Properties

Label 7225.2.a.bh.1.6
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,-3,3,0,-9,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1397493.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3x^{4} + 10x^{3} + 3x^{2} - 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1445)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.05432\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.40162 q^{2} -3.14741 q^{3} +3.76778 q^{4} -7.55888 q^{6} +2.45595 q^{7} +4.24555 q^{8} +6.90618 q^{9} -2.67294 q^{11} -11.8588 q^{12} +2.57085 q^{13} +5.89825 q^{14} +2.66063 q^{16} +16.5860 q^{18} -6.25456 q^{19} -7.72986 q^{21} -6.41940 q^{22} -3.11473 q^{23} -13.3625 q^{24} +6.17420 q^{26} -12.2943 q^{27} +9.25348 q^{28} +0.710678 q^{29} -3.99271 q^{31} -2.10127 q^{32} +8.41285 q^{33} +26.0210 q^{36} -3.63287 q^{37} -15.0211 q^{38} -8.09151 q^{39} -8.29741 q^{41} -18.5642 q^{42} +12.7653 q^{43} -10.0711 q^{44} -7.48040 q^{46} -2.78467 q^{47} -8.37409 q^{48} -0.968329 q^{49} +9.68640 q^{52} -0.165984 q^{53} -29.5263 q^{54} +10.4268 q^{56} +19.6857 q^{57} +1.70678 q^{58} -12.2972 q^{59} +0.680871 q^{61} -9.58898 q^{62} +16.9612 q^{63} -10.3677 q^{64} +20.2045 q^{66} +1.50354 q^{67} +9.80333 q^{69} +2.51376 q^{71} +29.3205 q^{72} +8.24985 q^{73} -8.72478 q^{74} -23.5658 q^{76} -6.56461 q^{77} -19.4327 q^{78} -4.47987 q^{79} +17.9768 q^{81} -19.9272 q^{82} -12.1257 q^{83} -29.1245 q^{84} +30.6575 q^{86} -2.23680 q^{87} -11.3481 q^{88} +1.16707 q^{89} +6.31386 q^{91} -11.7356 q^{92} +12.5667 q^{93} -6.68772 q^{94} +6.61356 q^{96} +3.12613 q^{97} -2.32556 q^{98} -18.4598 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{3} + 3 q^{4} - 9 q^{6} - 6 q^{7} + 6 q^{8} + 3 q^{9} - 6 q^{11} - 6 q^{12} + 9 q^{13} + 18 q^{14} - 3 q^{16} + 15 q^{18} - 21 q^{19} - 12 q^{21} + 3 q^{22} - 18 q^{23} - 6 q^{26} - 12 q^{27}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.40162 1.69820 0.849101 0.528230i \(-0.177144\pi\)
0.849101 + 0.528230i \(0.177144\pi\)
\(3\) −3.14741 −1.81716 −0.908579 0.417714i \(-0.862831\pi\)
−0.908579 + 0.417714i \(0.862831\pi\)
\(4\) 3.76778 1.88389
\(5\) 0 0
\(6\) −7.55888 −3.08590
\(7\) 2.45595 0.928260 0.464130 0.885767i \(-0.346367\pi\)
0.464130 + 0.885767i \(0.346367\pi\)
\(8\) 4.24555 1.50103
\(9\) 6.90618 2.30206
\(10\) 0 0
\(11\) −2.67294 −0.805923 −0.402962 0.915217i \(-0.632019\pi\)
−0.402962 + 0.915217i \(0.632019\pi\)
\(12\) −11.8588 −3.42333
\(13\) 2.57085 0.713025 0.356512 0.934291i \(-0.383966\pi\)
0.356512 + 0.934291i \(0.383966\pi\)
\(14\) 5.89825 1.57637
\(15\) 0 0
\(16\) 2.66063 0.665158
\(17\) 0 0
\(18\) 16.5860 3.90936
\(19\) −6.25456 −1.43490 −0.717448 0.696613i \(-0.754690\pi\)
−0.717448 + 0.696613i \(0.754690\pi\)
\(20\) 0 0
\(21\) −7.72986 −1.68679
\(22\) −6.41940 −1.36862
\(23\) −3.11473 −0.649466 −0.324733 0.945806i \(-0.605275\pi\)
−0.324733 + 0.945806i \(0.605275\pi\)
\(24\) −13.3625 −2.72760
\(25\) 0 0
\(26\) 6.17420 1.21086
\(27\) −12.2943 −2.36605
\(28\) 9.25348 1.74874
\(29\) 0.710678 0.131970 0.0659848 0.997821i \(-0.478981\pi\)
0.0659848 + 0.997821i \(0.478981\pi\)
\(30\) 0 0
\(31\) −3.99271 −0.717112 −0.358556 0.933508i \(-0.616731\pi\)
−0.358556 + 0.933508i \(0.616731\pi\)
\(32\) −2.10127 −0.371456
\(33\) 8.41285 1.46449
\(34\) 0 0
\(35\) 0 0
\(36\) 26.0210 4.33683
\(37\) −3.63287 −0.597240 −0.298620 0.954372i \(-0.596526\pi\)
−0.298620 + 0.954372i \(0.596526\pi\)
\(38\) −15.0211 −2.43674
\(39\) −8.09151 −1.29568
\(40\) 0 0
\(41\) −8.29741 −1.29584 −0.647919 0.761709i \(-0.724360\pi\)
−0.647919 + 0.761709i \(0.724360\pi\)
\(42\) −18.5642 −2.86452
\(43\) 12.7653 1.94669 0.973347 0.229338i \(-0.0736563\pi\)
0.973347 + 0.229338i \(0.0736563\pi\)
\(44\) −10.0711 −1.51827
\(45\) 0 0
\(46\) −7.48040 −1.10293
\(47\) −2.78467 −0.406185 −0.203093 0.979160i \(-0.565099\pi\)
−0.203093 + 0.979160i \(0.565099\pi\)
\(48\) −8.37409 −1.20870
\(49\) −0.968329 −0.138333
\(50\) 0 0
\(51\) 0 0
\(52\) 9.68640 1.34326
\(53\) −0.165984 −0.0227996 −0.0113998 0.999935i \(-0.503629\pi\)
−0.0113998 + 0.999935i \(0.503629\pi\)
\(54\) −29.5263 −4.01803
\(55\) 0 0
\(56\) 10.4268 1.39334
\(57\) 19.6857 2.60743
\(58\) 1.70678 0.224111
\(59\) −12.2972 −1.60095 −0.800476 0.599364i \(-0.795420\pi\)
−0.800476 + 0.599364i \(0.795420\pi\)
\(60\) 0 0
\(61\) 0.680871 0.0871767 0.0435883 0.999050i \(-0.486121\pi\)
0.0435883 + 0.999050i \(0.486121\pi\)
\(62\) −9.58898 −1.21780
\(63\) 16.9612 2.13691
\(64\) −10.3677 −1.29596
\(65\) 0 0
\(66\) 20.2045 2.48700
\(67\) 1.50354 0.183687 0.0918433 0.995773i \(-0.470724\pi\)
0.0918433 + 0.995773i \(0.470724\pi\)
\(68\) 0 0
\(69\) 9.80333 1.18018
\(70\) 0 0
