Properties

Label 722.6.a.f
Level $722$
Weight $6$
Character orbit 722.a
Self dual yes
Analytic conductor $115.797$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [722,6,Mod(1,722)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("722.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(722, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 722.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,12,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.797117905\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 133x - 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + (\beta_1 - 5) q^{3} + 16 q^{4} + ( - \beta_{2} + \beta_1 - 5) q^{5} + (4 \beta_1 - 20) q^{6} + (4 \beta_1 - 104) q^{7} + 64 q^{8} + (4 \beta_{2} - 10 \beta_1 + 138) q^{9} + ( - 4 \beta_{2} + 4 \beta_1 - 20) q^{10}+ \cdots + ( - 706 \beta_{2} + 1494 \beta_1 - 9784) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} - 15 q^{3} + 48 q^{4} - 14 q^{5} - 60 q^{6} - 312 q^{7} + 192 q^{8} + 410 q^{9} - 56 q^{10} - 469 q^{11} - 240 q^{12} - 736 q^{13} - 1248 q^{14} + 954 q^{15} + 768 q^{16} + 1000 q^{17} + 1640 q^{18}+ \cdots - 28646 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 133x - 30 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 89 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 89 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−11.4181
−0.225650
11.6437
4.00000 −27.8362 16.0000 −69.2088 −111.345 −195.345 64.0000 531.852 −276.835
1.2 4.00000 −5.45130 16.0000 83.4978 −21.8052 −105.805 64.0000 −213.283 333.991
1.3 4.00000 18.2875 16.0000 −28.2890 73.1499 −10.8501 64.0000 91.4313 −113.156
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 722.6.a.f 3
19.b odd 2 1 722.6.a.e 3
19.d odd 6 2 38.6.c.a 6
57.f even 6 2 342.6.g.a 6
76.f even 6 2 304.6.i.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.6.c.a 6 19.d odd 6 2
304.6.i.a 6 76.f even 6 2
342.6.g.a 6 57.f even 6 2
722.6.a.e 3 19.b odd 2 1
722.6.a.f 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 15T_{3}^{2} - 457T_{3} - 2775 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(722))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 15 T^{2} + \cdots - 2775 \) Copy content Toggle raw display
$5$ \( T^{3} + 14 T^{2} + \cdots - 163476 \) Copy content Toggle raw display
$7$ \( T^{3} + 312 T^{2} + \cdots + 224256 \) Copy content Toggle raw display
$11$ \( T^{3} + 469 T^{2} + \cdots + 2905680 \) Copy content Toggle raw display
$13$ \( T^{3} + 736 T^{2} + \cdots - 19859022 \) Copy content Toggle raw display
$17$ \( T^{3} - 1000 T^{2} + \cdots - 67385250 \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 1990597134 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 2147316084 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 281768267232 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 34115602072 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 406888455423 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 16394204748 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 440199642180 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 13538278025010 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 200402275455 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 320566542320 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 5436230212089 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 21020361026454 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 23704910119239 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 780775782070780 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 518524918263648 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 113429508943950 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 57457989701689 \) Copy content Toggle raw display
show more
show less