Properties

Label 722.4.a.i.1.2
Level $722$
Weight $4$
Character 722.1
Self dual yes
Analytic conductor $42.599$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [722,4,Mod(1,722)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("722.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(722, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 722.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.5993790241\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.15207\) of defining polynomial
Character \(\chi\) \(=\) 722.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +6.15207 q^{3} +4.00000 q^{4} +18.3041 q^{5} +12.3041 q^{6} +21.8479 q^{7} +8.00000 q^{8} +10.8479 q^{9} +36.6083 q^{10} -8.30413 q^{11} +24.6083 q^{12} -53.0645 q^{13} +43.6959 q^{14} +112.608 q^{15} +16.0000 q^{16} +74.2810 q^{17} +21.6959 q^{18} +73.2165 q^{20} +134.410 q^{21} -16.6083 q^{22} -163.977 q^{23} +49.2165 q^{24} +210.041 q^{25} -106.129 q^{26} -99.3686 q^{27} +87.3917 q^{28} +232.410 q^{29} +225.217 q^{30} -98.4331 q^{31} +32.0000 q^{32} -51.0876 q^{33} +148.562 q^{34} +399.908 q^{35} +43.3917 q^{36} -296.433 q^{37} -326.456 q^{39} +146.433 q^{40} +434.912 q^{41} +268.820 q^{42} -171.299 q^{43} -33.2165 q^{44} +198.562 q^{45} -327.954 q^{46} -366.083 q^{47} +98.4331 q^{48} +134.332 q^{49} +420.083 q^{50} +456.982 q^{51} -212.258 q^{52} -138.631 q^{53} -198.737 q^{54} -152.000 q^{55} +174.783 q^{56} +464.820 q^{58} -572.797 q^{59} +450.433 q^{60} -632.691 q^{61} -196.866 q^{62} +237.005 q^{63} +64.0000 q^{64} -971.299 q^{65} -102.175 q^{66} +183.461 q^{67} +297.124 q^{68} -1008.80 q^{69} +799.815 q^{70} -56.6545 q^{71} +86.7835 q^{72} +68.1521 q^{73} -592.866 q^{74} +1292.19 q^{75} -181.428 q^{77} -652.912 q^{78} +332.820 q^{79} +292.866 q^{80} -904.217 q^{81} +869.825 q^{82} +1152.91 q^{83} +537.640 q^{84} +1359.65 q^{85} -342.598 q^{86} +1429.80 q^{87} -66.4331 q^{88} +368.479 q^{89} +397.124 q^{90} -1159.35 q^{91} -655.908 q^{92} -605.567 q^{93} -732.165 q^{94} +196.866 q^{96} +426.443 q^{97} +268.664 q^{98} -90.0827 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - q^{3} + 8 q^{4} + 10 q^{5} - 2 q^{6} + 57 q^{7} + 16 q^{8} + 35 q^{9} + 20 q^{10} + 10 q^{11} - 4 q^{12} - 13 q^{13} + 114 q^{14} + 172 q^{15} + 32 q^{16} - 51 q^{17} + 70 q^{18} + 40 q^{20}+ \cdots + 352 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 6.15207 1.18397 0.591983 0.805950i \(-0.298345\pi\)
0.591983 + 0.805950i \(0.298345\pi\)
\(4\) 4.00000 0.500000
\(5\) 18.3041 1.63717 0.818586 0.574384i \(-0.194758\pi\)
0.818586 + 0.574384i \(0.194758\pi\)
\(6\) 12.3041 0.837190
\(7\) 21.8479 1.17968 0.589839 0.807521i \(-0.299191\pi\)
0.589839 + 0.807521i \(0.299191\pi\)
\(8\) 8.00000 0.353553
\(9\) 10.8479 0.401775
\(10\) 36.6083 1.15766
\(11\) −8.30413 −0.227617 −0.113809 0.993503i \(-0.536305\pi\)
−0.113809 + 0.993503i \(0.536305\pi\)
\(12\) 24.6083 0.591983
\(13\) −53.0645 −1.13211 −0.566055 0.824367i \(-0.691531\pi\)
−0.566055 + 0.824367i \(0.691531\pi\)
\(14\) 43.6959 0.834158
\(15\) 112.608 1.93836
\(16\) 16.0000 0.250000
\(17\) 74.2810 1.05975 0.529876 0.848075i \(-0.322238\pi\)
0.529876 + 0.848075i \(0.322238\pi\)
\(18\) 21.6959 0.284098
\(19\) 0 0
\(20\) 73.2165 0.818586
\(21\) 134.410 1.39670
\(22\) −16.6083 −0.160950
\(23\) −163.977 −1.48659 −0.743294 0.668964i \(-0.766738\pi\)
−0.743294 + 0.668964i \(0.766738\pi\)
\(24\) 49.2165 0.418595
\(25\) 210.041 1.68033
\(26\) −106.129 −0.800523
\(27\) −99.3686 −0.708278
\(28\) 87.3917 0.589839
\(29\) 232.410 1.48819 0.744094 0.668075i \(-0.232882\pi\)
0.744094 + 0.668075i \(0.232882\pi\)
\(30\) 225.217 1.37062
\(31\) −98.4331 −0.570294 −0.285147 0.958484i \(-0.592042\pi\)
−0.285147 + 0.958484i \(0.592042\pi\)
\(32\) 32.0000 0.176777
\(33\) −51.0876 −0.269491
\(34\) 148.562 0.749358
\(35\) 399.908 1.93133
\(36\) 43.3917 0.200888
\(37\) −296.433 −1.31712 −0.658558 0.752530i \(-0.728833\pi\)
−0.658558 + 0.752530i \(0.728833\pi\)
\(38\) 0 0
\(39\) −326.456 −1.34038
\(40\) 146.433 0.578828
\(41\) 434.912 1.65663 0.828316 0.560261i \(-0.189299\pi\)
0.828316 + 0.560261i \(0.189299\pi\)
\(42\) 268.820 0.987615
\(43\) −171.299 −0.607509 −0.303755 0.952750i \(-0.598240\pi\)
−0.303755 + 0.952750i \(0.598240\pi\)
\(44\) −33.2165 −0.113809
\(45\) 198.562 0.657775
\(46\) −327.954 −1.05118
\(47\) −366.083 −1.13614 −0.568071 0.822980i \(-0.692310\pi\)