\(71\) 2.51376 0.298328 0.149164 0.988812i \(-0.452342\pi\)
0.149164 + 0.988812i \(0.452342\pi\)
\(72\) 29.3205 3.45546
\(73\) 8.24985 0.965572 0.482786 0.875738i \(-0.339625\pi\)
0.482786 + 0.875738i \(0.339625\pi\)
\(74\) −8.72478 −1.01423
\(75\) 0 0
\(76\) −23.5658 −2.70319
\(77\) −6.56461 −0.748107
\(78\) −19.4327 −2.20032
\(79\) −4.47987 −0.504025 −0.252012 0.967724i \(-0.581092\pi\)
−0.252012 + 0.967724i \(0.581092\pi\)
\(80\) 0 0
\(81\) 17.9768 1.99742
\(82\) −19.9272 −2.20060
\(83\) −12.1257 −1.33097 −0.665484 0.746412i \(-0.731775\pi\)
−0.665484 + 0.746412i \(0.731775\pi\)
\(84\) −29.1245 −3.17774
\(85\) 0 0
\(86\) 30.6575 3.30588
\(87\) −2.23680 −0.239810
\(88\) −11.3481 −1.20971
\(89\) 1.16707 0.123709 0.0618546 0.998085i \(-0.480298\pi\)
0.0618546 + 0.998085i \(0.480298\pi\)
\(90\) 0 0
\(91\) 6.31386 0.661873
\(92\) −11.7356 −1.22352
\(93\) 12.5667 1.30310
\(94\) −6.68772 −0.689785
\(95\) 0 0
\(96\) 6.61356 0.674993
\(97\) 3.12613 0.317410 0.158705 0.987326i \(-0.449268\pi\)
0.158705 + 0.987326i \(0.449268\pi\)
\(98\) −2.32556 −0.234917
\(99\) −18.4598 −1.85528
\(100\) 0 0
\(101\) 0.963333 0.0958553 0.0479276 0.998851i \(-0.484738\pi\)
0.0479276 + 0.998851i \(0.484738\pi\)
\(102\) 0 0
\(103\) 13.1842 1.29908 0.649539 0.760329i \(-0.274962\pi\)
0.649539 + 0.760329i \(0.274962\pi\)
\(104\) 10.9147 1.07027
\(105\) 0 0
\(106\) −0.398630 −0.0387184
\(107\) 1.20156 0.116159 0.0580797 0.998312i \(-0.481502\pi\)
0.0580797 + 0.998312i \(0.481502\pi\)
\(108\) −46.3224 −4.45738
\(109\) 18.8394 1.80449 0.902243 0.431227i \(-0.141919\pi\)
0.902243 + 0.431227i \(0.141919\pi\)
\(110\) 0 0
\(111\) 11.4341 1.08528
\(112\) 6.53436 0.617439
\(113\) −11.1118 −1.04531 −0.522656 0.852544i \(-0.675059\pi\)
−0.522656 + 0.852544i \(0.675059\pi\)
\(114\) 47.2775 4.42794
\(115\) 0 0
\(116\) 2.67768 0.248617
\(117\) 17.7547 1.64143
\(118\) −29.5331 −2.71874
\(119\) 0 0
\(120\) 0 0
\(121\) −3.85537 −0.350488
\(122\) 1.63520 0.148044
\(123\) 26.1153 2.35474
\(124\) −15.0437 −1.35096
\(125\) 0 0
\(126\) 40.7344 3.62891
\(127\) −1.62949 −0.144594 −0.0722970 0.997383i \(-0.523033\pi\)
−0.0722970 + 0.997383i \(0.523033\pi\)
\(128\) −20.6968 −1.82935
\(129\) −40.1777 −3.53745
\(130\) 0 0
\(131\) −14.1257 −1.23417 −0.617083 0.786898i \(-0.711686\pi\)
−0.617083 + 0.786898i \(0.711686\pi\)
\(132\) 31.6978 2.75894
\(133\) −15.3609 −1.33196
\(134\) 3.61093 0.311937
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0396 −1.02861 −0.514305 0.857607i \(-0.671950\pi\)
−0.514305 + 0.857607i \(0.671950\pi\)
\(138\) 23.5439 2.00419
\(139\) 12.7907 1.08489 0.542447 0.840090i \(-0.317498\pi\)
0.542447 + 0.840090i \(0.317498\pi\)
\(140\) 0 0
\(141\) 8.76448 0.738103
\(142\) 6.03709 0.506622
\(143\) −6.87173 −0.574643
\(144\) 18.3748 1.53123
\(145\) 0 0
\(146\) 19.8130 1.63974
\(147\) 3.04773 0.251372
\(148\) −13.6879 −1.12514
\(149\) 5.52099 0.452297 0.226149 0.974093i \(-0.427386\pi\)
0.226149 + 0.974093i \(0.427386\pi\)
\(150\) 0 0
\(151\) −20.1224 −1.63754 −0.818769 0.574123i \(-0.805343\pi\)
−0.818769 + 0.574123i \(0.805343\pi\)
\(152\) −26.5540 −2.15382
\(153\) 0 0
\(154\) −15.7657 −1.27044
\(155\) 0 0
\(156\) −30.4871 −2.44092
\(157\) −6.77751 −0.540904 −0.270452 0.962733i \(-0.587173\pi\)
−0.270452 + 0.962733i \(0.587173\pi\)
\(158\) −10.7589 −0.855936
\(159\) 0.522418 0.0414305
\(160\) 0 0
\(161\) −7.64961 −0.602874
\(162\) 43.1734 3.39202
\(163\) 15.3503 1.20233 0.601165 0.799125i \(-0.294704\pi\)
0.601165 + 0.799125i \(0.294704\pi\)
\(164\) −31.2629 −2.44122
\(165\) 0 0
\(166\) −29.1213 −2.26025
\(167\) −25.4830 −1.97193 −0.985965 0.166950i \(-0.946608\pi\)
−0.985965 + 0.166950i \(0.946608\pi\)
\(168\) −32.8175 −2.53193
\(169\) −6.39074 −0.491596
\(170\) 0 0
\(171\) −43.1951 −3.30321
\(172\) 48.0970 3.66736
\(173\) 4.03225 0.306566 0.153283 0.988182i \(-0.451015\pi\)
0.153283 + 0.988182i \(0.451015\pi\)
\(174\) −5.37193 −0.407245
\(175\) 0 0
\(176\) −7.11172 −0.536066
\(177\) 38.7042 2.90918
\(178\) 2.80286 0.210083
\(179\) −21.2384 −1.58743 −0.793717 0.608287i \(-0.791857\pi\)
−0.793717 + 0.608287i \(0.791857\pi\)
\(180\) 0 0
\(181\) 11.0451 0.820973 0.410486 0.911867i \(-0.365359\pi\)
0.410486 + 0.911867i \(0.365359\pi\)
\(182\) 15.1635 1.12399
\(183\) −2.14298 −0.158414
\(184\) −13.2237 −0.974867
\(185\) 0 0
\(186\) 30.1804 2.21294
\(187\) 0 0
\(188\) −10.4920 −0.765210
\(189\) −30.1942 −2.19631
\(190\) 0 0
\(191\) −11.9621 −0.865544 −0.432772 0.901503i \(-0.642464\pi\)
−0.432772 + 0.901503i \(0.642464\pi\)
\(192\) 32.6314 2.35497
\(193\) 0.567470 0.0408474 0.0204237 0.999791i \(-0.493498\pi\)
0.0204237 + 0.999791i \(0.493498\pi\)
