.969151i \(0.579270\pi\)
\(822\) −91.0058 −3.17419
\(823\) −47.6084 −1.65953 −0.829763 0.558116i \(-0.811524\pi\)
−0.829763 + 0.558116i \(0.811524\pi\)
\(824\) 55.9741 1.94995
\(825\) 0 0
\(826\) 72.5317 2.52370
\(827\) 4.85003 0.168652 0.0843261 0.996438i \(-0.473126\pi\)
0.0843261 + 0.996438i \(0.473126\pi\)
\(828\) 81.0484 2.81663
\(829\) 19.9101 0.691508 0.345754 0.938325i \(-0.387623\pi\)
0.345754 + 0.938325i \(0.387623\pi\)
\(830\) 0 0
\(831\) −19.8534 −0.688708
\(832\) −26.6538 −0.924055
\(833\) 0 0
\(834\) −96.6835 −3.34787
\(835\) 0 0
\(836\) −62.9902 −2.17856
\(837\) 49.0877 1.69672
\(838\) −34.7823 −1.20153
\(839\) 1.98935 0.0686799 0.0343400 0.999410i \(-0.489067\pi\)
0.0343400 + 0.999410i \(0.489067\pi\)
\(840\) 0 0
\(841\) −28.4949 −0.982584
\(842\) 3.64302 0.125547
\(843\) −74.3618 −2.56116
\(844\) −73.8722 −2.54279
\(845\) 0 0
\(846\) −46.1866 −1.58793
\(847\) 9.46857 0.325344
\(848\) −0.441621 −0.0151653
\(849\) 60.8138 2.08712
\(850\) 0 0
\(851\) 11.3154 0.387887
\(852\) −29.8100 −1.02127
\(853\) 26.0104 0.890579 0.445289 0.895387i \(-0.353101\pi\)
0.445289 + 0.895387i \(0.353101\pi\)
\(854\) 4.01595 0.137423
\(855\) 0 0
\(856\) −5.10129 −0.174359
\(857\) −18.9964 −0.648904 −0.324452 0.945902i \(-0.605180\pi\)
−0.324452 + 0.945902i \(0.605180\pi\)
\(858\) 51.9426 1.77329
\(859\) 15.6479 0.533899 0.266950 0.963710i \(-0.413984\pi\)
0.266950 + 0.963710i \(0.413984\pi\)
\(860\) 0 0
\(861\) −64.1379 −2.18581
\(862\) −47.5220 −1.61861
\(863\) 44.1746 1.50372 0.751860 0.659322i \(-0.229157\pi\)
0.751860 + 0.659322i \(0.229157\pi\)
\(864\) −25.8337 −0.878881
\(865\) 0 0
\(866\) −22.8087 −0.775072
\(867\) 0 0
\(868\) −36.9464 −1.25404
\(869\) 11.9744 0.406205
\(870\) 0 0
\(871\) 3.86537 0.130973
\(872\) −79.9836 −2.70859
\(873\) −21.5896 −0.730697
\(874\) −46.7867 −1.58258
\(875\) 0 0
\(876\) −97.8330 −3.30547
\(877\) 9.87744 0.333538 0.166769 0.985996i \(-0.446667\pi\)
0.166769 + 0.985996i \(0.446667\pi\)
\(878\) 48.1273 1.62422
\(879\) 34.9862 1.18006
\(880\) 0 0
\(881\) −51.6330 −1.73956 −0.869780 0.493439i \(-0.835740\pi\)
−0.869780 + 0.493439i \(0.835740\pi\)
\(882\) −16.0607 −0.540793
\(883\) 17.8503 0.600710 0.300355 0.953827i \(-0.402895\pi\)
0.300355 + 0.953827i \(0.402895\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 31.6884 1.06459
\(887\) −57.3894 −1.92695 −0.963474 0.267802i \(-0.913703\pi\)
−0.963474 + 0.267802i \(0.913703\pi\)
\(888\) 48.5441 1.62903
\(889\) 4.00194 0.134221
\(890\) 0 0
\(891\) 48.0509 1.60977
\(892\) −67.0315 −2.24438
\(893\) 17.4169 0.582833
\(894\) 41.7325 1.39574
\(895\) 0 0
\(896\) 50.8302 1.69812
\(897\) 25.2029 0.841499
\(898\) −38.7255 −1.29229
\(899\) −2.83753 −0.0946370
\(900\) 0 0
\(901\) 0 0
\(902\) 53.2644 1.77351
\(903\) −98.6742 −3.28367
\(904\) 47.1757 1.56904
\(905\) 0 0
\(906\) −152.103 −5.05328
\(907\) −7.21531 −0.239580 −0.119790 0.992799i \(-0.538222\pi\)
−0.119790 + 0.992799i \(0.538222\pi\)
\(908\) −10.3307 −0.342835
\(909\) 6.65295 0.220665
\(910\) 0 0
\(911\) 47.1365 1.56170 0.780852 0.624717i \(-0.214786\pi\)
0.780852 + 0.624717i \(0.214786\pi\)
\(912\) −52.3763 −1.73435
\(913\) −32.4113 −1.07266
\(914\) 21.0927 0.697683
\(915\) 0 0
\(916\) 107.036 3.53656