−0.568071 + 0.822980i \(0.692310\pi\)
\(48\) 98.4331 0.295991
\(49\) 134.332 0.391639
\(50\) 420.083 1.18817
\(51\) 456.982 1.25471
\(52\) −212.258 −0.566055
\(53\) −138.631 −0.359292 −0.179646 0.983731i \(-0.557495\pi\)
−0.179646 + 0.983731i \(0.557495\pi\)
\(54\) −198.737 −0.500828
\(55\) −152.000 −0.372649
\(56\) 174.783 0.417079
\(57\) 0 0
\(58\) 464.820 1.05231
\(59\) −572.797 −1.26393 −0.631964 0.774997i \(-0.717751\pi\)
−0.631964 + 0.774997i \(0.717751\pi\)
\(60\) 450.433 0.969178
\(61\) −632.691 −1.32800 −0.663998 0.747734i \(-0.731142\pi\)
−0.663998 + 0.747734i \(0.731142\pi\)
\(62\) −196.866 −0.403258
\(63\) 237.005 0.473965
\(64\) 64.0000 0.125000
\(65\) −971.299 −1.85346
\(66\) −102.175 −0.190559
\(67\) 183.461 0.334527 0.167264 0.985912i \(-0.446507\pi\)
0.167264 + 0.985912i \(0.446507\pi\)
\(68\) 297.124 0.529876
\(69\) −1008.80 −1.76007
\(70\) 799.815 1.36566
\(71\) −56.6545 −0.0946994 −0.0473497 0.998878i \(-0.515078\pi\)
−0.0473497 + 0.998878i \(0.515078\pi\)
\(72\) 86.7835 0.142049
\(73\) 68.1521 0.109268 0.0546342 0.998506i \(-0.482601\pi\)
0.0546342 + 0.998506i \(0.482601\pi\)
\(74\) −592.866 −0.931342
\(75\) 1292.19 1.98945
\(76\) 0 0
\(77\) −181.428 −0.268515
\(78\) −652.912 −0.947792
\(79\) 332.820 0.473989 0.236995 0.971511i \(-0.423838\pi\)
0.236995 + 0.971511i \(0.423838\pi\)
\(80\) 292.866 0.409293
\(81\) −904.217 −1.24035
\(82\) 869.825 1.17142
\(83\) 1152.91 1.52468 0.762341 0.647176i \(-0.224050\pi\)
0.762341 + 0.647176i \(0.224050\pi\)
\(84\) 537.640 0.698349
\(85\) 1359.65 1.73500
\(86\) −342.598 −0.429574
\(87\) 1429.80 1.76196
\(88\) −66.4331 −0.0804749
\(89\) 368.479 0.438862 0.219431 0.975628i \(-0.429580\pi\)
0.219431 + 0.975628i \(0.429580\pi\)
\(90\) 397.124 0.465117
\(91\) −1159.35 −1.33553
\(92\) −655.908 −0.743294
\(93\) −605.567 −0.675208
\(94\) −732.165 −0.803373
\(95\) 0 0
\(96\) 196.866 0.209298
\(97\) 426.443 0.446378 0.223189 0.974775i \(-0.428353\pi\)
0.223189 + 0.974775i \(0.428353\pi\)
\(98\) 268.664 0.276931
\(99\) −90.0827 −0.0914510
\(100\) 840.165 0.840165
\(101\) −403.124 −0.397152 −0.198576 0.980086i \(-0.563632\pi\)
−0.198576 + 0.980086i \(0.563632\pi\)
\(102\) 913.964 0.887214
\(103\) 1135.68 1.08642 0.543211 0.839596i \(-0.317208\pi\)
0.543211 + 0.839596i \(0.317208\pi\)
\(104\) −424.516 −0.400262
\(105\) 2460.26 2.28663
\(106\) −277.263 −0.254058
\(107\) 380.096 0.343414 0.171707 0.985148i \(-0.445072\pi\)
0.171707 + 0.985148i \(0.445072\pi\)
\(108\) −397.474 −0.354139
\(109\) −1180.74 −1.03756 −0.518782 0.854907i \(-0.673614\pi\)
−0.518782 + 0.854907i \(0.673614\pi\)
\(110\) −304.000 −0.263502
\(111\) −1823.68 −1.55942
\(112\) 349.567 0.294919
\(113\) 1132.51 0.942807 0.471404 0.881918i \(-0.343748\pi\)
0.471404 + 0.881918i \(0.343748\pi\)
\(114\) 0 0
\(115\) −3001.45 −2.43380
\(116\) 929.640 0.744094
\(117\) −575.640 −0.454854
\(118\) −1145.59 −0.893733
\(119\) 1622.89 1.25017
\(120\) 900.866 0.685312
\(121\) −1262.04 −0.948190
\(122\) −1265.38 −0.939035
\(123\) 2675.61 1.96140
\(124\) −393.732 −0.285147
\(125\) 1556.61 1.11382
\(126\) 474.010 0.335144
\(127\) 40.0462 0.0279806 0.0139903 0.999902i \(-0.495547\pi\)
0.0139903 + 0.999902i \(0.495547\pi\)
\(128\) 128.000 0.0883883
\(129\) −1053.84 −0.719270
\(130\) −1942.60 −1.31059
\(131\) −177.898 −0.118649 −0.0593244 0.998239i \(-0.518895\pi\)
−0.0593244 + 0.998239i \(0.518895\pi\)
\(132\) −204.350 −0.134746
\(133\) 0 0
\(134\) 366.922 0.236547
\(135\) −1818.86 −1.15957
\(136\) 594.248 0.374679
\(137\) −24.7603 −0.0154410 −0.00772050 0.999970i \(-0.502458\pi\)
−0.00772050 + 0.999970i \(0.502458\pi\)
\(138\) −2017.59 −1.24456
\(139\) 2867.21 1.74959 0.874796 0.484491i \(-0.160995\pi\)
0.874796 + 0.484491i \(0.160995\pi\)
\(140\) 1599.63 0.965667
\(141\) −2252.17 −1.34515
\(142\) −113.309 −0.0669626
\(143\) 440.655 0.257688
\(144\) 173.567 0.100444
\(145\) 4254.06 2.43642
\(146\) 136.304 0.0772645
\(147\) 826.421 0.463687
\(148\) −1185.73 −0.658558
\(149\) 1949.35 1.07179 0.535895 0.844285i \(-0.319974\pi\)
0.535895 + 0.844285i \(0.319974\pi\)
\(150\) 2584.38 1.40676
\(151\) −1120.99 −0.604136 −0.302068 0.953286i \(-0.597677\pi\)
−0.302068 + 0.953286i \(0.597677\pi\)
\(152\) 0 0
\(153\) 805.795 0.425782
\(154\) −362.856 −0.189869
\(155\) −1801.73 −0.933669
\(156\) −1305.82 −0.670190