\(194\) 7.50778 0.539027
\(195\) 0 0
\(196\) −3.64846 −0.260604
\(197\) 8.93316 0.636461 0.318231 0.948013i \(-0.396911\pi\)
0.318231 + 0.948013i \(0.396911\pi\)
\(198\) −44.3335 −3.15065
\(199\) −16.6697 −1.18168 −0.590840 0.806789i \(-0.701204\pi\)
−0.590840 + 0.806789i \(0.701204\pi\)
\(200\) 0 0
\(201\) −4.73225 −0.333787
\(202\) 2.31356 0.162782
\(203\) 1.74539 0.122502
\(204\) 0 0
\(205\) 0 0
\(206\) 31.6634 2.20610
\(207\) −21.5109 −1.49511
\(208\) 6.84007 0.474274
\(209\) 16.7181 1.15642
\(210\) 0 0
\(211\) 19.6063 1.34975 0.674876 0.737931i \(-0.264197\pi\)
0.674876 + 0.737931i \(0.264197\pi\)
\(212\) −0.625391 −0.0429520
\(213\) −7.91182 −0.542109
\(214\) 2.88570 0.197262
\(215\) 0 0
\(216\) −52.1962 −3.55150
\(217\) −9.80588 −0.665666
\(218\) 45.2451 3.06438
\(219\) −25.9657 −1.75460
\(220\) 0 0
\(221\) 0 0
\(222\) 27.4604 1.84302
\(223\) −17.7907 −1.19135 −0.595677 0.803224i \(-0.703116\pi\)
−0.595677 + 0.803224i \(0.703116\pi\)
\(224\) −5.16061 −0.344808
\(225\) 0 0
\(226\) −26.6864 −1.77515
\(227\) 2.74184 0.181982 0.0909911 0.995852i \(-0.470997\pi\)
0.0909911 + 0.995852i \(0.470997\pi\)
\(228\) 74.1713 4.91212
\(229\) 28.4081 1.87726 0.938630 0.344925i \(-0.112096\pi\)
0.938630 + 0.344925i \(0.112096\pi\)
\(230\) 0 0
\(231\) 20.6615 1.35943
\(232\) 3.01722 0.198090
\(233\) −14.7458 −0.966032 −0.483016 0.875611i \(-0.660459\pi\)
−0.483016 + 0.875611i \(0.660459\pi\)
\(234\) 42.6401 2.78747
\(235\) 0 0
\(236\) −46.3330 −3.01602
\(237\) 14.1000 0.915892
\(238\) 0 0
\(239\) 8.93034 0.577656 0.288828 0.957381i \(-0.406734\pi\)
0.288828 + 0.957381i \(0.406734\pi\)
\(240\) 0 0
\(241\) −25.4005 −1.63619 −0.818095 0.575083i \(-0.804970\pi\)
−0.818095 + 0.575083i \(0.804970\pi\)
\(242\) −9.25913 −0.595199
\(243\) −19.6972 −1.26358
\(244\) 2.56538 0.164231
\(245\) 0 0
\(246\) 62.7192 3.99883
\(247\) −16.0795 −1.02312
\(248\) −16.9512 −1.07640
\(249\) 38.1645 2.41858
\(250\) 0 0
\(251\) −0.459279 −0.0289894 −0.0144947 0.999895i \(-0.504614\pi\)
−0.0144947 + 0.999895i \(0.504614\pi\)
\(252\) 63.9062 4.02571
\(253\) 8.32550 0.523420
\(254\) −3.91342 −0.245550
\(255\) 0 0
\(256\) −28.9704 −1.81065
\(257\) −18.6397 −1.16271 −0.581357 0.813648i \(-0.697478\pi\)
−0.581357 + 0.813648i \(0.697478\pi\)
\(258\) −96.4916 −6.00730
\(259\) −8.92213 −0.554394
\(260\) 0 0
\(261\) 4.90807 0.303802
\(262\) −33.9245 −2.09586
\(263\) 16.5539 1.02076 0.510379 0.859950i \(-0.329505\pi\)
0.510379 + 0.859950i \(0.329505\pi\)
\(264\) 35.7172 2.19824
\(265\) 0 0
\(266\) −36.8910 −2.26193
\(267\) −3.67325 −0.224799
\(268\) 5.66501 0.346046
\(269\) −7.70877 −0.470012 −0.235006 0.971994i \(-0.575511\pi\)
−0.235006 + 0.971994i \(0.575511\pi\)
\(270\) 0 0
\(271\) −21.0971 −1.28156 −0.640780 0.767725i \(-0.721389\pi\)
−0.640780 + 0.767725i \(0.721389\pi\)
\(272\) 0 0
\(273\) −19.8723 −1.20273
\(274\) −28.9145 −1.74679
\(275\) 0 0
\(276\) 36.9368 2.22334
\(277\) 6.30787 0.379003 0.189501 0.981880i \(-0.439313\pi\)
0.189501 + 0.981880i \(0.439313\pi\)
\(278\) 30.7184 1.84237
\(279\) −27.5744 −1.65083
\(280\) 0 0
\(281\) −23.6264 −1.40943 −0.704716 0.709490i \(-0.748925\pi\)
−0.704716 + 0.709490i \(0.748925\pi\)
\(282\) 21.0490 1.25345
\(283\) −19.3219 −1.14857 −0.574283 0.818657i \(-0.694719\pi\)
−0.574283 + 0.818657i \(0.694719\pi\)
\(284\) 9.47130 0.562018
\(285\) 0 0
\(286\) −16.5033 −0.975861
\(287\) −20.3780 −1.20288
\(288\) −14.5118 −0.855113
\(289\) 0 0
\(290\) 0 0
\(291\) −9.83920 −0.576784
\(292\) 31.0837 1.81903
\(293\) 11.1159 0.649397 0.324698 0.945818i \(-0.394737\pi\)
0.324698 + 0.945818i \(0.394737\pi\)
\(294\) 7.31949 0.426881
\(295\) 0 0
\(296\) −15.4235 −0.896474
\(297\) 32.8621 1.90685
\(298\) 13.2593 0.768093
\(299\) −8.00750 −0.463086
\(300\) 0 0
\(301\) 31.3509 1.80704
\(302\) −48.3264 −2.78087
\(303\) −3.03200 −0.174184
\(304\) −16.6411 −0.954431
\(305\) 0 0
\(306\) 0 0
\(307\) 8.08367 0.461359 0.230680 0.973030i \(-0.425905\pi\)
0.230680 + 0.973030i \(0.425905\pi\)
\(308\) −24.7340 −1.40935
\(309\) −41.4960 −2.36063
\(310\) 0 0
\(311\) 13.5612 0.768988 0.384494 0.923128i \(-0.374376\pi\)
0.384494 + 0.923128i \(0.374376\pi\)
\(312\) −34.3529 −1.94485
\(313\) −9.12199 −0.515605 −0.257803 0.966198i \(-0.582998\pi\)
−0.257803 + 0.966198i \(0.582998\pi\)
\(314\) −16.2770 −0.918565
\(315\) 0 0
\(316\) −16.8792 −0.949528
\(317\) 33.7435 1.89522 0.947611 0.319426i \(-0.103490\pi\)
0.947611 + 0.319426i \(0.103490\pi\)
\(318\) 1.25465 0.0703573
\(319\) −1.89960 −0.106357
\(320\) 0 0
\(321\) −3.78181 −0.211080
\(322\) −18.3715 −1.02380
\(323\) 0 0
\(324\) 67.7326 3.76292
\(325\) 0 0
\(326\) 36.8656 2.04180
\(327\) −59.2953 −3.27904
