Properties

Label 722.4.a.k.1.3
Level $722$
Weight $4$
Character 722.1
Self dual yes
Analytic conductor $42.599$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [722,4,Mod(1,722)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("722.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(722, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 722.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.5993790241\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.253788.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 63x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(8.33908\) of defining polynomial
Character \(\chi\) \(=\) 722.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +6.33908 q^{3} +4.00000 q^{4} +5.93108 q^{5} +12.6782 q^{6} +0.660916 q^{7} +8.00000 q^{8} +13.1840 q^{9} +11.8622 q^{10} +50.1496 q^{11} +25.3563 q^{12} -2.62650 q^{13} +1.32183 q^{14} +37.5976 q^{15} +16.0000 q^{16} +57.8105 q^{17} +26.3680 q^{18} +23.7243 q^{20} +4.18960 q^{21} +100.299 q^{22} +37.9656 q^{23} +50.7127 q^{24} -89.8223 q^{25} -5.25300 q^{26} -87.5809 q^{27} +2.64366 q^{28} -309.828 q^{29} +75.1952 q^{30} +282.420 q^{31} +32.0000 q^{32} +317.902 q^{33} +115.621 q^{34} +3.91994 q^{35} +52.7360 q^{36} +21.0744 q^{37} -16.6496 q^{39} +47.4486 q^{40} +344.092 q^{41} +8.37920 q^{42} +265.350 q^{43} +200.598 q^{44} +78.1953 q^{45} +75.9312 q^{46} -139.793 q^{47} +101.425 q^{48} -342.563 q^{49} -179.645 q^{50} +366.466 q^{51} -10.5060 q^{52} +133.787 q^{53} -175.162 q^{54} +297.441 q^{55} +5.28733 q^{56} -619.656 q^{58} -455.822 q^{59} +150.390 q^{60} +108.437 q^{61} +564.840 q^{62} +8.71351 q^{63} +64.0000 q^{64} -15.5780 q^{65} +635.805 q^{66} -26.3960 q^{67} +231.242 q^{68} +240.667 q^{69} +7.83989 q^{70} +1119.05 q^{71} +105.472 q^{72} -470.449 q^{73} +42.1489 q^{74} -569.391 q^{75} +33.1446 q^{77} -33.2992 q^{78} -381.892 q^{79} +94.8973 q^{80} -911.150 q^{81} +688.184 q^{82} +1322.28 q^{83} +16.7584 q^{84} +342.879 q^{85} +530.701 q^{86} -1964.03 q^{87} +401.197 q^{88} -405.489 q^{89} +156.391 q^{90} -1.73590 q^{91} +151.862 q^{92} +1790.28 q^{93} -279.587 q^{94} +202.851 q^{96} -1374.15 q^{97} -685.126 q^{98} +661.171 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 5 q^{3} + 12 q^{4} + q^{5} - 10 q^{6} + 26 q^{7} + 24 q^{8} + 54 q^{9} + 2 q^{10} + 4 q^{11} - 20 q^{12} + 129 q^{13} + 52 q^{14} - 77 q^{15} + 48 q^{16} + 51 q^{17} + 108 q^{18} + 4 q^{20}+ \cdots + 3184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 6.33908 1.21996 0.609979 0.792418i \(-0.291178\pi\)
0.609979 + 0.792418i \(0.291178\pi\)
\(4\) 4.00000 0.500000
\(5\) 5.93108 0.530492 0.265246 0.964181i \(-0.414547\pi\)
0.265246 + 0.964181i \(0.414547\pi\)
\(6\) 12.6782 0.862640
\(7\) 0.660916 0.0356861 0.0178430 0.999841i \(-0.494320\pi\)
0.0178430 + 0.999841i \(0.494320\pi\)
\(8\) 8.00000 0.353553
\(9\) 13.1840 0.488296
\(10\) 11.8622 0.375114
\(11\) 50.1496 1.37461 0.687303 0.726371i \(-0.258794\pi\)
0.687303 + 0.726371i \(0.258794\pi\)
\(12\) 25.3563 0.609979
\(13\) −2.62650 −0.0560354 −0.0280177 0.999607i \(-0.508919\pi\)
−0.0280177 + 0.999607i \(0.508919\pi\)
\(14\) 1.32183 0.0252339
\(15\) 37.5976 0.647177
\(16\) 16.0000 0.250000
\(17\) 57.8105 0.824771 0.412385 0.911009i \(-0.364696\pi\)
0.412385 + 0.911009i \(0.364696\pi\)
\(18\) 26.3680 0.345277
\(19\) 0 0
\(20\) 23.7243 0.265246
\(21\) 4.18960 0.0435355
\(22\) 100.299 0.971993
\(23\) 37.9656 0.344190 0.172095 0.985080i \(-0.444946\pi\)
0.172095 + 0.985080i \(0.444946\pi\)
\(24\) 50.7127 0.431320
\(25\) −89.8223 −0.718578
\(26\) −5.25300 −0.0396230
\(27\) −87.5809 −0.624257
\(28\) 2.64366 0.0178430
\(29\) −309.828 −1.98392 −0.991959 0.126563i \(-0.959606\pi\)
−0.991959 + 0.126563i \(0.959606\pi\)
\(30\) 75.1952 0.457623
\(31\) 282.420 1.63626 0.818131 0.575032i \(-0.195010\pi\)
0.818131 + 0.575032i \(0.195010\pi\)
\(32\) 32.0000 0.176777
\(33\) 317.902 1.67696
\(34\) 115.621 0.583201
\(35\) 3.91994 0.0189312
\(36\) 52.7360 0.244148
\(37\) 21.0744 0.0936383 0.0468192 0.998903i \(-0.485092\pi\)
0.0468192 + 0.998903i \(0.485092\pi\)
\(38\) 0 0
\(39\) −16.6496 −0.0683608
\(40\) 47.4486 0.187557
\(41\) 344.092 1.31069 0.655343 0.755331i \(-0.272524\pi\)
0.655343 + 0.755331i \(0.272524\pi\)
\(42\) 8.37920 0.0307843
\(43\) 265.350 0.941059 0.470530 0.882384i \(-0.344063\pi\)
0.470530 + 0.882384i \(0.344063\pi\)
\(44\) 200.598 0.687303
\(45\) 78.1953 0.259037
\(46\) 75.9312 0.243379
\(47\) −139.793 −0.433850 −0.216925 0.976188i \(-0.569603\pi\)
−0.216925 + 0.976188i \(0.569603\pi\)
\(48\) 101.425 0.304989
\(49\) −342.563 −0.998727
\(50\) −179.645 −0.508112
\(51\) 366.466 1.00619
\(52\) −10.5060 −0.0280177
\(53\) 133.787 0.346737 0.173369 0.984857i \(-0.444535\pi\)
0.173369 + 0.984857i \(0.444535\pi\)
\(54\) −175.162 −0.441416
\(55\) 297.441 0.729217
\(56\) 5.28733 0.0126169
\(57\) 0 0
\(58\) −619.656 −1.40284
\(59\) −455.822 −1.00581 −0.502907 0.864341i \(-0.667736\pi\)
−0.502907 + 0.864341i \(0.667736\pi\)
\(60\) 150.390 0.323589
\(61\) 108.437 0.227605 0.113802 0.993503i \(-0.463697\pi\)
0.113802 + 0.993503i \(0.463697\pi\)