\(157\) −2360.23 −1.19979 −0.599894 0.800079i \(-0.704791\pi\)
−0.599894 + 0.800079i \(0.704791\pi\)
\(158\) 665.640 0.335161
\(159\) −852.870 −0.425390
\(160\) 585.732 0.289414
\(161\) −3582.56 −1.75370
\(162\) −1808.43 −0.877061
\(163\) 861.825 0.414131 0.207065 0.978327i \(-0.433609\pi\)
0.207065 + 0.978327i \(0.433609\pi\)
\(164\) 1739.65 0.828316
\(165\) −935.114 −0.441203
\(166\) 2305.82 1.07811
\(167\) −1686.51 −0.781472 −0.390736 0.920503i \(-0.627779\pi\)
−0.390736 + 0.920503i \(0.627779\pi\)
\(168\) 1075.28 0.493807
\(169\) 618.838 0.281674
\(170\) 2719.30 1.22683
\(171\) 0 0
\(172\) −685.197 −0.303755
\(173\) 3191.44 1.40255 0.701273 0.712893i \(-0.252616\pi\)
0.701273 + 0.712893i \(0.252616\pi\)
\(174\) 2859.60 1.24590
\(175\) 4588.97 1.98225
\(176\) −132.866 −0.0569043
\(177\) −3523.88 −1.49645
\(178\) 736.959 0.310322
\(179\) 1229.49 0.513389 0.256695 0.966493i \(-0.417367\pi\)
0.256695 + 0.966493i \(0.417367\pi\)
\(180\) 794.248 0.328888
\(181\) 3108.95 1.27672 0.638360 0.769738i \(-0.279613\pi\)
0.638360 + 0.769738i \(0.279613\pi\)
\(182\) −2318.70 −0.944359
\(183\) −3892.36 −1.57230
\(184\) −1311.82 −0.525589
\(185\) −5425.95 −2.15635
\(186\) −1211.13 −0.477444
\(187\) −616.840 −0.241218
\(188\) −1464.33 −0.568071
\(189\) −2171.00 −0.835539
\(190\) 0 0
\(191\) −1415.48 −0.536233 −0.268117 0.963386i \(-0.586401\pi\)
−0.268117 + 0.963386i \(0.586401\pi\)
\(192\) 393.732 0.147996
\(193\) −1443.40 −0.538333 −0.269167 0.963094i \(-0.586748\pi\)
−0.269167 + 0.963094i \(0.586748\pi\)
\(194\) 852.886 0.315637
\(195\) −5975.50 −2.19443
\(196\) 537.329 0.195819
\(197\) 5271.92 1.90664 0.953322 0.301954i \(-0.0976389\pi\)
0.953322 + 0.301954i \(0.0976389\pi\)
\(198\) −180.165 −0.0646656
\(199\) −2510.19 −0.894183 −0.447091 0.894488i \(-0.647540\pi\)
−0.447091 + 0.894488i \(0.647540\pi\)
\(200\) 1680.33 0.594087
\(201\) 1128.67 0.396069
\(202\) −806.248 −0.280829
\(203\) 5077.68 1.75558
\(204\) 1827.93 0.627355
\(205\) 7960.70 2.71219
\(206\) 2271.35 0.768217
\(207\) −1778.81 −0.597275
\(208\) −849.032 −0.283028
\(209\) 0 0
\(210\) 4920.52 1.61689
\(211\) −1854.44 −0.605046 −0.302523 0.953142i \(-0.597829\pi\)
−0.302523 + 0.953142i \(0.597829\pi\)
\(212\) −554.526 −0.179646
\(213\) −348.542 −0.112121
\(214\) 760.192 0.242830
\(215\) −3135.48 −0.994597
\(216\) −794.949 −0.250414
\(217\) −2150.56 −0.672763
\(218\) −2361.48 −0.733668
\(219\) 419.276 0.129370
\(220\) −608.000 −0.186324
\(221\) −3941.68 −1.19976
\(222\) −3647.35 −1.10268
\(223\) −1880.34 −0.564649 −0.282325 0.959319i \(-0.591105\pi\)
−0.282325 + 0.959319i \(0.591105\pi\)
\(224\) 699.134 0.208539
\(225\) 2278.51 0.675115
\(226\) 2265.01 0.666665
\(227\) −1799.23 −0.526075 −0.263038 0.964786i \(-0.584724\pi\)
−0.263038 + 0.964786i \(0.584724\pi\)
\(228\) 0 0
\(229\) 4835.34 1.39532 0.697660 0.716429i \(-0.254224\pi\)
0.697660 + 0.716429i \(0.254224\pi\)
\(230\) −6002.91 −1.72096
\(231\) −1116.16 −0.317913
\(232\) 1859.28 0.526154
\(233\) 865.299 0.243295 0.121647 0.992573i \(-0.461182\pi\)
0.121647 + 0.992573i \(0.461182\pi\)
\(234\) −1151.28 −0.321630
\(235\) −6700.83 −1.86006
\(236\) −2291.19 −0.631964
\(237\) 2047.53 0.561187
\(238\) 3245.77 0.884001
\(239\) −4764.27 −1.28943 −0.644717 0.764421i \(-0.723025\pi\)
−0.644717 + 0.764421i \(0.723025\pi\)
\(240\) 1801.73 0.484589
\(241\) −615.336 −0.164470 −0.0822350 0.996613i \(-0.526206\pi\)
−0.0822350 + 0.996613i \(0.526206\pi\)
\(242\) −2524.08 −0.670472
\(243\) −2879.85 −0.760257
\(244\) −2530.76 −0.663998
\(245\) 2458.83 0.641180
\(246\) 5351.22 1.38692
\(247\) 0 0
\(248\) −787.465 −0.201629
\(249\) 7092.79 1.80517
\(250\) 3113.22 0.787588
\(251\) −1658.08 −0.416959 −0.208480 0.978027i \(-0.566852\pi\)
−0.208480 + 0.978027i \(0.566852\pi\)
\(252\) 948.020 0.236983
\(253\) 1361.69 0.338373
\(254\) 80.0925 0.0197852
\(255\) 8364.66 2.05418
\(256\) 256.000 0.0625000
\(257\) −3446.12 −0.836432 −0.418216 0.908348i \(-0.637344\pi\)
−0.418216 + 0.908348i \(0.637344\pi\)
\(258\) −2107.69 −0.508601
\(259\) −6476.45 −1.55377
\(260\) −3885.20 −0.926730
\(261\) 2521.17 0.597917
\(262\) −355.795 −0.0838974
\(263\) 5755.80 1.34950 0.674748 0.738048i \(-0.264252\pi\)
0.674748 + 0.738048i \(0.264252\pi\)
\(264\) −408.701 −0.0952795
\(265\) −2537.53 −0.588223
\(266\) 0 0
\(267\) 2266.91 0.519598
\(268\) 733.844 0.167264