\(328\) −35.2271 −1.94509
\(329\) −6.83899 −0.377046
\(330\) 0 0
\(331\) −21.2983 −1.17066 −0.585329 0.810796i \(-0.699035\pi\)
−0.585329 + 0.810796i \(0.699035\pi\)
\(332\) −45.6870 −2.50740
\(333\) −25.0892 −1.37488
\(334\) −61.2004 −3.34874
\(335\) 0 0
\(336\) −20.5663 −1.12198
\(337\) −22.4073 −1.22061 −0.610303 0.792168i \(-0.708952\pi\)
−0.610303 + 0.792168i \(0.708952\pi\)
\(338\) −15.3481 −0.834829
\(339\) 34.9734 1.89949
\(340\) 0 0
\(341\) 10.6723 0.577937
\(342\) −103.738 −5.60953
\(343\) −19.5698 −1.05667
\(344\) 54.1958 2.92204
\(345\) 0 0
\(346\) 9.68393 0.520611
\(347\) −18.0764 −0.970393 −0.485197 0.874405i \(-0.661252\pi\)
−0.485197 + 0.874405i \(0.661252\pi\)
\(348\) −8.42776 −0.451775
\(349\) −9.00587 −0.482073 −0.241037 0.970516i \(-0.577487\pi\)
−0.241037 + 0.970516i \(0.577487\pi\)
\(350\) 0 0
\(351\) −31.6069 −1.68705
\(352\) 5.61658 0.299365
\(353\) 27.4982 1.46358 0.731791 0.681530i \(-0.238685\pi\)
0.731791 + 0.681530i \(0.238685\pi\)
\(354\) 92.9527 4.94038
\(355\) 0 0
\(356\) 4.39727 0.233055
\(357\) 0 0
\(358\) −51.0066 −2.69578
\(359\) 24.2551 1.28013 0.640066 0.768320i \(-0.278907\pi\)
0.640066 + 0.768320i \(0.278907\pi\)
\(360\) 0 0
\(361\) 20.1195 1.05892
\(362\) 26.5261 1.39418
\(363\) 12.1344 0.636891
\(364\) 23.7893 1.24690
\(365\) 0 0
\(366\) −5.14663 −0.269019
\(367\) −25.1930 −1.31506 −0.657532 0.753427i \(-0.728399\pi\)
−0.657532 + 0.753427i \(0.728399\pi\)
\(368\) −8.28715 −0.431997
\(369\) −57.3034 −2.98310
\(370\) 0 0
\(371\) −0.407647 −0.0211640
\(372\) 47.3486 2.45491
\(373\) 12.3570 0.639823 0.319911 0.947447i \(-0.396347\pi\)
0.319911 + 0.947447i \(0.396347\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −11.8224 −0.609696
\(377\) 1.82705 0.0940976
\(378\) −72.5151 −3.72977
\(379\) 1.73645 0.0891957 0.0445978 0.999005i \(-0.485799\pi\)
0.0445978 + 0.999005i \(0.485799\pi\)
\(380\) 0 0
\(381\) 5.12867 0.262750
\(382\) −28.7283 −1.46987
\(383\) −17.5969 −0.899158 −0.449579 0.893241i \(-0.648426\pi\)
−0.449579 + 0.893241i \(0.648426\pi\)
\(384\) 65.1412 3.32422
\(385\) 0 0
\(386\) 1.36285 0.0693671
\(387\) 88.1596 4.48140
\(388\) 11.7786 0.597967
\(389\) −11.0817 −0.561866 −0.280933 0.959727i \(-0.590644\pi\)
−0.280933 + 0.959727i \(0.590644\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −4.11109 −0.207641
\(393\) 44.4593 2.24267
\(394\) 21.4541 1.08084
\(395\) 0 0
\(396\) −69.5527 −3.49515
\(397\) −8.03226 −0.403128 −0.201564 0.979475i \(-0.564602\pi\)
−0.201564 + 0.979475i \(0.564602\pi\)
\(398\) −40.0342 −2.00673
\(399\) 48.3469 2.42037
\(400\) 0 0
\(401\) 10.9609 0.547360 0.273680 0.961821i \(-0.411759\pi\)
0.273680 + 0.961821i \(0.411759\pi\)
\(402\) −11.3651 −0.566838
\(403\) −10.2646 −0.511319
\(404\) 3.62963 0.180581
\(405\) 0 0
\(406\) 4.19176 0.208034
\(407\) 9.71046 0.481330
\(408\) 0 0
\(409\) 8.43948 0.417306 0.208653 0.977990i \(-0.433092\pi\)
0.208653 + 0.977990i \(0.433092\pi\)
\(410\) 0 0
\(411\) 37.8935 1.86915
\(412\) 49.6752 2.44732
\(413\) −30.2011 −1.48610
\(414\) −51.6610 −2.53900
\(415\) 0 0
\(416\) −5.40205 −0.264857
\(417\) −40.2576 −1.97142
\(418\) 40.1505 1.96383
\(419\) 14.4828 0.707533 0.353767 0.935334i \(-0.384901\pi\)
0.353767 + 0.935334i \(0.384901\pi\)
\(420\) 0 0
\(421\) 1.51690 0.0739292 0.0369646 0.999317i \(-0.488231\pi\)
0.0369646 + 0.999317i \(0.488231\pi\)
\(422\) 47.0869 2.29215
\(423\) −19.2314 −0.935063
\(424\) −0.704692 −0.0342229
\(425\) 0 0
\(426\) −19.0012 −0.920611
\(427\) 1.67218 0.0809226
\(428\) 4.52723 0.218832
\(429\) 21.6282 1.04422
\(430\) 0 0
\(431\) 19.7875 0.953129 0.476564 0.879140i \(-0.341882\pi\)
0.476564 + 0.879140i \(0.341882\pi\)
\(432\) −32.7107 −1.57379
\(433\) −9.49722 −0.456407 −0.228204 0.973613i \(-0.573285\pi\)
−0.228204 + 0.973613i \(0.573285\pi\)
\(434\) −23.5500 −1.13044
\(435\) 0 0
\(436\) 70.9828 3.39946
\(437\) 19.4813 0.931916
\(438\) −62.3597 −2.97966
\(439\) −20.0395 −0.956433 −0.478217 0.878242i \(-0.658717\pi\)
−0.478217 + 0.878242i \(0.658717\pi\)
\(440\) 0 0
\(441\) −6.68745 −0.318450
\(442\) 0 0
\(443\) 13.1946 0.626894 0.313447 0.949606i \(-0.398516\pi\)
0.313447 + 0.949606i \(0.398516\pi\)
\(444\) 43.0813 2.04455
\(445\) 0 0
\(446\) −42.7265 −2.02316
\(447\) −17.3768 −0.821895
\(448\) −25.4626 −1.20299
\(449\) 16.1247 0.760973 0.380486 0.924786i \(-0.375757\pi\)
0.380486 + 0.924786i \(0.375757\pi\)
\(450\) 0 0
\(451\) 22.1785 1.04435
\(452\) −41.8669 −1.96925
\(453\) 63.3334 2.97566
\(454\) 6.58486 0.309043
\(455\) 0 0
\(456\) 83.5764 3.91382
\(457\) 8.78267 0.410836 0.205418 0.978674i \(-0.434145\pi\)
0.205418 + 0.978674i \(0.434145\pi\)
\(458\) 68.2255 3.18797