\(62\) 564.840 1.15701
\(63\) 8.71351 0.0174254
\(64\) 64.0000 0.125000
\(65\) −15.5780 −0.0297263
\(66\) 635.805 1.18579
\(67\) −26.3960 −0.0481312 −0.0240656 0.999710i \(-0.507661\pi\)
−0.0240656 + 0.999710i \(0.507661\pi\)
\(68\) 231.242 0.412385
\(69\) 240.667 0.419897
\(70\) 7.83989 0.0133864
\(71\) 1119.05 1.87052 0.935261 0.353958i \(-0.115164\pi\)
0.935261 + 0.353958i \(0.115164\pi\)
\(72\) 105.472 0.172639
\(73\) −470.449 −0.754272 −0.377136 0.926158i \(-0.623091\pi\)
−0.377136 + 0.926158i \(0.623091\pi\)
\(74\) 42.1489 0.0662123
\(75\) −569.391 −0.876635
\(76\) 0 0
\(77\) 33.1446 0.0490543
\(78\) −33.2992 −0.0483384
\(79\) −381.892 −0.543877 −0.271938 0.962315i \(-0.587665\pi\)
−0.271938 + 0.962315i \(0.587665\pi\)
\(80\) 94.8973 0.132623
\(81\) −911.150 −1.24986
\(82\) 688.184 0.926795
\(83\) 1322.28 1.74866 0.874330 0.485332i \(-0.161301\pi\)
0.874330 + 0.485332i \(0.161301\pi\)
\(84\) 16.7584 0.0217678
\(85\) 342.879 0.437534
\(86\) 530.701 0.665430
\(87\) −1964.03 −2.42029
\(88\) 401.197 0.485997
\(89\) −405.489 −0.482941 −0.241470 0.970408i \(-0.577630\pi\)
−0.241470 + 0.970408i \(0.577630\pi\)
\(90\) 156.391 0.183167
\(91\) −1.73590 −0.00199968
\(92\) 151.862 0.172095
\(93\) 1790.28 1.99617
\(94\) −279.587 −0.306779
\(95\) 0 0
\(96\) 202.851 0.215660
\(97\) −1374.15 −1.43839 −0.719194 0.694809i \(-0.755489\pi\)
−0.719194 + 0.694809i \(0.755489\pi\)
\(98\) −685.126 −0.706206
\(99\) 661.171 0.671214
\(100\) −359.289 −0.359289
\(101\) 79.8833 0.0786999 0.0393499 0.999225i \(-0.487471\pi\)
0.0393499 + 0.999225i \(0.487471\pi\)
\(102\) 732.931 0.711480
\(103\) −1799.73 −1.72168 −0.860838 0.508880i \(-0.830060\pi\)
−0.860838 + 0.508880i \(0.830060\pi\)
\(104\) −21.0120 −0.0198115
\(105\) 24.8489 0.0230952
\(106\) 267.574 0.245180
\(107\) −69.2556 −0.0625718 −0.0312859 0.999510i \(-0.509960\pi\)
−0.0312859 + 0.999510i \(0.509960\pi\)
\(108\) −350.323 −0.312129
\(109\) −637.099 −0.559844 −0.279922 0.960023i \(-0.590309\pi\)
−0.279922 + 0.960023i \(0.590309\pi\)
\(110\) 594.882 0.515634
\(111\) 133.593 0.114235
\(112\) 10.5747 0.00892152
\(113\) −235.498 −0.196051 −0.0980256 0.995184i \(-0.531253\pi\)
−0.0980256 + 0.995184i \(0.531253\pi\)
\(114\) 0 0
\(115\) 225.177 0.182590
\(116\) −1239.31 −0.991959
\(117\) −34.6277 −0.0273618
\(118\) −911.644 −0.711218
\(119\) 38.2079 0.0294329
\(120\) 300.781 0.228812
\(121\) 1183.98 0.889541
\(122\) 216.873 0.160941
\(123\) 2181.23 1.59898
\(124\) 1129.68 0.818131
\(125\) −1274.13 −0.911692
\(126\) 17.4270 0.0123216
\(127\) −898.317 −0.627659 −0.313830 0.949479i \(-0.601612\pi\)
−0.313830 + 0.949479i \(0.601612\pi\)
\(128\) 128.000 0.0883883
\(129\) 1682.08 1.14805
\(130\) −31.1560 −0.0210197
\(131\) 654.434 0.436475 0.218237 0.975896i \(-0.429969\pi\)
0.218237 + 0.975896i \(0.429969\pi\)
\(132\) 1271.61 0.838480
\(133\) 0 0
\(134\) −52.7921 −0.0340339
\(135\) −519.449 −0.331163
\(136\) 462.484 0.291600
\(137\) 2041.59 1.27317 0.636586 0.771205i \(-0.280346\pi\)
0.636586 + 0.771205i \(0.280346\pi\)
\(138\) 481.334 0.296912
\(139\) 1839.74 1.12263 0.561313 0.827603i \(-0.310296\pi\)
0.561313 + 0.827603i \(0.310296\pi\)
\(140\) 15.6798 0.00946559
\(141\) −886.162 −0.529279
\(142\) 2238.11 1.32266
\(143\) −131.718 −0.0770266
\(144\) 210.944 0.122074
\(145\) −1837.61 −1.05245
\(146\) −940.898 −0.533351
\(147\) −2171.54 −1.21840
\(148\) 84.2978 0.0468192
\(149\) −333.258 −0.183232 −0.0916159 0.995794i \(-0.529203\pi\)
−0.0916159 + 0.995794i \(0.529203\pi\)
\(150\) −1138.78 −0.619875
\(151\) −3042.43 −1.63966 −0.819832 0.572604i \(-0.805933\pi\)
−0.819832 + 0.572604i \(0.805933\pi\)
\(152\) 0 0
\(153\) 762.173 0.402732
\(154\) 66.2893 0.0346866
\(155\) 1675.05 0.868023
\(156\) −66.5984 −0.0341804
\(157\) 1968.78 1.00080 0.500400 0.865794i \(-0.333186\pi\)
0.500400 + 0.865794i \(0.333186\pi\)
\(158\) −763.785 −0.384579
\(159\) 848.088 0.423005
\(160\) 189.795 0.0937786
\(161\) 25.0921 0.0122828
\(162\) −1822.30 −0.883787
\(163\) −1135.59 −0.545682 −0.272841 0.962059i \(-0.587963\pi\)
−0.272841 + 0.962059i \(0.587963\pi\)
\(164\) 1376.37 0.655343
\(165\) 1885.50 0.889614
\(166\) 2644.55 1.23649
\(167\) −790.323 −0.366210 −0.183105 0.983093i \(-0.558615\pi\)
−0.183105 + 0.983093i \(0.558615\pi\)
\(168\) 33.5168 0.0153921
\(169\) −2190.10 −0.996860
\(170\) 685.757 0.309383
\(171\) 0 0
\(172\) 1061.40 0.470530
\(173\) −3484.01 −1.53112 −0.765561 0.643363i \(-0.777539\pi\)
−0.765561 + 0.643363i \(0.777539\pi\)
\(174\) −3928.05 −1.71141
\(175\) −59.3650 −0.0256433
\(176\) 802.393 0.343651
\(177\) −2889.50 −1.22705
\(178\) −810.977 −0.341491
\(179\) 2185.23 0.912466 0.456233 0.889860i \(-0.349198\pi\)
0.456233 + 0.889860i \(0.349198\pi\)
\(180\) 312.781 0.129518
\(181\) −1055.89 −0.433612 −0.216806 0.976215i \(-0.569564\pi\)
−0.216806 + 0.976215i \(0.569564\pi\)
\(182\) −3.47179 −0.00141399
\(183\) 687.390 0.277668
\(184\) 303.725 0.121690
\(185\) 124.994 0.0496744
\(186\) 3580.57 1.41150
\(187\) 2899.17 1.13373
\(188\) −559.174 −0.216925
\(189\) −57.8836 −0.0222773
\(190\) 0 0
\(191\) 2658.51 1.00714 0.503568 0.863955i \(-0.332020\pi\)