\(269\) −2257.28 −0.511631 −0.255816 0.966726i \(-0.582344\pi\)
−0.255816 + 0.966726i \(0.582344\pi\)
\(270\) −3637.71 −0.819941
\(271\) 7012.13 1.57180 0.785898 0.618357i \(-0.212201\pi\)
0.785898 + 0.618357i \(0.212201\pi\)
\(272\) 1188.50 0.264938
\(273\) −7132.39 −1.58122
\(274\) −49.5207 −0.0109184
\(275\) −1744.21 −0.382472
\(276\) −4035.19 −0.880035
\(277\) −372.810 −0.0808664 −0.0404332 0.999182i \(-0.512874\pi\)
−0.0404332 + 0.999182i \(0.512874\pi\)
\(278\) 5734.41 1.23715
\(279\) −1067.80 −0.229130
\(280\) 3199.26 0.682830
\(281\) 1888.96 0.401017 0.200508 0.979692i \(-0.435741\pi\)
0.200508 + 0.979692i \(0.435741\pi\)
\(282\) −4504.33 −0.951167
\(283\) −3884.43 −0.815920 −0.407960 0.913000i \(-0.633760\pi\)
−0.407960 + 0.913000i \(0.633760\pi\)
\(284\) −226.618 −0.0473497
\(285\) 0 0
\(286\) 881.309 0.182213
\(287\) 9501.94 1.95429
\(288\) 347.134 0.0710245
\(289\) 604.668 0.123075
\(290\) 8508.13 1.72281
\(291\) 2623.51 0.528497
\(292\) 272.608 0.0546342
\(293\) 1273.01 0.253823 0.126911 0.991914i \(-0.459494\pi\)
0.126911 + 0.991914i \(0.459494\pi\)
\(294\) 1652.84 0.327876
\(295\) −10484.5 −2.06927
\(296\) −2371.46 −0.465671
\(297\) 825.170 0.161216
\(298\) 3898.69 0.757869
\(299\) 8701.35 1.68298
\(300\) 5168.75 0.994727
\(301\) −3742.53 −0.716665
\(302\) −2241.97 −0.427188
\(303\) −2480.05 −0.470214
\(304\) 0 0
\(305\) −11580.9 −2.17416
\(306\) 1611.59 0.301074
\(307\) −819.153 −0.152285 −0.0761426 0.997097i \(-0.524260\pi\)
−0.0761426 + 0.997097i \(0.524260\pi\)
\(308\) −725.713 −0.134258
\(309\) 6986.76 1.28629
\(310\) −3603.46 −0.660203
\(311\) 2104.67 0.383745 0.191872 0.981420i \(-0.438544\pi\)
0.191872 + 0.981420i \(0.438544\pi\)
\(312\) −2611.65 −0.473896
\(313\) 2395.47 0.432587 0.216293 0.976328i \(-0.430603\pi\)
0.216293 + 0.976328i \(0.430603\pi\)
\(314\) −4720.46 −0.848378
\(315\) 4338.17 0.775962
\(316\) 1331.28 0.236995
\(317\) −2158.23 −0.382393 −0.191196 0.981552i \(-0.561237\pi\)
−0.191196 + 0.981552i \(0.561237\pi\)
\(318\) −1705.74 −0.300796
\(319\) −1929.96 −0.338737
\(320\) 1171.46 0.204646
\(321\) 2338.38 0.406590
\(322\) −7165.11 −1.24005
\(323\) 0 0
\(324\) −3616.87 −0.620176
\(325\) −11145.7 −1.90232
\(326\) 1723.65 0.292835
\(327\) −7264.00 −1.22844
\(328\) 3479.30 0.585708
\(329\) −7998.15 −1.34028
\(330\) −1870.23 −0.311978
\(331\) −517.782 −0.0859815 −0.0429908 0.999075i \(-0.513689\pi\)
−0.0429908 + 0.999075i \(0.513689\pi\)
\(332\) 4611.65 0.762341
\(333\) −3215.69 −0.529185
\(334\) −3373.01 −0.552584
\(335\) 3358.10 0.547679
\(336\) 2150.56 0.349174
\(337\) −6503.63 −1.05126 −0.525631 0.850713i \(-0.676171\pi\)
−0.525631 + 0.850713i \(0.676171\pi\)
\(338\) 1237.68 0.199174
\(339\) 6967.25 1.11625
\(340\) 5438.60 0.867498
\(341\) 817.402 0.129809
\(342\) 0 0
\(343\) −4558.96 −0.717670
\(344\) −1370.39 −0.214787
\(345\) −18465.2 −2.88154
\(346\) 6382.87 0.991749
\(347\) 6058.33 0.937257 0.468628 0.883395i \(-0.344748\pi\)
0.468628 + 0.883395i \(0.344748\pi\)
\(348\) 5719.21 0.880982
\(349\) −10955.1 −1.68027 −0.840135 0.542377i \(-0.817524\pi\)
−0.840135 + 0.542377i \(0.817524\pi\)
\(350\) 9177.94 1.40166
\(351\) 5272.94 0.801849
\(352\) −265.732 −0.0402374
\(353\) −1806.43 −0.272369 −0.136185 0.990683i \(-0.543484\pi\)
−0.136185 + 0.990683i \(0.543484\pi\)
\(354\) −7047.77 −1.05815
\(355\) −1037.01 −0.155039
\(356\) 1473.92 0.219431
\(357\) 9984.11 1.48015
\(358\) 2458.99 0.363021
\(359\) −7964.50 −1.17089 −0.585446 0.810711i \(-0.699081\pi\)
−0.585446 + 0.810711i \(0.699081\pi\)
\(360\) 1588.50 0.232559
\(361\) 0 0
\(362\) 6217.90 0.902777
\(363\) −7764.16 −1.12263
\(364\) −4637.40 −0.667763
\(365\) 1247.46 0.178891
\(366\) −7784.71 −1.11179
\(367\) −7311.58 −1.03995 −0.519974 0.854182i \(-0.674059\pi\)
−0.519974 + 0.854182i \(0.674059\pi\)
\(368\) −2623.63 −0.371647
\(369\) 4717.90 0.665594
\(370\) −10851.9 −1.52477
\(371\) −3028.81 −0.423849
\(372\) −2422.27 −0.337604
\(373\) −5518.38 −0.766035 −0.383017 0.923741i \(-0.625115\pi\)
−0.383017 + 0.923741i \(0.625115\pi\)
\(374\) −1233.68 −0.170567
\(375\) 9576.36 1.31872
\(376\) −2928.66 −0.401687
\(377\) −12332.7 −1.68479
\(378\) −4342.00 −0.590815
\(379\) 1139.97 0.154502 0.0772512 0.997012i \(-0.475386\pi\)
0.0772512 + 0.997012i \(0.475386\pi\)
\(380\) 0 0
\(381\) 246.367 0.0331280
\(382\) −2830.96 −0.379174
\(383\) 10409.5 1.38877 0.694385 0.719604i \(-0.255677\pi\)