\(459\) 0 0
\(460\) 0 0
\(461\) 18.3746 0.855789 0.427895 0.903829i \(-0.359255\pi\)
0.427895 + 0.903829i \(0.359255\pi\)
\(462\) 49.6211 2.30858
\(463\) 29.1662 1.35547 0.677735 0.735306i \(-0.262962\pi\)
0.677735 + 0.735306i \(0.262962\pi\)
\(464\) 1.89085 0.0877806
\(465\) 0 0
\(466\) −35.4139 −1.64052
\(467\) 8.21883 0.380322 0.190161 0.981753i \(-0.439099\pi\)
0.190161 + 0.981753i \(0.439099\pi\)
\(468\) 66.8960 3.09227
\(469\) 3.69261 0.170509
\(470\) 0 0
\(471\) 21.3316 0.982908
\(472\) −52.2082 −2.40307
\(473\) −34.1210 −1.56889
\(474\) 33.8628 1.55537
\(475\) 0 0
\(476\) 0 0
\(477\) −1.14631 −0.0524861
\(478\) 21.4473 0.980977
\(479\) 36.3883 1.66262 0.831312 0.555807i \(-0.187590\pi\)
0.831312 + 0.555807i \(0.187590\pi\)
\(480\) 0 0
\(481\) −9.33955 −0.425847
\(482\) −61.0024 −2.77858
\(483\) 24.0765 1.09552
\(484\) −14.5262 −0.660281
\(485\) 0 0
\(486\) −47.3052 −2.14581
\(487\) −33.0821 −1.49909 −0.749547 0.661951i \(-0.769729\pi\)
−0.749547 + 0.661951i \(0.769729\pi\)
\(488\) 2.89067 0.130855
\(489\) −48.3137 −2.18482
\(490\) 0 0
\(491\) 12.1162 0.546797 0.273398 0.961901i \(-0.411852\pi\)
0.273398 + 0.961901i \(0.411852\pi\)
\(492\) 98.3970 4.43608
\(493\) 0 0
\(494\) −38.6169 −1.73746
\(495\) 0 0
\(496\) −10.6231 −0.476992
\(497\) 6.17365 0.276926
\(498\) 91.6567 4.10723
\(499\) −4.93983 −0.221137 −0.110568 0.993869i \(-0.535267\pi\)
−0.110568 + 0.993869i \(0.535267\pi\)
\(500\) 0 0
\(501\) 80.2053 3.58331
\(502\) −1.10301 −0.0492299
\(503\) −22.7414 −1.01399 −0.506995 0.861949i \(-0.669244\pi\)
−0.506995 + 0.861949i \(0.669244\pi\)
\(504\) 72.0096 3.20756
\(505\) 0 0
\(506\) 19.9947 0.888873
\(507\) 20.1143 0.893306
\(508\) −6.13957 −0.272399
\(509\) −28.2780 −1.25340 −0.626701 0.779260i \(-0.715595\pi\)
−0.626701 + 0.779260i \(0.715595\pi\)
\(510\) 0 0
\(511\) 20.2612 0.896303
\(512\) −28.1824 −1.24550
\(513\) 76.8957 3.39503
\(514\) −44.7656 −1.97452
\(515\) 0 0
\(516\) −151.381 −6.66417
\(517\) 7.44326 0.327354
\(518\) −21.4276 −0.941474
\(519\) −12.6911 −0.557079
\(520\) 0 0
\(521\) −15.0564 −0.659632 −0.329816 0.944045i \(-0.606987\pi\)
−0.329816 + 0.944045i \(0.606987\pi\)
\(522\) 11.7873 0.515917
\(523\) −15.3033 −0.669165 −0.334583 0.942366i \(-0.608595\pi\)
−0.334583 + 0.942366i \(0.608595\pi\)
\(524\) −53.2225 −2.32504
\(525\) 0 0
\(526\) 39.7562 1.73345
\(527\) 0 0
\(528\) 22.3835 0.974116
\(529\) −13.2984 −0.578193
\(530\) 0 0
\(531\) −84.9263 −3.68549
\(532\) −57.8764 −2.50926
\(533\) −21.3314 −0.923965
\(534\) −8.82175 −0.381755
\(535\) 0 0
\(536\) 6.38335 0.275719
\(537\) 66.8460 2.88462
\(538\) −18.5136 −0.798176
\(539\) 2.58829 0.111486
\(540\) 0 0
\(541\) −5.89759 −0.253557 −0.126779 0.991931i \(-0.540464\pi\)
−0.126779 + 0.991931i \(0.540464\pi\)
\(542\) −50.6673 −2.17635
\(543\) −34.7633 −1.49184
\(544\) 0 0
\(545\) 0 0
\(546\) −47.7257 −2.04247
\(547\) 13.6997 0.585758 0.292879 0.956149i \(-0.405387\pi\)
0.292879 + 0.956149i \(0.405387\pi\)
\(548\) −45.3625 −1.93779
\(549\) 4.70222 0.200686
\(550\) 0 0
\(551\) −4.44498 −0.189363
\(552\) 41.6205 1.77149
\(553\) −11.0023 −0.467866
\(554\) 15.1491 0.643624
\(555\) 0 0
\(556\) 48.1926 2.04382
\(557\) −26.3831 −1.11789 −0.558943 0.829206i \(-0.688793\pi\)
−0.558943 + 0.829206i \(0.688793\pi\)
\(558\) −66.2232 −2.80345
\(559\) 32.8177 1.38804
\(560\) 0 0
\(561\) 0 0
\(562\) −56.7416 −2.39350
\(563\) 22.3909 0.943666 0.471833 0.881688i \(-0.343593\pi\)
0.471833 + 0.881688i \(0.343593\pi\)
\(564\) 33.0227 1.39051
\(565\) 0 0
\(566\) −46.4038 −1.95050
\(567\) 44.1500 1.85412
\(568\) 10.6723 0.447799
\(569\) 1.33840 0.0561085 0.0280542 0.999606i \(-0.491069\pi\)
0.0280542 + 0.999606i \(0.491069\pi\)
\(570\) 0 0
\(571\) −29.2226 −1.22293 −0.611464 0.791272i \(-0.709419\pi\)
−0.611464 + 0.791272i \(0.709419\pi\)
\(572\) −25.8912 −1.08257
\(573\) 37.6495 1.57283
\(574\) −48.9402 −2.04273
\(575\) 0 0
\(576\) −71.6013 −2.98339
\(577\) −14.0956 −0.586809 −0.293405 0.955988i \(-0.594788\pi\)
−0.293405 + 0.955988i \(0.594788\pi\)
\(578\) 0 0
\(579\) −1.78606 −0.0742261
\(580\) 0 0
\(581\) −29.7800 −1.23548
\(582\) −23.6300 −0.979497
\(583\) 0.443665 0.0183747
\(584\) 35.0252 1.44935
\(585\) 0 0
\(586\) 26.6961 1.10281
\(587\) 2.14440 0.0885089 0.0442545 0.999020i \(-0.485909\pi\)
0.0442545 + 0.999020i \(0.485909\pi\)
\(588\) 11.4832 0.473558
\(589\) 24.9727 1.02898
\(590\) 0 0
\(591\) −28.1163 −1.15655
\(592\) −9.66572 −0.397259
\(593\) −20.0106 −0.821736 −0.410868 0.911695i \(-0.634774\pi\)
−0.410868 + 0.911695i \(0.634774\pi\)
\(594\) 78.9223 3.23822
\(595\) 0 0
\(596\) 20.8019 0.852079
\(597\) 52.4662 2.14730
\(598\) −19.2310 −0.786413