0.503568 + 0.863955i \(0.332020\pi\)
\(192\) 405.701 0.152495
\(193\) 4580.49 1.70835 0.854173 0.519988i \(-0.174064\pi\)
0.854173 + 0.519988i \(0.174064\pi\)
\(194\) −2748.30 −1.01709
\(195\) −98.7501 −0.0362648
\(196\) −1370.25 −0.499363
\(197\) −4882.92 −1.76596 −0.882978 0.469414i \(-0.844465\pi\)
−0.882978 + 0.469414i \(0.844465\pi\)
\(198\) 1322.34 0.474620
\(199\) −2357.92 −0.839943 −0.419972 0.907537i \(-0.637960\pi\)
−0.419972 + 0.907537i \(0.637960\pi\)
\(200\) −718.578 −0.254056
\(201\) −167.327 −0.0587180
\(202\) 159.767 0.0556492
\(203\) −204.770 −0.0707983
\(204\) 1465.86 0.503093
\(205\) 2040.84 0.695308
\(206\) −3599.46 −1.21741
\(207\) 500.538 0.168067
\(208\) −42.0240 −0.0140088
\(209\) 0 0
\(210\) 49.6977 0.0163308
\(211\) 3215.26 1.04904 0.524520 0.851398i \(-0.324245\pi\)
0.524520 + 0.851398i \(0.324245\pi\)
\(212\) 535.149 0.173369
\(213\) 7093.77 2.28196
\(214\) −138.511 −0.0442450
\(215\) 1573.81 0.499224
\(216\) −700.647 −0.220708
\(217\) 186.656 0.0583918
\(218\) −1274.20 −0.395870
\(219\) −2982.21 −0.920180
\(220\) 1189.76 0.364609
\(221\) −151.839 −0.0462163
\(222\) 267.185 0.0807762
\(223\) −3464.65 −1.04040 −0.520202 0.854043i \(-0.674143\pi\)
−0.520202 + 0.854043i \(0.674143\pi\)
\(224\) 21.1493 0.00630847
\(225\) −1184.22 −0.350879
\(226\) −470.996 −0.138629
\(227\) −4831.61 −1.41271 −0.706354 0.707858i \(-0.749662\pi\)
−0.706354 + 0.707858i \(0.749662\pi\)
\(228\) 0 0
\(229\) −4645.49 −1.34054 −0.670268 0.742119i \(-0.733821\pi\)
−0.670268 + 0.742119i \(0.733821\pi\)
\(230\) 450.354 0.129111
\(231\) 210.107 0.0598442
\(232\) −2478.62 −0.701421
\(233\) −828.510 −0.232951 −0.116475 0.993194i \(-0.537160\pi\)
−0.116475 + 0.993194i \(0.537160\pi\)
\(234\) −69.2555 −0.0193477
\(235\) −829.126 −0.230154
\(236\) −1823.29 −0.502907
\(237\) −2420.85 −0.663506
\(238\) 76.4157 0.0208122
\(239\) 2735.22 0.740279 0.370139 0.928976i \(-0.379310\pi\)
0.370139 + 0.928976i \(0.379310\pi\)
\(240\) 601.562 0.161794
\(241\) −4084.82 −1.09181 −0.545906 0.837847i \(-0.683814\pi\)
−0.545906 + 0.837847i \(0.683814\pi\)
\(242\) 2367.96 0.629001
\(243\) −3411.17 −0.900522
\(244\) 433.747 0.113802
\(245\) −2031.77 −0.529816
\(246\) 4362.45 1.13065
\(247\) 0 0
\(248\) 2259.36 0.578506
\(249\) 8382.03 2.13329
\(250\) −2548.26 −0.644663
\(251\) −2536.74 −0.637920 −0.318960 0.947768i \(-0.603334\pi\)
−0.318960 + 0.947768i \(0.603334\pi\)
\(252\) 34.8540 0.00871269
\(253\) 1903.96 0.473126
\(254\) −1796.63 −0.443822
\(255\) 2173.54 0.533773
\(256\) 256.000 0.0625000
\(257\) 6602.55 1.60255 0.801276 0.598295i \(-0.204155\pi\)
0.801276 + 0.598295i \(0.204155\pi\)
\(258\) 3364.16 0.811796
\(259\) 13.9284 0.00334159
\(260\) −62.3119 −0.0148632
\(261\) −4084.77 −0.968739
\(262\) 1308.87 0.308634
\(263\) 3904.55 0.915456 0.457728 0.889092i \(-0.348663\pi\)
0.457728 + 0.889092i \(0.348663\pi\)
\(264\) 2543.22 0.592895
\(265\) 793.502 0.183941
\(266\) 0 0
\(267\) −2570.43 −0.589167
\(268\) −105.584 −0.0240656
\(269\) 1596.72 0.361909 0.180955 0.983491i \(-0.442081\pi\)
0.180955 + 0.983491i \(0.442081\pi\)
\(270\) −1038.90 −0.234168
\(271\) 4011.39 0.899168 0.449584 0.893238i \(-0.351572\pi\)
0.449584 + 0.893238i \(0.351572\pi\)
\(272\) 924.968 0.206193
\(273\) −11.0040 −0.00243953
\(274\) 4083.18 0.900269
\(275\) −4504.55 −0.987762
\(276\) 962.668 0.209949
\(277\) 4850.78 1.05218 0.526092 0.850427i \(-0.323657\pi\)
0.526092 + 0.850427i \(0.323657\pi\)
\(278\) 3679.49 0.793817
\(279\) 3723.42 0.798980
\(280\) 31.3595 0.00669318
\(281\) −6298.99 −1.33725 −0.668623 0.743602i \(-0.733116\pi\)
−0.668623 + 0.743602i \(0.733116\pi\)
\(282\) −1772.32 −0.374257
\(283\) 5757.01 1.20925 0.604627 0.796509i \(-0.293322\pi\)
0.604627 + 0.796509i \(0.293322\pi\)
\(284\) 4476.21 0.935261
\(285\) 0 0
\(286\) −263.436 −0.0544660
\(287\) 227.416 0.0467733
\(288\) 421.888 0.0863193
\(289\) −1570.95 −0.319753
\(290\) −3675.23 −0.744196
\(291\) −8710.84 −1.75477
\(292\) −1881.80 −0.377136
\(293\) −5424.24 −1.08153 −0.540763 0.841175i \(-0.681865\pi\)
−0.540763 + 0.841175i \(0.681865\pi\)
\(294\) −4343.07 −0.861542
\(295\) −2703.52 −0.533576
\(296\) 168.596 0.0331061
\(297\) −4392.14 −0.858108
\(298\) −666.515 −0.129564
\(299\) −99.7166 −0.0192868
\(300\) −2277.56 −0.438318
\(301\) 175.374 0.0335827
\(302\) −6084.86 −1.15942
\(303\) 506.387 0.0960105
\(304\) 0 0
\(305\) 643.147 0.120743
\(306\) 1524.35 0.284775
\(307\) −5629.86 −1.04662 −0.523311 0.852142i \(-0.675303\pi\)
−0.523311 + 0.852142i \(0.675303\pi\)
\(308\) 132.579 0.0245272
\(309\) −11408.6 −2.10037
\(310\) 3350.11 0.613785
\(311\) 3054.01 0.556839 0.278420 0.960460i \(-0.410189\pi\)
0.278420 + 0.960460i \(0.410189\pi\)
\(312\) −133.197 −0.0241692
\(313\) −3300.94 −0.596103 −0.298051 0.954550i \(-0.596337\pi\)
−0.298051 + 0.954550i \(0.596337\pi\)
\(314\) 3937.56 0.707673
\(315\) 51.6805 0.00924402
\(316\) −1527.57 −0.271938
\(317\) 3170.25 0.561699 0.280850 0.959752i \(-0.409384\pi\)
0.280850 + 0.959752i \(0.409384\pi\)
\(318\) 1696.18 0.299110
\(319\) −15537.7 −2.72710
\(320\) 379.589 0.0663115
\(321\) −439.017 −0.0763350
\(322\) 50.1841 0.00868525