0.694385 + 0.719604i \(0.255677\pi\)
\(384\) 787.465 0.104649
\(385\) −3320.89 −0.439605
\(386\) −2886.80 −0.380659
\(387\) −1858.24 −0.244082
\(388\) 1705.77 0.223189
\(389\) 10471.2 1.36481 0.682404 0.730975i \(-0.260934\pi\)
0.682404 + 0.730975i \(0.260934\pi\)
\(390\) −11951.0 −1.55170
\(391\) −12180.4 −1.57542
\(392\) 1074.66 0.138465
\(393\) −1094.44 −0.140476
\(394\) 10543.8 1.34820
\(395\) 6091.98 0.776002
\(396\) −360.331 −0.0457255
\(397\) −9588.68 −1.21220 −0.606098 0.795390i \(-0.707266\pi\)
−0.606098 + 0.795390i \(0.707266\pi\)
\(398\) −5020.37 −0.632283
\(399\) 0 0
\(400\) 3360.66 0.420083
\(401\) −8549.30 −1.06467 −0.532334 0.846535i \(-0.678685\pi\)
−0.532334 + 0.846535i \(0.678685\pi\)
\(402\) 2257.33 0.280063
\(403\) 5223.30 0.645635
\(404\) −1612.50 −0.198576
\(405\) −16550.9 −2.03067
\(406\) 10155.4 1.24138
\(407\) 2461.62 0.299798
\(408\) 3655.85 0.443607
\(409\) −266.960 −0.0322746 −0.0161373 0.999870i \(-0.505137\pi\)
−0.0161373 + 0.999870i \(0.505137\pi\)
\(410\) 15921.4 1.91781
\(411\) −152.327 −0.0182816
\(412\) 4542.71 0.543211
\(413\) −12514.4 −1.49103
\(414\) −3557.62 −0.422337
\(415\) 21103.1 2.49617
\(416\) −1698.06 −0.200131
\(417\) 17639.2 2.07146
\(418\) 0 0
\(419\) 8643.83 1.00783 0.503913 0.863755i \(-0.331893\pi\)
0.503913 + 0.863755i \(0.331893\pi\)
\(420\) 9841.03 1.14332
\(421\) 16801.3 1.94500 0.972499 0.232905i \(-0.0748232\pi\)
0.972499 + 0.232905i \(0.0748232\pi\)
\(422\) −3708.87 −0.427832
\(423\) −3971.24 −0.456474
\(424\) −1109.05 −0.127029
\(425\) 15602.1 1.78073
\(426\) −697.085 −0.0792814
\(427\) −13823.0 −1.56661
\(428\) 1520.38 0.171707
\(429\) 2710.94 0.305094
\(430\) −6270.97 −0.703286
\(431\) −12053.5 −1.34710 −0.673548 0.739144i \(-0.735231\pi\)
−0.673548 + 0.739144i \(0.735231\pi\)
\(432\) −1589.90 −0.177069
\(433\) −9034.61 −1.00271 −0.501357 0.865240i \(-0.667166\pi\)
−0.501357 + 0.865240i \(0.667166\pi\)
\(434\) −4301.12 −0.475715
\(435\) 26171.3 2.88464
\(436\) −4722.96 −0.518782
\(437\) 0 0
\(438\) 838.552 0.0914785
\(439\) −3008.87 −0.327120 −0.163560 0.986533i \(-0.552298\pi\)
−0.163560 + 0.986533i \(0.552298\pi\)
\(440\) −1216.00 −0.131751
\(441\) 1457.23 0.157351
\(442\) −7883.37 −0.848356
\(443\) −229.594 −0.0246237 −0.0123119 0.999924i \(-0.503919\pi\)
−0.0123119 + 0.999924i \(0.503919\pi\)
\(444\) −7294.71 −0.779710
\(445\) 6744.70 0.718493
\(446\) −3760.68 −0.399267
\(447\) 11992.5 1.26896
\(448\) 1398.27 0.147460
\(449\) 7559.44 0.794548 0.397274 0.917700i \(-0.369956\pi\)
0.397274 + 0.917700i \(0.369956\pi\)
\(450\) 4557.03 0.477379
\(451\) −3611.57 −0.377078
\(452\) 4530.02 0.471404
\(453\) −6896.38 −0.715276
\(454\) −3598.46 −0.371991
\(455\) −21220.9 −2.18648
\(456\) 0 0
\(457\) 11556.4 1.18290 0.591449 0.806343i \(-0.298556\pi\)
0.591449 + 0.806343i \(0.298556\pi\)
\(458\) 9670.69 0.986641
\(459\) −7381.20 −0.750599
\(460\) −12005.8 −1.21690
\(461\) 9191.58 0.928622 0.464311 0.885672i \(-0.346302\pi\)
0.464311 + 0.885672i \(0.346302\pi\)
\(462\) −2232.32 −0.224798
\(463\) 1356.03 0.136113 0.0680564 0.997681i \(-0.478320\pi\)
0.0680564 + 0.997681i \(0.478320\pi\)
\(464\) 3718.56 0.372047
\(465\) −11084.4 −1.10543
\(466\) 1730.60 0.172035
\(467\) −14808.9 −1.46740 −0.733700 0.679473i \(-0.762208\pi\)
−0.733700 + 0.679473i \(0.762208\pi\)
\(468\) −2302.56 −0.227427
\(469\) 4008.25 0.394635
\(470\) −13401.7 −1.31526
\(471\) −14520.3 −1.42051
\(472\) −4582.37 −0.446866
\(473\) 1422.49 0.138280
\(474\) 4095.06 0.396819
\(475\) 0 0
\(476\) 6491.55 0.625083
\(477\) −1503.86 −0.144355
\(478\) −9528.54 −0.911768
\(479\) 9834.66 0.938115 0.469058 0.883168i \(-0.344594\pi\)
0.469058 + 0.883168i \(0.344594\pi\)
\(480\) 3603.46 0.342656
\(481\) 15730.1 1.49112
\(482\) −1230.67 −0.116298
\(483\) −22040.1 −2.07632
\(484\) −5048.17 −0.474095
\(485\) 7805.67 0.730798
\(486\) −5759.70 −0.537583
\(487\) −3687.82 −0.343144 −0.171572 0.985172i \(-0.554885\pi\)
−0.171572 + 0.985172i \(0.554885\pi\)
\(488\) −5061.53 −0.469518
\(489\) 5302.00 0.490317
\(490\) 4917.67 0.453383
\(491\) −11197.4 −1.02919 −0.514593 0.857435i \(-0.672057\pi\)
−0.514593 + 0.857435i \(0.672057\pi\)
\(492\) 10702.4 0.980698
\(493\) 17263.6 1.57711
\(494\) 0 0
\(495\) −1648.89 −0.149721
\(496\) −1574.93 −0.142573
\(497\) −1237.78 −0.111715
\(498\) 14185.6 1.27645