\(599\) 18.2512 0.745724 0.372862 0.927887i \(-0.378377\pi\)
0.372862 + 0.927887i \(0.378377\pi\)
\(600\) 0 0
\(601\) 11.2285 0.458020 0.229010 0.973424i \(-0.426451\pi\)
0.229010 + 0.973424i \(0.426451\pi\)
\(602\) 75.2931 3.06872
\(603\) 10.3837 0.422857
\(604\) −75.8169 −3.08495
\(605\) 0 0
\(606\) −7.28172 −0.295800
\(607\) −25.4461 −1.03282 −0.516412 0.856340i \(-0.672733\pi\)
−0.516412 + 0.856340i \(0.672733\pi\)
\(608\) 13.1425 0.533000
\(609\) −5.49345 −0.222606
\(610\) 0 0
\(611\) −7.15895 −0.289620
\(612\) 0 0
\(613\) 38.4941 1.55476 0.777380 0.629031i \(-0.216548\pi\)
0.777380 + 0.629031i \(0.216548\pi\)
\(614\) 19.4139 0.783482
\(615\) 0 0
\(616\) −27.8704 −1.12293
\(617\) 23.0835 0.929305 0.464653 0.885493i \(-0.346179\pi\)
0.464653 + 0.885493i \(0.346179\pi\)
\(618\) −99.6578 −4.00882
\(619\) −7.27540 −0.292423 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(620\) 0 0
\(621\) 38.2936 1.53667
\(622\) 32.5690 1.30590
\(623\) 2.86626 0.114834
\(624\) −21.5285 −0.861830
\(625\) 0 0
\(626\) −21.9076 −0.875602
\(627\) −52.6187 −2.10139
\(628\) −25.5362 −1.01901
\(629\) 0 0
\(630\) 0 0
\(631\) 33.2465 1.32352 0.661761 0.749715i \(-0.269809\pi\)
0.661761 + 0.749715i \(0.269809\pi\)
\(632\) −19.0195 −0.756555
\(633\) −61.7090 −2.45271
\(634\) 81.0390 3.21847
\(635\) 0 0
\(636\) 1.96836 0.0780505
\(637\) −2.48943 −0.0986347
\(638\) −4.56213 −0.180616
\(639\) 17.3605 0.686769
\(640\) 0 0
\(641\) 21.4007 0.845276 0.422638 0.906299i \(-0.361104\pi\)
0.422638 + 0.906299i \(0.361104\pi\)
\(642\) −9.08247 −0.358457
\(643\) 12.3392 0.486610 0.243305 0.969950i \(-0.421768\pi\)
0.243305 + 0.969950i \(0.421768\pi\)
\(644\) −28.8221 −1.13575
\(645\) 0 0
\(646\) 0 0
\(647\) 2.48180 0.0975696 0.0487848 0.998809i \(-0.484465\pi\)
0.0487848 + 0.998809i \(0.484465\pi\)
\(648\) 76.3212 2.99818
\(649\) 32.8696 1.29024
\(650\) 0 0
\(651\) 30.8631 1.20962
\(652\) 57.8367 2.26506
\(653\) 24.2220 0.947882 0.473941 0.880557i \(-0.342831\pi\)
0.473941 + 0.880557i \(0.342831\pi\)
\(654\) −142.405 −5.56847
\(655\) 0 0
\(656\) −22.0763 −0.861936
\(657\) 56.9750 2.22281
\(658\) −16.4247 −0.640300
\(659\) −0.298916 −0.0116441 −0.00582205 0.999983i \(-0.501853\pi\)
−0.00582205 + 0.999983i \(0.501853\pi\)
\(660\) 0 0
\(661\) 45.7248 1.77849 0.889244 0.457434i \(-0.151231\pi\)
0.889244 + 0.457434i \(0.151231\pi\)
\(662\) −51.1504 −1.98802
\(663\) 0 0
\(664\) −51.4802 −1.99782
\(665\) 0 0
\(666\) −60.2549 −2.33483
\(667\) −2.21357 −0.0857099
\(668\) −96.0143 −3.71491
\(669\) 55.9946 2.16488
\(670\) 0 0
\(671\) −1.81993 −0.0702577
\(672\) 16.2425 0.626570
\(673\) 24.6536 0.950325 0.475162 0.879898i \(-0.342389\pi\)
0.475162 + 0.879898i \(0.342389\pi\)
\(674\) −53.8139 −2.07284
\(675\) 0 0
\(676\) −24.0789 −0.926113
\(677\) −34.2463 −1.31619 −0.658097 0.752933i \(-0.728638\pi\)
−0.658097 + 0.752933i \(0.728638\pi\)
\(678\) 83.9929 3.22573
\(679\) 7.67760 0.294639
\(680\) 0 0
\(681\) −8.62969 −0.330690
\(682\) 25.6308 0.981454
\(683\) 46.3391 1.77312 0.886558 0.462618i \(-0.153090\pi\)
0.886558 + 0.462618i \(0.153090\pi\)
\(684\) −162.750 −6.22290
\(685\) 0 0
\(686\) −46.9992 −1.79444
\(687\) −89.4119 −3.41128
\(688\) 33.9638 1.29486
\(689\) −0.426719 −0.0162567
\(690\) 0 0
\(691\) 25.0441 0.952724 0.476362 0.879249i \(-0.341955\pi\)
0.476362 + 0.879249i \(0.341955\pi\)
\(692\) 15.1926 0.577537
\(693\) −45.3364 −1.72219
\(694\) −43.4127 −1.64792
\(695\) 0 0
\(696\) −9.49642 −0.359961
\(697\) 0 0
\(698\) −21.6287 −0.818658
\(699\) 46.4112 1.75543
\(700\) 0 0
\(701\) −45.8247 −1.73078 −0.865388 0.501102i \(-0.832928\pi\)
−0.865388 + 0.501102i \(0.832928\pi\)
\(702\) −75.9077 −2.86495
\(703\) 22.7220 0.856977
\(704\) 27.7123 1.04445
\(705\) 0 0
\(706\) 66.0402 2.48546
\(707\) 2.36589 0.0889786
\(708\) 145.829 5.48059
\(709\) 19.9724 0.750078 0.375039 0.927009i \(-0.377629\pi\)
0.375039 + 0.927009i \(0.377629\pi\)
\(710\) 0 0
\(711\) −30.9388 −1.16029
\(712\) 4.95486 0.185691
\(713\) 12.4362 0.465740
\(714\) 0 0
\(715\) 0 0
\(716\) −80.0218 −2.99055
\(717\) −28.1074 −1.04969
\(718\) 58.2514 2.17392
\(719\) −33.6934 −1.25655 −0.628277 0.777990i \(-0.716239\pi\)
−0.628277 + 0.777990i \(0.716239\pi\)
\(720\) 0 0
\(721\) 32.3797 1.20588
\(722\) 48.3195 1.79827
\(723\) 79.9457 2.97321
\(724\) 41.6154 1.54662
\(725\) 0 0
\(726\) 29.1423 1.08157
\(727\) 6.28209 0.232990 0.116495 0.993191i \(-0.462834\pi\)
0.116495 + 0.993191i \(0.462834\pi\)
\(728\) 26.8058 0.993489
\(729\) 8.06486 0.298699
\(730\) 0 0
\(731\) 0 0
\(732\) −8.07429 −0.298434
\(733\) −10.1710 −0.375675 −0.187837 0.982200i \(-0.560148\pi\)
−0.187837 + 0.982200i \(0.560148\pi\)