\(323\) 0 0
\(324\) −3644.60 −0.624932
\(325\) 235.918 0.0402658
\(326\) −2271.18 −0.385855
\(327\) −4038.62 −0.682986
\(328\) 2752.74 0.463397
\(329\) −92.3917 −0.0154824
\(330\) 3771.01 0.629052
\(331\) −1414.75 −0.234929 −0.117465 0.993077i \(-0.537477\pi\)
−0.117465 + 0.993077i \(0.537477\pi\)
\(332\) 5289.11 0.874330
\(333\) 277.845 0.0457232
\(334\) −1580.65 −0.258949
\(335\) −156.557 −0.0255332
\(336\) 67.0336 0.0108839
\(337\) 2159.77 0.349111 0.174555 0.984647i \(-0.444151\pi\)
0.174555 + 0.984647i \(0.444151\pi\)
\(338\) −4380.20 −0.704886
\(339\) −1492.84 −0.239174
\(340\) 1371.51 0.218767
\(341\) 14163.2 2.24922
\(342\) 0 0
\(343\) −453.100 −0.0713267
\(344\) 2122.80 0.332715
\(345\) 1427.42 0.222752
\(346\) −6968.01 −1.08267
\(347\) −5468.76 −0.846048 −0.423024 0.906119i \(-0.639031\pi\)
−0.423024 + 0.906119i \(0.639031\pi\)
\(348\) −7856.10 −1.21015
\(349\) −3235.26 −0.496216 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(350\) −118.730 −0.0181325
\(351\) 230.031 0.0349805
\(352\) 1604.79 0.242998
\(353\) −6191.72 −0.933576 −0.466788 0.884369i \(-0.654589\pi\)
−0.466788 + 0.884369i \(0.654589\pi\)
\(354\) −5778.99 −0.867655
\(355\) 6637.19 0.992297
\(356\) −1621.95 −0.241470
\(357\) 242.203 0.0359068
\(358\) 4370.45 0.645211
\(359\) −6407.07 −0.941929 −0.470964 0.882152i \(-0.656094\pi\)
−0.470964 + 0.882152i \(0.656094\pi\)
\(360\) 625.562 0.0915834
\(361\) 0 0
\(362\) −2111.78 −0.306610
\(363\) 7505.35 1.08520
\(364\) −6.94358 −0.000999842 0
\(365\) −2790.27 −0.400135
\(366\) 1374.78 0.196341
\(367\) 8368.94 1.19034 0.595171 0.803599i \(-0.297084\pi\)
0.595171 + 0.803599i \(0.297084\pi\)
\(368\) 607.449 0.0860475
\(369\) 4536.50 0.640003
\(370\) 249.988 0.0351251
\(371\) 88.4221 0.0123737
\(372\) 7161.13 0.998085
\(373\) −10254.9 −1.42354 −0.711769 0.702414i \(-0.752106\pi\)
−0.711769 + 0.702414i \(0.752106\pi\)
\(374\) 5798.34 0.801672
\(375\) −8076.80 −1.11223
\(376\) −1118.35 −0.153389
\(377\) 813.763 0.111170
\(378\) −115.767 −0.0157524
\(379\) −6607.19 −0.895484 −0.447742 0.894163i \(-0.647772\pi\)
−0.447742 + 0.894163i \(0.647772\pi\)
\(380\) 0 0
\(381\) −5694.50 −0.765717
\(382\) 5317.02 0.712153
\(383\) 9.95746 0.00132847 0.000664233 1.00000i \(-0.499789\pi\)
0.000664233 1.00000i \(0.499789\pi\)
\(384\) 811.403 0.107830
\(385\) 196.583 0.0260229
\(386\) 9160.98 1.20798
\(387\) 3498.38 0.459515
\(388\) −5496.59 −0.719194
\(389\) −12381.5 −1.61380 −0.806898 0.590691i \(-0.798855\pi\)
−0.806898 + 0.590691i \(0.798855\pi\)
\(390\) −197.500 −0.0256431
\(391\) 2194.81 0.283878
\(392\) −2740.51 −0.353103
\(393\) 4148.52 0.532481
\(394\) −9765.83 −1.24872
\(395\) −2265.03 −0.288522
\(396\) 2644.69 0.335607
\(397\) 603.931 0.0763487 0.0381744 0.999271i \(-0.487846\pi\)
0.0381744 + 0.999271i \(0.487846\pi\)
\(398\) −4715.84 −0.593930
\(399\) 0 0
\(400\) −1437.16 −0.179645
\(401\) −10340.3 −1.28770 −0.643851 0.765151i \(-0.722664\pi\)
−0.643851 + 0.765151i \(0.722664\pi\)
\(402\) −334.653 −0.0415199
\(403\) −741.776 −0.0916885
\(404\) 319.533 0.0393499
\(405\) −5404.10 −0.663042
\(406\) −409.540 −0.0500619
\(407\) 1056.87 0.128716
\(408\) 2931.72 0.355740
\(409\) 161.420 0.0195152 0.00975760 0.999952i \(-0.496894\pi\)
0.00975760 + 0.999952i \(0.496894\pi\)
\(410\) 4081.67 0.491657
\(411\) 12941.8 1.55322
\(412\) −7198.92 −0.860838
\(413\) −301.260 −0.0358936
\(414\) 1001.08 0.118841
\(415\) 7842.53 0.927650
\(416\) −84.0480 −0.00990575
\(417\) 11662.3 1.36956
\(418\) 0 0
\(419\) 7483.41 0.872526 0.436263 0.899819i \(-0.356302\pi\)
0.436263 + 0.899819i \(0.356302\pi\)
\(420\) 99.3954 0.0115476
\(421\) −6049.53 −0.700323 −0.350162 0.936689i \(-0.613873\pi\)
−0.350162 + 0.936689i \(0.613873\pi\)
\(422\) 6430.52 0.741783
\(423\) −1843.03 −0.211847
\(424\) 1070.30 0.122590
\(425\) −5192.67 −0.592663
\(426\) 14187.5 1.61359
\(427\) 71.6675 0.00812233
\(428\) −277.022 −0.0312859
\(429\) −834.970 −0.0939691
\(430\) 3147.63 0.353005
\(431\) −10909.7 −1.21926 −0.609631 0.792685i \(-0.708682\pi\)
−0.609631 + 0.792685i \(0.708682\pi\)
\(432\) −1401.29 −0.156064
\(433\) 7648.96 0.848927 0.424464 0.905445i \(-0.360463\pi\)
0.424464 + 0.905445i \(0.360463\pi\)
\(434\) 373.312 0.0412892
\(435\) −11648.8 −1.28395
\(436\) −2548.40 −0.279922
\(437\) 0 0
\(438\) −5964.43 −0.650665
\(439\) 11415.9 1.24112 0.620558 0.784161i \(-0.286906\pi\)
0.620558 + 0.784161i \(0.286906\pi\)
\(440\) 2379.53 0.257817
\(441\) −4516.35 −0.487674
\(442\) −303.678 −0.0326799
\(443\) −3152.65 −0.338120 −0.169060 0.985606i \(-0.554073\pi\)
−0.169060 + 0.985606i \(0.554073\pi\)
\(444\) 534.371 0.0571174
\(445\) −2404.98 −0.256196
\(446\) −6929.30 −0.735677
\(447\) −2112.55 −0.223535
\(448\) 42.2986 0.00446076
\(449\) −5217.04 −0.548346 −0.274173 0.961680i \(-0.588404\pi\)
−0.274173 + 0.961680i \(0.588404\pi\)
\(450\) −2368.43 −0.248109
\(451\) 17256.1 1.80168
\(452\) −941.992 −0.0980256
\(453\) −19286.2 −2.00032
\(454\) −9663.21 −0.998936
\(455\) −10.2957 −0.00106082
\(456\) 0 0
\(457\) 15868.7 1.62430 0.812151 0.583447i \(-0.198297\pi\)
0.812151 + 0.583447i \(0.198297\pi\)
\(458\) −9290.98 −0.947902
