Properties

Label 7220.2.a.f
Level 7220
Weight 2
Character orbit 7220.a
Self dual yes
Analytic conductor 57.652
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7220 = 2^{2} \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7220.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(57.6519902594\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{3} - q^{5} + 2q^{7} + q^{9} + O(q^{10}) \) \( q + 2q^{3} - q^{5} + 2q^{7} + q^{9} - 2q^{13} - 2q^{15} - 6q^{17} + 4q^{21} + 6q^{23} + q^{25} - 4q^{27} - 6q^{29} + 4q^{31} - 2q^{35} - 2q^{37} - 4q^{39} - 6q^{41} - 10q^{43} - q^{45} - 6q^{47} - 3q^{49} - 12q^{51} + 6q^{53} - 12q^{59} + 2q^{61} + 2q^{63} + 2q^{65} - 2q^{67} + 12q^{69} + 12q^{71} + 2q^{73} + 2q^{75} - 8q^{79} - 11q^{81} + 6q^{83} + 6q^{85} - 12q^{87} + 6q^{89} - 4q^{91} + 8q^{93} - 2q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 0 −1.00000 0 2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7220.2.a.f 1
19.b odd 2 1 20.2.a.a 1
57.d even 2 1 180.2.a.a 1
76.d even 2 1 80.2.a.b 1
95.d odd 2 1 100.2.a.a 1
95.g even 4 2 100.2.c.a 2
133.c even 2 1 980.2.a.h 1
133.o even 6 2 980.2.i.c 2
133.r odd 6 2 980.2.i.i 2
152.b even 2 1 320.2.a.a 1
152.g odd 2 1 320.2.a.f 1
171.l even 6 2 1620.2.i.b 2
171.o odd 6 2 1620.2.i.h 2
209.d even 2 1 2420.2.a.a 1
228.b odd 2 1 720.2.a.h 1
247.d odd 2 1 3380.2.a.c 1
247.i even 4 2 3380.2.f.b 2
285.b even 2 1 900.2.a.b 1
285.j odd 4 2 900.2.d.c 2
304.j odd 4 2 1280.2.d.c 2
304.m even 4 2 1280.2.d.g 2
323.c odd 2 1 5780.2.a.f 1
323.g odd 4 2 5780.2.c.a 2
380.d even 2 1 400.2.a.c 1
380.j odd 4 2 400.2.c.b 2
399.h odd 2 1 8820.2.a.g 1
456.l odd 2 1 2880.2.a.f 1
456.p even 2 1 2880.2.a.m 1
532.b odd 2 1 3920.2.a.h 1
665.g even 2 1 4900.2.a.e 1
665.n odd 4 2 4900.2.e.f 2
760.b odd 2 1 1600.2.a.c 1
760.p even 2 1 1600.2.a.w 1
760.t even 4 2 1600.2.c.d 2
760.y odd 4 2 1600.2.c.e 2
836.h odd 2 1 9680.2.a.ba 1
1140.p odd 2 1 3600.2.a.be 1
1140.w even 4 2 3600.2.f.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.2.a.a 1 19.b odd 2 1
80.2.a.b 1 76.d even 2 1
100.2.a.a 1 95.d odd 2 1
100.2.c.a 2 95.g even 4 2
180.2.a.a 1 57.d even 2 1
320.2.a.a 1 152.b even 2 1
320.2.a.f 1 152.g odd 2 1
400.2.a.c 1 380.d even 2 1
400.2.c.b 2 380.j odd 4 2
720.2.a.h 1 228.b odd 2 1
900.2.a.b 1 285.b even 2 1
900.2.d.c 2 285.j odd 4 2
980.2.a.h 1 133.c even 2 1
980.2.i.c 2 133.o even 6 2
980.2.i.i 2 133.r odd 6 2
1280.2.d.c 2 304.j odd 4 2
1280.2.d.g 2 304.m even 4 2
1600.2.a.c 1 760.b odd 2 1
1600.2.a.w 1 760.p even 2 1
1600.2.c.d 2 760.t even 4 2
1600.2.c.e 2 760.y odd 4 2
1620.2.i.b 2 171.l even 6 2
1620.2.i.h 2 171.o odd 6 2
2420.2.a.a 1 209.d even 2 1
2880.2.a.f 1 456.l odd 2 1
2880.2.a.m 1 456.p even 2 1
3380.2.a.c 1 247.d odd 2 1
3380.2.f.b 2 247.i even 4 2
3600.2.a.be 1 1140.p odd 2 1
3600.2.f.j 2 1140.w even 4 2
3920.2.a.h 1 532.b odd 2 1
4900.2.a.e 1 665.g even 2 1
4900.2.e.f 2 665.n odd 4 2
5780.2.a.f 1 323.c odd 2 1
5780.2.c.a 2 323.g odd 4 2
7220.2.a.f 1 1.a even 1 1 trivial
8820.2.a.g 1 399.h odd 2 1
9680.2.a.ba 1 836.h odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(19\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7220))\):

\( T_{3} - 2 \)
\( T_{7} - 2 \)
\( T_{13} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - 2 T + 3 T^{2} \)
$5$ \( 1 + T \)
$7$ \( 1 - 2 T + 7 T^{2} \)
$11$ \( 1 + 11 T^{2} \)
$13$ \( 1 + 2 T + 13 T^{2} \)
$17$ \( 1 + 6 T + 17 T^{2} \)
$19$ 1
$23$ \( 1 - 6 T + 23 T^{2} \)
$29$ \( 1 + 6 T + 29 T^{2} \)
$31$ \( 1 - 4 T + 31 T^{2} \)
$37$ \( 1 + 2 T + 37 T^{2} \)
$41$ \( 1 + 6 T + 41 T^{2} \)
$43$ \( 1 + 10 T + 43 T^{2} \)
$47$ \( 1 + 6 T + 47 T^{2} \)
$53$ \( 1 - 6 T + 53 T^{2} \)
$59$ \( 1 + 12 T + 59 T^{2} \)
$61$ \( 1 - 2 T + 61 T^{2} \)
$67$ \( 1 + 2 T + 67 T^{2} \)
$71$ \( 1 - 12 T + 71 T^{2} \)
$73$ \( 1 - 2 T + 73 T^{2} \)
$79$ \( 1 + 8 T + 79 T^{2} \)
$83$ \( 1 - 6 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 + 2 T + 97 T^{2} \)
show more
show less