\(734\) −60.5040 −2.23324
\(735\) 0 0
\(736\) 6.54489 0.241248
\(737\) −4.01888 −0.148037
\(738\) −137.621 −5.06590
\(739\) −14.2869 −0.525552 −0.262776 0.964857i \(-0.584638\pi\)
−0.262776 + 0.964857i \(0.584638\pi\)
\(740\) 0 0
\(741\) 50.6088 1.85916
\(742\) −0.979014 −0.0359407
\(743\) −21.9933 −0.806855 −0.403428 0.915012i \(-0.632181\pi\)
−0.403428 + 0.915012i \(0.632181\pi\)
\(744\) 53.3525 1.95600
\(745\) 0 0
\(746\) 29.6769 1.08655
\(747\) −83.7422 −3.06397
\(748\) 0 0
\(749\) 2.95097 0.107826
\(750\) 0 0
\(751\) −11.9963 −0.437751 −0.218876 0.975753i \(-0.570239\pi\)
−0.218876 + 0.975753i \(0.570239\pi\)
\(752\) −7.40897 −0.270177
\(753\) 1.44554 0.0526784
\(754\) 4.38787 0.159797
\(755\) 0 0
\(756\) −113.765 −4.13761
\(757\) 41.6081 1.51227 0.756135 0.654415i \(-0.227085\pi\)
0.756135 + 0.654415i \(0.227085\pi\)
\(758\) 4.17031 0.151472
\(759\) −26.2038 −0.951136
\(760\) 0 0
\(761\) 50.6689 1.83675 0.918374 0.395715i \(-0.129503\pi\)
0.918374 + 0.395715i \(0.129503\pi\)
\(762\) 12.3171 0.446203
\(763\) 46.2685 1.67503
\(764\) −45.0705 −1.63059
\(765\) 0 0
\(766\) −42.2610 −1.52695
\(767\) −31.6141 −1.14152
\(768\) 91.1817 3.29024
\(769\) 36.4245 1.31350 0.656750 0.754108i \(-0.271931\pi\)
0.656750 + 0.754108i \(0.271931\pi\)
\(770\) 0 0
\(771\) 58.6668 2.11283
\(772\) 2.13810 0.0769521
\(773\) −40.5949 −1.46010 −0.730049 0.683395i \(-0.760503\pi\)
−0.730049 + 0.683395i \(0.760503\pi\)
\(774\) 211.726 7.61033
\(775\) 0 0
\(776\) 13.2721 0.476442
\(777\) 28.0816 1.00742
\(778\) −26.6141 −0.954163
\(779\) 51.8967 1.85939
\(780\) 0 0
\(781\) −6.71913 −0.240430
\(782\) 0 0
\(783\) −8.73732 −0.312246
\(784\) −2.57637 −0.0920131
\(785\) 0 0
\(786\) 106.774 3.80851
\(787\) −9.86307 −0.351580 −0.175790 0.984428i \(-0.556248\pi\)
−0.175790 + 0.984428i \(0.556248\pi\)
\(788\) 33.6582 1.19902
\(789\) −52.1019 −1.85488
\(790\) 0 0
\(791\) −27.2900 −0.970321
\(792\) −78.3721 −2.78483
\(793\) 1.75042 0.0621591
\(794\) −19.2904 −0.684592
\(795\) 0 0
\(796\) −62.8076 −2.22616
\(797\) 39.4185 1.39628 0.698138 0.715964i \(-0.254012\pi\)
0.698138 + 0.715964i \(0.254012\pi\)
\(798\) 116.111 4.11028
\(799\) 0 0
\(800\) 0 0
\(801\) 8.06000 0.284786
\(802\) 26.3239 0.929528
\(803\) −22.0514 −0.778177
\(804\) −17.8301 −0.628819
\(805\) 0 0
\(806\) −24.6518 −0.868322
\(807\) 24.2627 0.854086
\(808\) 4.08988 0.143881
\(809\) 9.42731 0.331447 0.165723 0.986172i \(-0.447004\pi\)
0.165723 + 0.986172i \(0.447004\pi\)
\(810\) 0 0
\(811\) −22.2187 −0.780203 −0.390101 0.920772i \(-0.627560\pi\)
−0.390101 + 0.920772i \(0.627560\pi\)
\(812\) 6.57624 0.230781
\(813\) 66.4013 2.32880
\(814\) 23.3208 0.817395
\(815\) 0 0
\(816\) 0 0
\(817\) −79.8415 −2.79330
\(818\) 20.2684 0.708670
\(819\) 43.6047 1.52367
\(820\) 0 0
\(821\) 14.1242 0.492938 0.246469 0.969151i \(-0.420730\pi\)
0.246469 + 0.969151i \(0.420730\pi\)
\(822\) 91.0058 3.17419
\(823\) 47.6084 1.65953 0.829763 0.558116i \(-0.188476\pi\)
0.829763 + 0.558116i \(0.188476\pi\)
\(824\) 55.9741 1.94995
\(825\) 0 0
\(826\) −72.5317 −2.52370
\(827\) −4.85003 −0.168652 −0.0843261 0.996438i \(-0.526874\pi\)
−0.0843261 + 0.996438i \(0.526874\pi\)
\(828\) −81.0484 −2.81663
\(829\) 19.9101 0.691508 0.345754 0.938325i \(-0.387623\pi\)
0.345754 + 0.938325i \(0.387623\pi\)
\(830\) 0 0
\(831\) −19.8534 −0.688708
\(832\) −26.6538 −0.924055
\(833\) 0 0
\(834\) −96.6835 −3.34787
\(835\) 0 0
\(836\) 62.9902 2.17856
\(837\) 49.0877 1.69672
\(838\) 34.7823 1.20153
\(839\) −1.98935 −0.0686799 −0.0343400 0.999410i \(-0.510933\pi\)
−0.0343400 + 0.999410i \(0.510933\pi\)
\(840\) 0 0
\(841\) −28.4949 −0.982584
\(842\) 3.64302 0.125547
\(843\) 74.3618 2.56116
\(844\) 73.8722 2.54279
\(845\) 0 0
\(846\) −46.1866 −1.58793
\(847\) −9.46857 −0.325344
\(848\) −0.441621 −0.0151653
\(849\) 60.8138 2.08712
\(850\) 0 0
\(851\) 11.3154 0.387887
\(852\) −29.8100 −1.02127
\(853\) −26.0104 −0.890579 −0.445289 0.895387i \(-0.646899\pi\)
−0.445289 + 0.895387i \(0.646899\pi\)
\(854\) 4.01595 0.137423
\(855\) 0 0
\(856\) 5.10129 0.174359
\(857\) 18.9964 0.648904 0.324452 0.945902i \(-0.394820\pi\)
0.324452 + 0.945902i \(0.394820\pi\)
\(858\) 51.9426 1.77329
\(859\) 15.6479 0.533899 0.266950 0.963710i \(-0.413984\pi\)
0.266950 + 0.963710i \(0.413984\pi\)
\(860\) 0 0
\(861\) 64.1379 2.18581
\(862\) 47.5220 1.61861
\(863\) 44.1746 1.50372 0.751860 0.659322i \(-0.229157\pi\)
0.751860 + 0.659322i \(0.229157\pi\)
\(864\) 25.8337 0.878881
\(865\) 0 0
\(866\) −22.8087 −0.775072
\(867\) 0 0
\(868\) −36.9464 −1.25404
\(869\) 11.9744 0.406205
\(870\) 0 0
\(871\) 3.86537 0.130973
\(872\) 79.9836 2.70859
\(873\) 21.5896 0.730697