\(499\) −12101.6 −1.08566 −0.542829 0.839843i \(-0.682647\pi\)
−0.542829 + 0.839843i \(0.682647\pi\)
\(500\) 6226.43 0.556909
\(501\) −10375.5 −0.925236
\(502\) −3316.15 −0.294835
\(503\) −7266.58 −0.644136 −0.322068 0.946716i \(-0.604378\pi\)
−0.322068 + 0.946716i \(0.604378\pi\)
\(504\) 1896.04 0.167572
\(505\) −7378.84 −0.650206
\(506\) 2723.37 0.239266
\(507\) 3807.13 0.333493
\(508\) 160.185 0.0139903
\(509\) −2564.99 −0.223362 −0.111681 0.993744i \(-0.535624\pi\)
−0.111681 + 0.993744i \(0.535624\pi\)
\(510\) 16729.3 1.45252
\(511\) 1488.98 0.128902
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −6892.24 −0.591447
\(515\) 20787.6 1.77866
\(516\) −4215.38 −0.359635
\(517\) 3040.00 0.258606
\(518\) −12952.9 −1.09868
\(519\) 19633.9 1.66057
\(520\) −7770.39 −0.655297
\(521\) −11254.6 −0.946401 −0.473201 0.880955i \(-0.656901\pi\)
−0.473201 + 0.880955i \(0.656901\pi\)
\(522\) 5042.34 0.422791
\(523\) 18357.1 1.53480 0.767401 0.641168i \(-0.221550\pi\)
0.767401 + 0.641168i \(0.221550\pi\)
\(524\) −711.591 −0.0593244
\(525\) 28231.6 2.34691
\(526\) 11511.6 0.954238
\(527\) −7311.71 −0.604370
\(528\) −817.402 −0.0673728
\(529\) 14721.4 1.20995
\(530\) −5075.06 −0.415936
\(531\) −6213.66 −0.507815
\(532\) 0 0
\(533\) −23078.4 −1.87549
\(534\) 4533.82 0.367411
\(535\) 6957.33 0.562227
\(536\) 1467.69 0.118273
\(537\) 7563.93 0.607836
\(538\) −4514.56 −0.361778
\(539\) −1115.51 −0.0891438
\(540\) −7275.43 −0.579786
\(541\) 11381.8 0.904510 0.452255 0.891889i \(-0.350620\pi\)
0.452255 + 0.891889i \(0.350620\pi\)
\(542\) 14024.3 1.11143
\(543\) 19126.5 1.51159
\(544\) 2376.99 0.187340
\(545\) −21612.4 −1.69867
\(546\) −14264.8 −1.11809
\(547\) 8996.84 0.703248 0.351624 0.936141i \(-0.385629\pi\)
0.351624 + 0.936141i \(0.385629\pi\)
\(548\) −99.0413 −0.00772050
\(549\) −6863.39 −0.533556
\(550\) −3488.42 −0.270449
\(551\) 0 0
\(552\) −8070.37 −0.622279
\(553\) 7271.43 0.559155
\(554\) −745.620 −0.0571812
\(555\) −33380.8 −2.55304
\(556\) 11468.8 0.874796
\(557\) 10759.8 0.818507 0.409253 0.912421i \(-0.365789\pi\)
0.409253 + 0.912421i \(0.365789\pi\)
\(558\) −2135.59 −0.162019
\(559\) 9089.90 0.687767
\(560\) 6398.52 0.482834
\(561\) −3794.84 −0.285594
\(562\) 3777.91 0.283562
\(563\) −25381.8 −1.90003 −0.950015 0.312205i \(-0.898932\pi\)
−0.950015 + 0.312205i \(0.898932\pi\)
\(564\) −9008.66 −0.672576
\(565\) 20729.5 1.54354
\(566\) −7768.86 −0.576943
\(567\) −19755.3 −1.46322
\(568\) −453.236 −0.0334813
\(569\) 5546.00 0.408612 0.204306 0.978907i \(-0.434506\pi\)
0.204306 + 0.978907i \(0.434506\pi\)
\(570\) 0 0
\(571\) 7714.96 0.565431 0.282715 0.959204i \(-0.408765\pi\)
0.282715 + 0.959204i \(0.408765\pi\)
\(572\) 1762.62 0.128844
\(573\) −8708.13 −0.634882
\(574\) 19003.9 1.38189
\(575\) −34441.9 −2.49796
\(576\) 694.268 0.0502219
\(577\) 21335.1 1.53933 0.769665 0.638448i \(-0.220423\pi\)
0.769665 + 0.638448i \(0.220423\pi\)
\(578\) 1209.34 0.0870273
\(579\) −8879.90 −0.637368
\(580\) 17016.3 1.21821
\(581\) 25188.8 1.79863
\(582\) 5247.01 0.373704
\(583\) 1151.21 0.0817811
\(584\) 545.217 0.0386322
\(585\) −10536.6 −0.744674
\(586\) 2546.02 0.179480
\(587\) 12370.9 0.869846 0.434923 0.900468i \(-0.356776\pi\)
0.434923 + 0.900468i \(0.356776\pi\)
\(588\) 3305.68 0.231844
\(589\) 0 0
\(590\) −20969.1 −1.46319
\(591\) 32433.2 2.25740
\(592\) −4742.93 −0.329279
\(593\) 12982.5 0.899034 0.449517 0.893272i \(-0.351596\pi\)
0.449517 + 0.893272i \(0.351596\pi\)
\(594\) 1650.34 0.113997
\(595\) 29705.5 2.04674
\(596\) 7797.38 0.535895
\(597\) −15442.8 −1.05868
\(598\) 17402.7 1.19005
\(599\) −13163.7 −0.897921 −0.448960 0.893552i \(-0.648206\pi\)
−0.448960 + 0.893552i \(0.648206\pi\)
\(600\) 10337.5 0.703378
\(601\) 29325.4 1.99036 0.995180 0.0980640i \(-0.0312650\pi\)
0.995180 + 0.0980640i \(0.0312650\pi\)
\(602\) −7485.07 −0.506758
\(603\) 1990.17 0.134405
\(604\) −4483.94 −0.302068
\(605\) −23100.6 −1.55235
\(606\) −4960.09 −0.332492
\(607\) 2170.11 0.145110 0.0725552 0.997364i \(-0.476885\pi\)
0.0725552 + 0.997364i \(0.476885\pi\)
\(608\) 0 0
\(609\) 31238.2 2.07855
\(610\) −23161.7 −1.53736
\(611\) 19426.0 1.28624
\(612\) 3223.18 0.212891
\(613\) −4917.96 −0.324036 −0.162018 0.986788i \(-0.551800\pi\)
−0.162018 + 0.986788i \(0.551800\pi\)
\(614\) −1638.31 −0.107682
\(615\) 48974.7 3.21114
\(616\) −1451.43 −0.0949344