\(459\) −5063.09 −0.514869
\(460\) 900.707 0.0912950
\(461\) −4341.17 −0.438586 −0.219293 0.975659i \(-0.570375\pi\)
−0.219293 + 0.975659i \(0.570375\pi\)
\(462\) 420.213 0.0423162
\(463\) −1394.23 −0.139946 −0.0699732 0.997549i \(-0.522291\pi\)
−0.0699732 + 0.997549i \(0.522291\pi\)
\(464\) −4957.25 −0.495979
\(465\) 10618.3 1.05895
\(466\) −1657.02 −0.164721
\(467\) 6138.35 0.608242 0.304121 0.952633i \(-0.401637\pi\)
0.304121 + 0.952633i \(0.401637\pi\)
\(468\) −138.511 −0.0136809
\(469\) −17.4456 −0.00171761
\(470\) −1658.25 −0.162743
\(471\) 12480.3 1.22093
\(472\) −3646.58 −0.355609
\(473\) 13307.2 1.29359
\(474\) −4841.70 −0.469170
\(475\) 0 0
\(476\) 152.831 0.0147164
\(477\) 1763.85 0.169310
\(478\) 5470.44 0.523456
\(479\) 7132.94 0.680402 0.340201 0.940353i \(-0.389505\pi\)
0.340201 + 0.940353i \(0.389505\pi\)
\(480\) 1203.12 0.114406
\(481\) −55.3520 −0.00524706
\(482\) −8169.65 −0.772027
\(483\) 159.061 0.0149845
\(484\) 4735.92 0.444771
\(485\) −8150.18 −0.763053
\(486\) −6822.35 −0.636765
\(487\) 14396.6 1.33957 0.669787 0.742553i \(-0.266385\pi\)
0.669787 + 0.742553i \(0.266385\pi\)
\(488\) 867.494 0.0804705
\(489\) −7198.59 −0.665708
\(490\) −4063.54 −0.374637
\(491\) 7655.81 0.703670 0.351835 0.936062i \(-0.385558\pi\)
0.351835 + 0.936062i \(0.385558\pi\)
\(492\) 8724.91 0.799490
\(493\) −17911.3 −1.63628
\(494\) 0 0
\(495\) 3921.46 0.356074
\(496\) 4518.72 0.409065
\(497\) 739.600 0.0667517
\(498\) 16764.1 1.50846
\(499\) 18638.1 1.67206 0.836028 0.548687i \(-0.184872\pi\)
0.836028 + 0.548687i \(0.184872\pi\)
\(500\) −5096.51 −0.455846
\(501\) −5009.92 −0.446760
\(502\) −5073.49 −0.451077
\(503\) −7479.57 −0.663017 −0.331509 0.943452i \(-0.607558\pi\)
−0.331509 + 0.943452i \(0.607558\pi\)
\(504\) 69.7080 0.00616080
\(505\) 473.794 0.0417496
\(506\) 3807.92 0.334550
\(507\) −13883.2 −1.21613
\(508\) −3593.27 −0.313830
\(509\) 18710.4 1.62932 0.814659 0.579940i \(-0.196924\pi\)
0.814659 + 0.579940i \(0.196924\pi\)
\(510\) 4347.07 0.377434
\(511\) −310.927 −0.0269170
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 13205.1 1.13318
\(515\) −10674.3 −0.913335
\(516\) 6728.31 0.574026
\(517\) −7010.58 −0.596373
\(518\) 27.8569 0.00236286
\(519\) −22085.4 −1.86790
\(520\) −124.624 −0.0105098
\(521\) 13796.0 1.16010 0.580050 0.814581i \(-0.303033\pi\)
0.580050 + 0.814581i \(0.303033\pi\)
\(522\) −8169.54 −0.685002
\(523\) −12444.3 −1.04044 −0.520221 0.854032i \(-0.674150\pi\)
−0.520221 + 0.854032i \(0.674150\pi\)
\(524\) 2617.74 0.218237
\(525\) −376.320 −0.0312837
\(526\) 7809.10 0.647325
\(527\) 16326.8 1.34954
\(528\) 5086.44 0.419240
\(529\) −10725.6 −0.881533
\(530\) 1587.00 0.130066
\(531\) −6009.55 −0.491135
\(532\) 0 0
\(533\) −903.757 −0.0734448
\(534\) −5140.85 −0.416604
\(535\) −410.760 −0.0331938
\(536\) −211.168 −0.0170169
\(537\) 13852.3 1.11317
\(538\) 3193.43 0.255908
\(539\) −17179.4 −1.37286
\(540\) −2077.80 −0.165582
\(541\) 17766.9 1.41194 0.705968 0.708243i \(-0.250512\pi\)
0.705968 + 0.708243i \(0.250512\pi\)
\(542\) 8022.78 0.635808
\(543\) −6693.39 −0.528988
\(544\) 1849.94 0.145800
\(545\) −3778.68 −0.296993
\(546\) −22.0080 −0.00172501
\(547\) 7190.99 0.562092 0.281046 0.959694i \(-0.409319\pi\)
0.281046 + 0.959694i \(0.409319\pi\)
\(548\) 8166.35 0.636586
\(549\) 1429.63 0.111139
\(550\) −9009.10 −0.698453
\(551\) 0 0
\(552\) 1925.34 0.148456
\(553\) −252.399 −0.0194088
\(554\) 9701.56 0.744007
\(555\) 792.349 0.0606006
\(556\) 7358.98 0.561313
\(557\) 18489.1 1.40648 0.703238 0.710955i \(-0.251737\pi\)
0.703238 + 0.710955i \(0.251737\pi\)
\(558\) 7446.84 0.564964
\(559\) −696.943 −0.0527326
\(560\) 62.7191 0.00473280
\(561\) 18378.1 1.38311
\(562\) −12598.0 −0.945576
\(563\) −4932.37 −0.369227 −0.184613 0.982811i \(-0.559103\pi\)
−0.184613 + 0.982811i \(0.559103\pi\)
\(564\) −3544.65 −0.264639
\(565\) −1396.76 −0.104004
\(566\) 11514.0 0.855071
\(567\) −602.194 −0.0446027
\(568\) 8952.42 0.661330
\(569\) 15002.9 1.10537 0.552683 0.833392i \(-0.313604\pi\)
0.552683 + 0.833392i \(0.313604\pi\)
\(570\) 0 0
\(571\) −13385.3 −0.981013 −0.490507 0.871438i \(-0.663188\pi\)
−0.490507 + 0.871438i \(0.663188\pi\)
\(572\) −526.871 −0.0385133
\(573\) 16852.5 1.22866
\(574\) 454.832 0.0330737
\(575\) −3410.16 −0.247328
\(576\) 843.775 0.0610370
\(577\) 4891.89 0.352950 0.176475 0.984305i \(-0.443531\pi\)
0.176475 + 0.984305i \(0.443531\pi\)
\(578\) −3141.89 −0.226100
\(579\) 29036.1 2.08411
\(580\) −7350.45 −0.526226
\(581\) 873.914 0.0624029
\(582\) −17421.7 −1.24081
\(583\) 6709.37 0.476627
\(584\) −3763.59 −0.266675
\(585\) −205.380 −0.0145152
\(586\) −10848.5 −0.764755
\(587\) −12382.4 −0.870659 −0.435330 0.900271i \(-0.643368\pi\)
−0.435330 + 0.900271i \(0.643368\pi\)
\(588\) −8686.15 −0.609202
\(589\) 0 0
\(590\) −5407.03 −0.377295
\(591\) −30953.2 −2.15439
\(592\) 337.191 0.0234096
\(593\) 22526.1 1.55993 0.779964 0.625824i \(-0.215237\pi\)
0.779964 + 0.625824i \(0.215237\pi\)
\(594\) −8784.29 −0.606774
\(595\) 226.614 0.0156139
\(596\) −1333.03 −0.0916159
\(597\) −14947.1 −1.02469
\(598\) −199.433 −0.0136378