\(917\) −34.6919 −1.14563
\(918\) 0 0
\(919\) −3.10828 −0.102533 −0.0512663 0.998685i \(-0.516326\pi\)
−0.0512663 + 0.998685i \(0.516326\pi\)
\(920\) 0 0
\(921\) 25.4426 0.838363
\(922\) 44.1288 1.45330
\(923\) −6.46249 −0.212715
\(924\) −77.8481 −2.56101
\(925\) 0 0
\(926\) 70.0463 2.30186
\(927\) 91.0524 2.99055
\(928\) 1.49333 0.0490209
\(929\) 18.2447 0.598588 0.299294 0.954161i \(-0.403249\pi\)
0.299294 + 0.954161i \(0.403249\pi\)
\(930\) 0 0
\(931\) 6.05647 0.198493
\(932\) 55.5592 1.81990
\(933\) −42.6828 −1.39737
\(934\) 19.7385 0.645864
\(935\) 0 0
\(936\) 75.3786 2.46383
\(937\) 14.3214 0.467860 0.233930 0.972253i \(-0.424841\pi\)
0.233930 + 0.972253i \(0.424841\pi\)
\(938\) −8.86825 −0.289559
\(939\) 28.7106 0.936936
\(940\) 0 0
\(941\) 29.4874 0.961261 0.480631 0.876923i \(-0.340408\pi\)
0.480631 + 0.876923i \(0.340408\pi\)
\(942\) −51.2304 −1.66918
\(943\) 25.8442 0.841603
\(944\) −32.7182 −1.06489
\(945\) 0 0
\(946\) 81.9457 2.66429
\(947\) 10.2467 0.332973 0.166486 0.986044i \(-0.446758\pi\)
0.166486 + 0.986044i \(0.446758\pi\)
\(948\) 53.1257 1.72544
\(949\) −21.2091 −0.688477
\(950\) 0 0
\(951\) −106.204 −3.44392
\(952\) 0 0
\(953\) 30.5425 0.989370 0.494685 0.869072i \(-0.335283\pi\)
0.494685 + 0.869072i \(0.335283\pi\)
\(954\) −2.75301 −0.0891320
\(955\) 0 0
\(956\) 33.6476 1.08824
\(957\) −5.97883 −0.193268
\(958\) −87.3909 −2.82347
\(959\) 29.5686 0.954818
\(960\) 0 0
\(961\) −15.0583 −0.485751
\(962\) 22.4301 0.723175
\(963\) −8.29821 −0.267406
\(964\) 95.7036 3.08241
\(965\) 0 0
\(966\) −57.8225 −1.86041
\(967\) 50.0287 1.60881 0.804407 0.594078i \(-0.202483\pi\)
0.804407 + 0.594078i \(0.202483\pi\)
\(968\) −16.3681 −0.526092
\(969\) 0 0
\(970\) 0 0
\(971\) 0.00176375 5.66015e−5 0 2.83007e−5 1.00000i \(-0.499991\pi\)
2.83007e−5 1.00000i \(0.499991\pi\)
\(972\) 74.2148 2.38044
\(973\) 31.4133 1.00706
\(974\) 79.4507 2.54577
\(975\) 0 0
\(976\) −1.81155 −0.0579862
\(977\) 15.5052 0.496055 0.248028 0.968753i \(-0.420218\pi\)
0.248028 + 0.968753i \(0.420218\pi\)
\(978\) −116.031 −3.71027
\(979\) 3.11952 0.0997002
\(980\) 0 0
\(981\) −130.108 −4.15404
\(982\) 29.0985 0.928571
\(983\) 16.7282 0.533547 0.266774 0.963759i \(-0.414042\pi\)
0.266774 + 0.963759i \(0.414042\pi\)
\(984\) 110.874 3.53453
\(985\) 0 0
\(986\) 0 0
\(987\) 21.5251 0.685151
\(988\) −60.5842 −1.92744
\(989\) 39.7606 1.26431
\(990\) 0 0
\(991\) 2.57414 0.0817701 0.0408851 0.999164i \(-0.486982\pi\)
0.0408851 + 0.999164i \(0.486982\pi\)
\(992\) −8.38976 −0.266375
\(993\) −67.0343 −2.12727
\(994\) 14.8268 0.470277
\(995\) 0 0
\(996\) −143.796 −4.55634
\(997\) 16.8644 0.534101 0.267050 0.963683i \(-0.413951\pi\)
0.267050 + 0.963683i \(0.413951\pi\)
\(998\) 11.8636 0.375535
\(999\) 44.6637 1.41310
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bi.1.6 6
5.4 even 2 1445.2.a.l.1.1 6
17.16 even 2 7225.2.a.bh.1.6 6
85.4 even 4 1445.2.d.h.866.12 12
85.64 even 4 1445.2.d.h.866.11 12
85.84 even 2 1445.2.a.m.1.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.l.1.1 6 5.4 even 2
1445.2.a.m.1.1 yes 6 85.84 even 2
1445.2.d.h.866.11 12 85.64 even 4
1445.2.d.h.866.12 12 85.4 even 4
7225.2.a.bh.1.6 6 17.16 even 2
7225.2.a.bi.1.6 6 1.1 even 1 trivial