\(617\) 24763.5 1.61579 0.807894 0.589328i \(-0.200607\pi\)
0.807894 + 0.589328i \(0.200607\pi\)
\(618\) 13973.5 0.909542
\(619\) −27552.0 −1.78902 −0.894512 0.447043i \(-0.852477\pi\)
−0.894512 + 0.447043i \(0.852477\pi\)
\(620\) −7206.93 −0.466834
\(621\) 16294.2 1.05292
\(622\) 4209.33 0.271348
\(623\) 8050.51 0.517716
\(624\) −5223.30 −0.335095
\(625\) 2237.20 0.143181
\(626\) 4790.93 0.305885
\(627\) 0 0
\(628\) −9440.91 −0.599894
\(629\) −22019.3 −1.39582
\(630\) 8676.34 0.548688
\(631\) 377.839 0.0238376 0.0119188 0.999929i \(-0.496206\pi\)
0.0119188 + 0.999929i \(0.496206\pi\)
\(632\) 2662.56 0.167581
\(633\) −11408.6 −0.716354
\(634\) −4316.47 −0.270393
\(635\) 733.012 0.0458090
\(636\) −3411.48 −0.212695
\(637\) −7128.27 −0.443379
\(638\) −3859.93 −0.239523
\(639\) −614.584 −0.0380479
\(640\) 2342.93 0.144707
\(641\) 14047.3 0.865576 0.432788 0.901496i \(-0.357530\pi\)
0.432788 + 0.901496i \(0.357530\pi\)
\(642\) 4676.75 0.287503
\(643\) 5768.94 0.353818 0.176909 0.984227i \(-0.443390\pi\)
0.176909 + 0.984227i \(0.443390\pi\)
\(644\) −14330.2 −0.876848
\(645\) −19289.7 −1.17757
\(646\) 0 0
\(647\) 4568.59 0.277604 0.138802 0.990320i \(-0.455675\pi\)
0.138802 + 0.990320i \(0.455675\pi\)
\(648\) −7233.73 −0.438531
\(649\) 4756.58 0.287692
\(650\) −22291.5 −1.34514
\(651\) −13230.4 −0.796528
\(652\) 3447.30 0.207065
\(653\) −16532.7 −0.990774 −0.495387 0.868672i \(-0.664974\pi\)
−0.495387 + 0.868672i \(0.664974\pi\)
\(654\) −14528.0 −0.868638
\(655\) −3256.26 −0.194248
\(656\) 6958.60 0.414158
\(657\) 739.309 0.0439014
\(658\) −15996.3 −0.947721
\(659\) 18630.0 1.10125 0.550624 0.834753i \(-0.314390\pi\)
0.550624 + 0.834753i \(0.314390\pi\)
\(660\) −3740.46 −0.220602
\(661\) −28851.3 −1.69771 −0.848854 0.528627i \(-0.822707\pi\)
−0.848854 + 0.528627i \(0.822707\pi\)
\(662\) −1035.56 −0.0607981
\(663\) −24249.5 −1.42047
\(664\) 9223.30 0.539056
\(665\) 0 0
\(666\) −6431.37 −0.374190
\(667\) −38109.9 −2.21232
\(668\) −6746.02 −0.390736
\(669\) −11568.0 −0.668525
\(670\) 6716.19 0.387267
\(671\) 5253.95 0.302275
\(672\) 4301.12 0.246904
\(673\) 3873.41 0.221856 0.110928 0.993828i \(-0.464618\pi\)
0.110928 + 0.993828i \(0.464618\pi\)
\(674\) −13007.3 −0.743354
\(675\) −20871.5 −1.19014
\(676\) 2475.35 0.140837
\(677\) −5025.24 −0.285282 −0.142641 0.989775i \(-0.545559\pi\)
−0.142641 + 0.989775i \(0.545559\pi\)
\(678\) 13934.5 0.789309
\(679\) 9316.90 0.526583
\(680\) 10877.2 0.613414
\(681\) −11069.0 −0.622855
\(682\) 1634.80 0.0917886
\(683\) 14157.0 0.793122 0.396561 0.918008i \(-0.370204\pi\)
0.396561 + 0.918008i \(0.370204\pi\)
\(684\) 0 0
\(685\) −453.217 −0.0252796
\(686\) −9117.92 −0.507469
\(687\) 29747.4 1.65201
\(688\) −2740.79 −0.151877
\(689\) 7356.40 0.406758
\(690\) −36930.3 −2.03755
\(691\) −2437.65 −0.134200 −0.0671002 0.997746i \(-0.521375\pi\)
−0.0671002 + 0.997746i \(0.521375\pi\)
\(692\) 12765.7 0.701273
\(693\) −1968.12 −0.107883
\(694\) 12116.7 0.662741
\(695\) 52481.7 2.86438
\(696\) 11438.4 0.622948
\(697\) 32305.7 1.75562
\(698\) −21910.2 −1.18813
\(699\) 5323.38 0.288052
\(700\) 18355.9 0.991124
\(701\) 9496.96 0.511691 0.255845 0.966718i \(-0.417646\pi\)
0.255845 + 0.966718i \(0.417646\pi\)
\(702\) 10545.9 0.566993
\(703\) 0 0
\(704\) −531.465 −0.0284522
\(705\) −41223.9 −2.20225
\(706\) −3612.85 −0.192594
\(707\) −8807.43 −0.468511
\(708\) −14095.5 −0.748224
\(709\) 6350.33 0.336377 0.168189 0.985755i \(-0.446208\pi\)
0.168189 + 0.985755i \(0.446208\pi\)
\(710\) −2074.02 −0.109629
\(711\) 3610.41 0.190437
\(712\) 2947.83 0.155161
\(713\) 16140.7 0.847792
\(714\) 19968.2 1.04663
\(715\) 8065.80 0.421879
\(716\) 4917.98 0.256695
\(717\) −29310.1 −1.52665
\(718\) −15929.0 −0.827946
\(719\) −19722.6 −1.02299 −0.511496 0.859286i \(-0.670908\pi\)
−0.511496 + 0.859286i \(0.670908\pi\)
\(720\) 3176.99 0.164444
\(721\) 24812.2 1.28163
\(722\) 0 0
\(723\) −3785.59 −0.194727
\(724\) 12435.8 0.638360
\(725\) 48815.7 2.50065
\(726\) −15528.3 −0.793816
\(727\) 28325.8 1.44504 0.722520 0.691350i \(-0.242984\pi\)
0.722520 + 0.691350i \(0.242984\pi\)
\(728\) −9274.79 −0.472179
\(729\) 6696.82 0.340234
\(730\) 2494.93 0.126495
\(731\) −12724.3 −0.643809
\(732\) −15569.4 −0.786151
\(733\) 33981.8 1.71234 0.856170 0.516694i \(-0.172837\pi\)
0.856170 + 0.516694i \(0.172837\pi\)
\(734\) −14623.2 −0.735355
\(735\) 15126.9 0.759135