\(599\) 8740.27 0.596190 0.298095 0.954536i \(-0.403649\pi\)
0.298095 + 0.954536i \(0.403649\pi\)
\(600\) −4555.13 −0.309937
\(601\) 6198.75 0.420719 0.210360 0.977624i \(-0.432537\pi\)
0.210360 + 0.977624i \(0.432537\pi\)
\(602\) 350.749 0.0237466
\(603\) −348.005 −0.0235023
\(604\) −12169.7 −0.819832
\(605\) 7022.28 0.471894
\(606\) 1012.77 0.0678897
\(607\) −9848.40 −0.658541 −0.329271 0.944236i \(-0.606803\pi\)
−0.329271 + 0.944236i \(0.606803\pi\)
\(608\) 0 0
\(609\) −1298.06 −0.0863709
\(610\) 1286.29 0.0853779
\(611\) 367.167 0.0243110
\(612\) 3048.69 0.201366
\(613\) 9663.78 0.636731 0.318366 0.947968i \(-0.396866\pi\)
0.318366 + 0.947968i \(0.396866\pi\)
\(614\) −11259.7 −0.740074
\(615\) 12937.0 0.848246
\(616\) 265.157 0.0173433
\(617\) 5193.66 0.338880 0.169440 0.985541i \(-0.445804\pi\)
0.169440 + 0.985541i \(0.445804\pi\)
\(618\) −22817.3 −1.48519
\(619\) 5299.50 0.344112 0.172056 0.985087i \(-0.444959\pi\)
0.172056 + 0.985087i \(0.444959\pi\)
\(620\) 6700.22 0.434012
\(621\) −3325.06 −0.214863
\(622\) 6108.02 0.393745
\(623\) −267.994 −0.0172343
\(624\) −266.394 −0.0170902
\(625\) 3670.84 0.234933
\(626\) −6601.88 −0.421508
\(627\) 0 0
\(628\) 7875.12 0.500400
\(629\) 1218.32 0.0772301
\(630\) 103.361 0.00653651
\(631\) −14278.4 −0.900814 −0.450407 0.892823i \(-0.648721\pi\)
−0.450407 + 0.892823i \(0.648721\pi\)
\(632\) −3055.14 −0.192289
\(633\) 20381.8 1.27978
\(634\) 6340.49 0.397181
\(635\) −5327.99 −0.332968
\(636\) 3392.35 0.211502
\(637\) 899.742 0.0559640
\(638\) −31075.5 −1.92835
\(639\) 14753.6 0.913369
\(640\) 759.178 0.0468893
\(641\) 12871.8 0.793147 0.396574 0.918003i \(-0.370199\pi\)
0.396574 + 0.918003i \(0.370199\pi\)
\(642\) −878.034 −0.0539770
\(643\) 17071.4 1.04701 0.523506 0.852022i \(-0.324624\pi\)
0.523506 + 0.852022i \(0.324624\pi\)
\(644\) 100.368 0.00614140
\(645\) 9976.54 0.609032
\(646\) 0 0
\(647\) −6628.94 −0.402798 −0.201399 0.979509i \(-0.564549\pi\)
−0.201399 + 0.979509i \(0.564549\pi\)
\(648\) −7289.20 −0.441893
\(649\) −22859.3 −1.38260
\(650\) 471.837 0.0284722
\(651\) 1183.23 0.0712355
\(652\) −4542.35 −0.272841
\(653\) 30340.7 1.81826 0.909129 0.416515i \(-0.136749\pi\)
0.909129 + 0.416515i \(0.136749\pi\)
\(654\) −8077.25 −0.482944
\(655\) 3881.50 0.231546
\(656\) 5505.47 0.327671
\(657\) −6202.39 −0.368308
\(658\) −184.783 −0.0109477
\(659\) −2856.07 −0.168826 −0.0844132 0.996431i \(-0.526902\pi\)
−0.0844132 + 0.996431i \(0.526902\pi\)
\(660\) 7542.02 0.444807
\(661\) 21281.0 1.25224 0.626122 0.779725i \(-0.284641\pi\)
0.626122 + 0.779725i \(0.284641\pi\)
\(662\) −2829.49 −0.166120
\(663\) −962.522 −0.0563820
\(664\) 10578.2 0.618245
\(665\) 0 0
\(666\) 555.690 0.0323312
\(667\) −11762.8 −0.682845
\(668\) −3161.29 −0.183105
\(669\) −21962.7 −1.26925
\(670\) −313.114 −0.0180547
\(671\) 5438.06 0.312867
\(672\) 134.067 0.00769606
\(673\) 14334.7 0.821046 0.410523 0.911850i \(-0.365346\pi\)
0.410523 + 0.911850i \(0.365346\pi\)
\(674\) 4319.54 0.246858
\(675\) 7866.71 0.448578
\(676\) −8760.41 −0.498430
\(677\) −3300.00 −0.187340 −0.0936700 0.995603i \(-0.529860\pi\)
−0.0936700 + 0.995603i \(0.529860\pi\)
\(678\) −2985.68 −0.169122
\(679\) −908.196 −0.0513304
\(680\) 2743.03 0.154692
\(681\) −30628.0 −1.72344
\(682\) 28326.5 1.59044
\(683\) 1847.09 0.103480 0.0517400 0.998661i \(-0.483523\pi\)
0.0517400 + 0.998661i \(0.483523\pi\)
\(684\) 0 0
\(685\) 12108.8 0.675408
\(686\) −906.199 −0.0504356
\(687\) −29448.2 −1.63540
\(688\) 4245.61 0.235265
\(689\) −351.392 −0.0194296
\(690\) 2854.83 0.157509
\(691\) 34144.6 1.87977 0.939886 0.341489i \(-0.110931\pi\)
0.939886 + 0.341489i \(0.110931\pi\)
\(692\) −13936.0 −0.765561
\(693\) 436.979 0.0239530
\(694\) −10937.5 −0.598246
\(695\) 10911.7 0.595544
\(696\) −15712.2 −0.855703
\(697\) 19892.1 1.08102
\(698\) −6470.52 −0.350878
\(699\) −5252.00 −0.284190
\(700\) −237.460 −0.0128216
\(701\) 6732.11 0.362722 0.181361 0.983417i \(-0.441950\pi\)
0.181361 + 0.983417i \(0.441950\pi\)
\(702\) 460.062 0.0247349
\(703\) 0 0
\(704\) 3209.57 0.171826
\(705\) −5255.90 −0.280778
\(706\) −12383.4 −0.660138
\(707\) 52.7962 0.00280849
\(708\) −11558.0 −0.613525
\(709\) 30919.0 1.63778 0.818892 0.573947i \(-0.194589\pi\)
0.818892 + 0.573947i \(0.194589\pi\)
\(710\) 13274.4 0.701660
\(711\) −5034.87 −0.265573
\(712\) −3243.91 −0.170745
\(713\) 10722.2 0.563185
\(714\) 484.406 0.0253900
\(715\) −781.229 −0.0408620
\(716\) 8740.91 0.456233
\(717\) 17338.8 0.903108
\(718\) −12814.1 −0.666044
\(719\) −7461.12 −0.387000 −0.193500 0.981100i \(-0.561984\pi\)
−0.193500 + 0.981100i \(0.561984\pi\)
\(720\) 1251.12 0.0647592
\(721\) −1189.47 −0.0614399
\(722\) 0 0
\(723\) −25894.0 −1.33196
\(724\) −4223.57 −0.216806
\(725\) 27829.5 1.42560
\(726\) 15010.7 0.767354
\(727\) −10947.7 −0.558498 −0.279249 0.960219i \(-0.590085\pi\)
−0.279249 + 0.960219i \(0.590085\pi\)
\(728\) −13.8872 −0.000706995 0
\(729\) 2977.33 0.151264
\(730\) −5580.54 −0.282938
\(731\) 15340.0 0.776158
\(732\) 2749.56 0.138834
\(733\) −36104.8 −1.81932 −0.909661 0.415352i \(-0.863659\pi\)
−0.909661 + 0.415352i \(0.863659\pi\)
\(734\) 16737.9 0.841698