\(874\) 46.7867 1.58258
\(875\) 0 0
\(876\) −97.8330 −3.30547
\(877\) −9.87744 −0.333538 −0.166769 0.985996i \(-0.553333\pi\)
−0.166769 + 0.985996i \(0.553333\pi\)
\(878\) −48.1273 −1.62422
\(879\) −34.9862 −1.18006
\(880\) 0 0
\(881\) 51.6330 1.73956 0.869780 0.493439i \(-0.164260\pi\)
0.869780 + 0.493439i \(0.164260\pi\)
\(882\) −16.0607 −0.540793
\(883\) 17.8503 0.600710 0.300355 0.953827i \(-0.402895\pi\)
0.300355 + 0.953827i \(0.402895\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 31.6884 1.06459
\(887\) 57.3894 1.92695 0.963474 0.267802i \(-0.0862974\pi\)
0.963474 + 0.267802i \(0.0862974\pi\)
\(888\) 48.5441 1.62903
\(889\) −4.00194 −0.134221
\(890\) 0 0
\(891\) −48.0509 −1.60977
\(892\) −67.0315 −2.24438
\(893\) 17.4169 0.582833
\(894\) −41.7325 −1.39574
\(895\) 0 0
\(896\) −50.8302 −1.69812
\(897\) 25.2029 0.841499
\(898\) 38.7255 1.29229
\(899\) −2.83753 −0.0946370
\(900\) 0 0
\(901\) 0 0
\(902\) 53.2644 1.77351
\(903\) −98.6742 −3.28367
\(904\) −47.1757 −1.56904
\(905\) 0 0
\(906\) 152.103 5.05328
\(907\) 7.21531 0.239580 0.119790 0.992799i \(-0.461778\pi\)
0.119790 + 0.992799i \(0.461778\pi\)
\(908\) 10.3307 0.342835
\(909\) 6.65295 0.220665
\(910\) 0 0
\(911\) −47.1365 −1.56170 −0.780852 0.624717i \(-0.785214\pi\)
−0.780852 + 0.624717i \(0.785214\pi\)
\(912\) 52.3763 1.73435
\(913\) 32.4113 1.07266
\(914\) 21.0927 0.697683
\(915\) 0 0
\(916\) 107.036 3.53656
\(917\) −34.6919 −1.14563
\(918\) 0 0
\(919\) −3.10828 −0.102533 −0.0512663 0.998685i \(-0.516326\pi\)
−0.0512663 + 0.998685i \(0.516326\pi\)
\(920\) 0 0
\(921\) −25.4426 −0.838363
\(922\) 44.1288 1.45330
\(923\) 6.46249 0.212715
\(924\) 77.8481 2.56101
\(925\) 0 0
\(926\) 70.0463 2.30186
\(927\) 91.0524 2.99055
\(928\) −1.49333 −0.0490209
\(929\) −18.2447 −0.598588 −0.299294 0.954161i \(-0.596751\pi\)
−0.299294 + 0.954161i \(0.596751\pi\)
\(930\) 0 0
\(931\) 6.05647 0.198493
\(932\) −55.5592 −1.81990
\(933\) −42.6828 −1.39737
\(934\) 19.7385 0.645864
\(935\) 0 0
\(936\) 75.3786 2.46383
\(937\) 14.3214 0.467860 0.233930 0.972253i \(-0.424841\pi\)
0.233930 + 0.972253i \(0.424841\pi\)
\(938\) 8.86825 0.289559
\(939\) 28.7106 0.936936
\(940\) 0 0
\(941\) −29.4874 −0.961261 −0.480631 0.876923i \(-0.659592\pi\)
−0.480631 + 0.876923i \(0.659592\pi\)
\(942\) 51.2304 1.66918
\(943\) 25.8442 0.841603
\(944\) −32.7182 −1.06489
\(945\) 0 0
\(946\) −81.9457 −2.66429
\(947\) −10.2467 −0.332973 −0.166486 0.986044i \(-0.553242\pi\)
−0.166486 + 0.986044i \(0.553242\pi\)
\(948\) 53.1257 1.72544
\(949\) 21.2091 0.688477
\(950\) 0 0
\(951\) −106.204 −3.44392
\(952\) 0 0
\(953\) 30.5425 0.989370 0.494685 0.869072i \(-0.335283\pi\)
0.494685 + 0.869072i \(0.335283\pi\)
\(954\) −2.75301 −0.0891320
\(955\) 0 0
\(956\) 33.6476 1.08824
\(957\) 5.97883 0.193268
\(958\) 87.3909 2.82347
\(959\) −29.5686 −0.954818
\(960\) 0 0
\(961\) −15.0583 −0.485751
\(962\) −22.4301 −0.723175
\(963\) 8.29821 0.267406
\(964\) −95.7036 −3.08241
\(965\) 0 0
\(966\) 57.8225 1.86041
\(967\) 50.0287 1.60881 0.804407 0.594078i \(-0.202483\pi\)
0.804407 + 0.594078i \(0.202483\pi\)
\(968\) −16.3681 −0.526092
\(969\) 0 0
\(970\) 0 0
\(971\) 0.00176375 5.66015e−5 0 2.83007e−5 1.00000i \(-0.499991\pi\)
2.83007e−5 1.00000i \(0.499991\pi\)
\(972\) −74.2148 −2.38044
\(973\) 31.4133 1.00706
\(974\) −79.4507 −2.54577
\(975\) 0 0
\(976\) 1.81155 0.0579862
\(977\) 15.5052 0.496055 0.248028 0.968753i \(-0.420218\pi\)
0.248028 + 0.968753i \(0.420218\pi\)
\(978\) −116.031 −3.71027
\(979\) −3.11952 −0.0997002
\(980\) 0 0
\(981\) 130.108 4.15404
\(982\) 29.0985 0.928571
\(983\) −16.7282 −0.533547 −0.266774 0.963759i \(-0.585958\pi\)
−0.266774 + 0.963759i \(0.585958\pi\)
\(984\) 110.874 3.53453
\(985\) 0 0
\(986\) 0 0
\(987\) 21.5251 0.685151
\(988\) −60.5842 −1.92744
\(989\) −39.7606 −1.26431
\(990\) 0 0
\(991\) −2.57414 −0.0817701 −0.0408851 0.999164i \(-0.513018\pi\)
−0.0408851 + 0.999164i \(0.513018\pi\)
\(992\) 8.38976 0.266375
\(993\) 67.0343 2.12727
\(994\) 14.8268 0.470277
\(995\) 0 0
\(996\) 143.796 4.55634
\(997\) −16.8644 −0.534101 −0.267050 0.963683i \(-0.586049\pi\)
−0.267050 + 0.963683i \(0.586049\pi\)
\(998\) −11.8636 −0.375535
\(999\) 44.6637 1.41310
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bh.1.6 6
5.4 even 2 1445.2.a.m.1.1 yes 6
17.16 even 2 7225.2.a.bi.1.6 6
85.4 even 4 1445.2.d.h.866.11 12
85.64 even 4 1445.2.d.h.866.12 12
85.84 even 2 1445.2.a.l.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.l.1.1 6 85.84 even 2
1445.2.a.m.1.1 yes 6 5.4 even 2
1445.2.d.h.866.11 12 85.4 even 4
1445.2.d.h.866.12 12 85.64 even 4
7225.2.a.bh.1.6 6 1.1 even 1 trivial
7225.2.a.bi.1.6 6 17.16 even 2