\(735\) −12879.6 −0.646353
\(736\) 1214.90 0.0608448
\(737\) −1323.75 −0.0661614
\(738\) 9073.01 0.452550
\(739\) 22783.4 1.13410 0.567052 0.823682i \(-0.308084\pi\)
0.567052 + 0.823682i \(0.308084\pi\)
\(740\) 499.977 0.0248372
\(741\) 0 0
\(742\) 176.844 0.00874953
\(743\) −22636.0 −1.11768 −0.558839 0.829276i \(-0.688753\pi\)
−0.558839 + 0.829276i \(0.688753\pi\)
\(744\) 14322.3 0.705752
\(745\) −1976.58 −0.0972029
\(746\) −20509.8 −1.00659
\(747\) 17432.9 0.853863
\(748\) 11596.7 0.566867
\(749\) −45.7721 −0.00223294
\(750\) −16153.6 −0.786462
\(751\) 2859.24 0.138928 0.0694642 0.997584i \(-0.477871\pi\)
0.0694642 + 0.997584i \(0.477871\pi\)
\(752\) −2236.69 −0.108463
\(753\) −16080.6 −0.778235
\(754\) 1627.53 0.0786087
\(755\) −18044.9 −0.869828
\(756\) −231.534 −0.0111387
\(757\) 20091.1 0.964630 0.482315 0.875998i \(-0.339796\pi\)
0.482315 + 0.875998i \(0.339796\pi\)
\(758\) −13214.4 −0.633203
\(759\) 12069.3 0.577193
\(760\) 0 0
\(761\) −9968.77 −0.474859 −0.237430 0.971405i \(-0.576305\pi\)
−0.237430 + 0.971405i \(0.576305\pi\)
\(762\) −11389.0 −0.541444
\(763\) −421.069 −0.0199787
\(764\) 10634.0 0.503568
\(765\) 4520.51 0.213646
\(766\) 19.9149 0.000939368 0
\(767\) 1197.22 0.0563611
\(768\) 1622.81 0.0762473
\(769\) 20062.4 0.940791 0.470396 0.882456i \(-0.344111\pi\)
0.470396 + 0.882456i \(0.344111\pi\)
\(770\) 393.167 0.0184010
\(771\) 41854.1 1.95504
\(772\) 18322.0 0.854173
\(773\) −588.965 −0.0274044 −0.0137022 0.999906i \(-0.504362\pi\)
−0.0137022 + 0.999906i \(0.504362\pi\)
\(774\) 6996.75 0.324926
\(775\) −25367.6 −1.17578
\(776\) −10993.2 −0.508547
\(777\) 88.2935 0.00407659
\(778\) −24763.0 −1.14113
\(779\) 0 0
\(780\) −395.000 −0.0181324
\(781\) 56120.0 2.57123
\(782\) 4389.62 0.200732
\(783\) 27135.0 1.23847
\(784\) −5481.01 −0.249682
\(785\) 11677.0 0.530917
\(786\) 8297.03 0.376521
\(787\) 14959.0 0.677550 0.338775 0.940867i \(-0.389987\pi\)
0.338775 + 0.940867i \(0.389987\pi\)
\(788\) −19531.7 −0.882978
\(789\) 24751.3 1.11682
\(790\) −4530.07 −0.204016
\(791\) −155.644 −0.00699630
\(792\) 5289.37 0.237310
\(793\) −284.809 −0.0127539
\(794\) 1207.86 0.0539867
\(795\) 5030.08 0.224401
\(796\) −9431.69 −0.419972
\(797\) 18464.2 0.820622 0.410311 0.911946i \(-0.365420\pi\)
0.410311 + 0.911946i \(0.365420\pi\)
\(798\) 0 0
\(799\) −8081.53 −0.357827
\(800\) −2874.31 −0.127028
\(801\) −5345.96 −0.235818
\(802\) −20680.5 −0.910543
\(803\) −23592.8 −1.03683
\(804\) −669.307 −0.0293590
\(805\) 148.823 0.00651592
\(806\) −1483.55 −0.0648336
\(807\) 10121.7 0.441514
\(808\) 639.067 0.0278246
\(809\) 13632.5 0.592449 0.296225 0.955118i \(-0.404272\pi\)
0.296225 + 0.955118i \(0.404272\pi\)
\(810\) −10808.2 −0.468842
\(811\) −22906.1 −0.991791 −0.495896 0.868382i \(-0.665160\pi\)
−0.495896 + 0.868382i \(0.665160\pi\)
\(812\) −819.081 −0.0353991
\(813\) 25428.5 1.09695
\(814\) 2113.75 0.0910158
\(815\) −6735.26 −0.289480
\(816\) 5863.45 0.251546
\(817\) 0 0
\(818\) 322.840 0.0137993
\(819\) −22.8860 −0.000976437 0
\(820\) 8163.34 0.347654
\(821\) −42145.6 −1.79158 −0.895792 0.444474i \(-0.853391\pi\)
−0.895792 + 0.444474i \(0.853391\pi\)
\(822\) 25883.6 1.09829
\(823\) −28338.2 −1.20025 −0.600126 0.799906i \(-0.704883\pi\)
−0.600126 + 0.799906i \(0.704883\pi\)
\(824\) −14397.8 −0.608704
\(825\) −28554.7 −1.20503
\(826\) −602.520 −0.0253806
\(827\) −13589.8 −0.571418 −0.285709 0.958316i \(-0.592229\pi\)
−0.285709 + 0.958316i \(0.592229\pi\)
\(828\) 2002.15 0.0840333
\(829\) 25202.9 1.05589 0.527946 0.849278i \(-0.322962\pi\)
0.527946 + 0.849278i \(0.322962\pi\)
\(830\) 15685.1 0.655947
\(831\) 30749.5 1.28362
\(832\) −168.096 −0.00700442
\(833\) −19803.7 −0.823720
\(834\) 23324.6 0.968423
\(835\) −4687.47 −0.194271
\(836\) 0 0
\(837\) −24734.6 −1.02145
\(838\) 14966.8 0.616969
\(839\) 3754.65 0.154499 0.0772497 0.997012i \(-0.475386\pi\)
0.0772497 + 0.997012i \(0.475386\pi\)
\(840\) 198.791 0.00816540
\(841\) 71604.3 2.93593
\(842\) −12099.1 −0.495203
\(843\) −39929.8 −1.63138
\(844\) 12861.0 0.524520
\(845\) −12989.7 −0.528826
\(846\) −3686.07 −0.149799
\(847\) 782.511 0.0317443
\(848\) 2140.60 0.0866844
\(849\) 36494.2 1.47524
\(850\) −10385.3 −0.419076
\(851\) 800.104 0.0322294
\(852\) 28375.1 1.14098
\(853\) 23488.3 0.942818 0.471409 0.881915i \(-0.343746\pi\)
0.471409 + 0.881915i \(0.343746\pi\)
\(854\) 143.335 0.00574336
\(855\) 0 0
\(856\) −554.044 −0.0221225
\(857\) −3302.78 −0.131646 −0.0658231 0.997831i \(-0.520967\pi\)
−0.0658231 + 0.997831i \(0.520967\pi\)
\(858\) −1669.94 −0.0664462
\(859\) −8822.77 −0.350441 −0.175221 0.984529i \(-0.556064\pi\)
−0.175221 + 0.984529i \(0.556064\pi\)
\(860\) 6295.26 0.249612
\(861\) 1441.61 0.0570614
\(862\) −21819.4 −0.862148
\(863\) 20731.7 0.817745 0.408873 0.912591i \(-0.365922\pi\)
0.408873 + 0.912591i \(0.365922\pi\)
\(864\) −2802.59 −0.110354
\(865\) −20663.9 −0.812248
\(866\) 15297.9 0.600282
\(867\) −9958.37 −0.390085
\(868\) 746.623 0.0291959
\(869\) −19151.7 −0.747616
\(870\) −23297.6 −0.907887
\(871\) 69.3292 0.00269705
\(872\) −5096.79 −0.197935
\(873\) −18116.8 −0.702359
\(874\) 0 0
\(875\) −842.091 −0.0325347
\(876\) −11928.9 −0.460090
\(877\) 11032.5 0.424790 0.212395 0.977184i \(-0.431874\pi\)
0.212395 + 0.977184i \(0.431874\pi\)
\(878\) 22831.7 0.877602
\(879\) −34384.7 −1.31942
\(880\) 4759.06 0.182304
\(881\) −23834.2 −0.911457 −0.455728 0.890119i \(-0.650621\pi\)
−0.455728 + 0.890119i \(0.650621\pi\)
\(882\) −9032.70 −0.344838
\(883\) −45242.6 −1.72428 −0.862138 0.506674i \(-0.830875\pi\)
−0.862138 + 0.506674i \(0.830875\pi\)
\(884\) −607.357 −0.0231082
\(885\) −17137.8 −0.650940
\(886\) −6305.31 −0.239087
\(887\) 3636.94 0.137674 0.0688369 0.997628i \(-0.478071\pi\)
0.0688369 + 0.997628i \(0.478071\pi\)
\(888\) 1068.74 0.0403881
\(889\) −593.712 −0.0223987
\(890\) −4809.97 −0.181158
\(891\) −45693.8 −1.71807
\(892\) −13858.6 −0.520202
\(893\) 0 0
\(894\) −4225.10 −0.158063
\(895\) 12960.8 0.484056
\(896\) 84.5972 0.00315424
\(897\) −632.112 −0.0235291
\(898\) −10434.1 −0.387739
\(899\) −87501.6 −3.24621
\(900\) −4736.87 −0.175439
\(901\) 7734.30 0.285979
\(902\) 34512.1 1.27398
\(903\) 1111.71 0.0409695
\(904\) −1883.98 −0.0693146
\(905\) −6262.58 −0.230028
\(906\) −38572.4 −1.41444
\(907\) 45706.7 1.67328 0.836641 0.547751i \(-0.184516\pi\)
0.836641 + 0.547751i \(0.184516\pi\)
\(908\) −19326.4 −0.706354
\(909\) 1053.18 0.0384288
\(910\) −20.5915 −0.000750110 0
\(911\) 38271.0 1.39185 0.695924 0.718115i \(-0.254995\pi\)
0.695924 + 0.718115i \(0.254995\pi\)
\(912\) 0 0
\(913\) 66311.6 2.40372
\(914\) 31737.4 1.14855
\(915\) 4076.96 0.147301
\(916\) −18582.0 −0.670268
\(917\) 432.526 0.0155761
\(918\) −10126.2 −0.364067
\(919\) 15748.1 0.565267 0.282634 0.959228i \(-0.408792\pi\)
0.282634 + 0.959228i \(0.408792\pi\)
\(920\) 1801.41 0.0645553
\(921\) −35688.2 −1.27683
\(922\) −8682.33 −0.310127
\(923\) −2939.19 −0.104815
\(924\) 840.427 0.0299221
\(925\) −1892.96 −0.0672865
\(926\) −2788.45 −0.0989570
\(927\) −23727.6 −0.840687
\(928\) −9914.49 −0.350710
\(929\) 14334.7 0.506251 0.253125 0.967433i \(-0.418541\pi\)
0.253125 + 0.967433i \(0.418541\pi\)
\(930\) 21236.6 0.748792
\(931\) 0 0
\(932\) −3314.04 −0.116475
\(933\) 19359.6 0.679320
\(934\) 12276.7 0.430092
\(935\) 17195.2 0.601437
\(936\) −277.022 −0.00967387
\(937\) 18841.8 0.656922 0.328461 0.944517i \(-0.393470\pi\)
0.328461 + 0.944517i \(0.393470\pi\)
\(938\) −34.8911 −0.00121454
\(939\) −20924.9 −0.727220
\(940\) −3316.50 −0.115077
\(941\) −15020.7 −0.520362 −0.260181 0.965560i \(-0.583782\pi\)
−0.260181 + 0.965560i \(0.583782\pi\)
\(942\) 24960.5 0.863331
\(943\) 13063.6 0.451125
\(944\) −7293.16 −0.251453
\(945\) −343.312 −0.0118179
\(946\) 26614.4 0.914703
\(947\) −22458.4 −0.770643 −0.385321 0.922782i \(-0.625909\pi\)
−0.385321 + 0.922782i \(0.625909\pi\)
\(948\) −9683.39 −0.331753
\(949\) 1235.63 0.0422659
\(950\) 0 0
\(951\) 20096.5 0.685249
\(952\) 305.663 0.0104061
\(953\) 14962.3 0.508579 0.254289 0.967128i \(-0.418158\pi\)
0.254289 + 0.967128i \(0.418158\pi\)
\(954\) 3527.70 0.119721
\(955\) 15767.8 0.534278
\(956\) 10940.9 0.370139
\(957\) −98495.0 −3.32695
\(958\) 14265.9 0.481117
\(959\) 1349.32 0.0454346
\(960\) 2406.25 0.0808972
\(961\) 49970.0 1.67735
\(962\) −110.704 −0.00371023
\(963\) −913.064 −0.0305536
\(964\) −16339.3 −0.545906
\(965\) 27167.2 0.906264
\(966\) 318.121 0.0105956
\(967\) −41031.3 −1.36451 −0.682253 0.731116i \(-0.739000\pi\)
−0.682253 + 0.731116i \(0.739000\pi\)
\(968\) 9471.84 0.314500
\(969\) 0 0
\(970\) −16300.4 −0.539560
\(971\) −4024.22 −0.133000 −0.0665002 0.997786i \(-0.521183\pi\)
−0.0665002 + 0.997786i \(0.521183\pi\)
\(972\) −13644.7 −0.450261
\(973\) 1215.92 0.0400622
\(974\) 28793.2 0.947222
\(975\) 1495.51 0.0491226
\(976\) 1734.99 0.0569012
\(977\) 42051.2 1.37701 0.688505 0.725232i \(-0.258267\pi\)
0.688505 + 0.725232i \(0.258267\pi\)
\(978\) −14397.2 −0.470727
\(979\) −20335.1 −0.663853
\(980\) −8127.08 −0.264908
\(981\) −8399.51 −0.273370
\(982\) 15311.6 0.497570
\(983\) −43004.4 −1.39535 −0.697674 0.716415i \(-0.745782\pi\)
−0.697674 + 0.716415i \(0.745782\pi\)
\(984\) 17449.8 0.565325
\(985\) −28961.0 −0.936825
\(986\) −35822.6 −1.15702
\(987\) −585.679 −0.0188879
\(988\) 0 0
\(989\) 10074.2 0.323903
\(990\) 7842.92 0.251782
\(991\) −6614.91 −0.212038 −0.106019 0.994364i \(-0.533810\pi\)
−0.106019 + 0.994364i \(0.533810\pi\)
\(992\) 9037.44 0.289253
\(993\) −8968.20 −0.286604
\(994\) 1479.20 0.0472005
\(995\) −13985.0 −0.445583
\(996\) 33528.1 1.06665
\(997\) −46602.8 −1.48037 −0.740184 0.672405i \(-0.765261\pi\)
−0.740184 + 0.672405i \(0.765261\pi\)
\(998\) 37276.2 1.18232
\(999\) −1845.72 −0.0584544
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 722.4.a.k.1.3 3
19.8 odd 6 38.4.c.c.7.3 6
19.12 odd 6 38.4.c.c.11.3 yes 6
19.18 odd 2 722.4.a.j.1.1 3
57.8 even 6 342.4.g.f.235.2 6
57.50 even 6 342.4.g.f.163.2 6
76.27 even 6 304.4.i.e.273.1 6
76.31 even 6 304.4.i.e.49.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.c.c.7.3 6 19.8 odd 6
38.4.c.c.11.3 yes 6 19.12 odd 6
304.4.i.e.49.1 6 76.31 even 6
304.4.i.e.273.1 6 76.27 even 6
342.4.g.f.163.2 6 57.50 even 6
342.4.g.f.235.2 6 57.8 even 6
722.4.a.j.1.1 3 19.18 odd 2
722.4.a.k.1.3 3 1.1 even 1 trivial