\(736\) −5247.26 −0.262794
\(737\) −1523.49 −0.0761443
\(738\) 9435.80 0.470646
\(739\) 9147.10 0.455320 0.227660 0.973741i \(-0.426893\pi\)
0.227660 + 0.973741i \(0.426893\pi\)
\(740\) −21703.8 −1.07817
\(741\) 0 0
\(742\) −6057.62 −0.299706
\(743\) 34159.2 1.68665 0.843324 0.537405i \(-0.180596\pi\)
0.843324 + 0.537405i \(0.180596\pi\)
\(744\) −4844.54 −0.238722
\(745\) 35681.1 1.75470
\(746\) −11036.8 −0.541668
\(747\) 12506.7 0.612579
\(748\) −2467.36 −0.120609
\(749\) 8304.31 0.405117
\(750\) 19152.7 0.932478
\(751\) −28361.8 −1.37808 −0.689038 0.724725i \(-0.741967\pi\)
−0.689038 + 0.724725i \(0.741967\pi\)
\(752\) −5857.32 −0.284035
\(753\) −10200.6 −0.493666
\(754\) −24665.4 −1.19133
\(755\) −20518.7 −0.989074
\(756\) −8683.99 −0.417770
\(757\) 11464.9 0.550462 0.275231 0.961378i \(-0.411246\pi\)
0.275231 + 0.961378i \(0.411246\pi\)
\(758\) 2279.94 0.109250
\(759\) 8377.18 0.400623
\(760\) 0 0
\(761\) 14289.3 0.680666 0.340333 0.940305i \(-0.389460\pi\)
0.340333 + 0.940305i \(0.389460\pi\)
\(762\) 492.734 0.0234250
\(763\) −25796.7 −1.22399
\(764\) −5661.92 −0.268117
\(765\) 14749.4 0.697079
\(766\) 20818.9 0.982008
\(767\) 30395.2 1.43091
\(768\) 1574.93 0.0739979
\(769\) 100.811 0.00472734 0.00236367 0.999997i \(-0.499248\pi\)
0.00236367 + 0.999997i \(0.499248\pi\)
\(770\) −6641.77 −0.310848
\(771\) −21200.8 −0.990307
\(772\) −5773.61 −0.269167
\(773\) −52.1073 −0.00242454 −0.00121227 0.999999i \(-0.500386\pi\)
−0.00121227 + 0.999999i \(0.500386\pi\)
\(774\) −3716.49 −0.172592
\(775\) −20675.0 −0.958282
\(776\) 3411.54 0.157819
\(777\) −39843.6 −1.83961
\(778\) 20942.4 0.965065
\(779\) 0 0
\(780\) −23902.0 −1.09722
\(781\) 470.467 0.0215552
\(782\) −24360.7 −1.11399
\(783\) −23094.3 −1.05405
\(784\) 2149.31 0.0979097
\(785\) −43201.9 −1.96426
\(786\) −2188.88 −0.0993316
\(787\) −15261.8 −0.691266 −0.345633 0.938370i \(-0.612336\pi\)
−0.345633 + 0.938370i \(0.612336\pi\)
\(788\) 21087.7 0.953322
\(789\) 35410.0 1.59776
\(790\) 12184.0 0.548716
\(791\) 24742.9 1.11221
\(792\) −720.662 −0.0323328
\(793\) 33573.4 1.50344
\(794\) −19177.4 −0.857152
\(795\) −15611.0 −0.696436
\(796\) −10040.7 −0.447091
\(797\) −24432.3 −1.08587 −0.542934 0.839775i \(-0.682687\pi\)
−0.542934 + 0.839775i \(0.682687\pi\)
\(798\) 0 0
\(799\) −27193.0 −1.20403
\(800\) 6721.32 0.297043
\(801\) 3997.24 0.176324
\(802\) −17098.6 −0.752834
\(803\) −565.944 −0.0248714
\(804\) 4514.66 0.198035
\(805\) −65575.6 −2.87110
\(806\) 10446.6 0.456533
\(807\) −13886.9 −0.605754
\(808\) −3224.99 −0.140414
\(809\) 3635.86 0.158010 0.0790050 0.996874i \(-0.474826\pi\)
0.0790050 + 0.996874i \(0.474826\pi\)
\(810\) −33101.8 −1.43590
\(811\) −1087.93 −0.0471051 −0.0235526 0.999723i \(-0.507498\pi\)
−0.0235526 + 0.999723i \(0.507498\pi\)
\(812\) 20310.7 0.877791
\(813\) 43139.1 1.86095
\(814\) 4923.24 0.211990
\(815\) 15775.0 0.678003
\(816\) 7311.71 0.313678
\(817\) 0 0
\(818\) −533.920 −0.0228216
\(819\) −12576.5 −0.536581
\(820\) 31842.8 1.35610
\(821\) 10953.7 0.465636 0.232818 0.972520i \(-0.425205\pi\)
0.232818 + 0.972520i \(0.425205\pi\)
\(822\) −304.655 −0.0129271
\(823\) 13502.5 0.571893 0.285947 0.958246i \(-0.407692\pi\)
0.285947 + 0.958246i \(0.407692\pi\)
\(824\) 9085.41 0.384108
\(825\) −10730.5 −0.452834
\(826\) −25028.9 −1.05432
\(827\) −26812.4 −1.12740 −0.563699 0.825980i \(-0.690622\pi\)
−0.563699 + 0.825980i \(0.690622\pi\)
\(828\) −7115.24 −0.298637
\(829\) 4497.94 0.188444 0.0942218 0.995551i \(-0.469964\pi\)
0.0942218 + 0.995551i \(0.469964\pi\)
\(830\) 42206.1 1.76506
\(831\) −2293.55 −0.0957430
\(832\) −3396.13 −0.141514
\(833\) 9978.33 0.415040
\(834\) 35278.5 1.46474
\(835\) −30870.0 −1.27940
\(836\) 0 0
\(837\) 9781.16 0.403926
\(838\) 17287.7 0.712640
\(839\) −30324.9 −1.24783 −0.623917 0.781491i \(-0.714460\pi\)
−0.623917 + 0.781491i \(0.714460\pi\)
\(840\) 19682.1 0.808447
\(841\) 29625.4 1.21470
\(842\) 33602.6 1.37532
\(843\) 11621.0 0.474790
\(844\) −7417.75 −0.302523
\(845\) 11327.3 0.461149
\(846\) −7942.48 −0.322776
\(847\) −27573.0 −1.11856
\(848\) −2218.10 −0.0898230
\(849\) −23897.3 −0.966022
\(850\) 31204.2 1.25917
\(851\) 48608.2 1.95801
\(852\) −1394.17 −0.0560604
\(853\) 17230.8 0.691642 0.345821 0.938300i \(-0.387600\pi\)
0.345821 + 0.938300i \(0.387600\pi\)
\(854\) −27646.0 −1.10776
\(855\) 0 0
\(856\) 3040.77 0.121415
\(857\) 6724.12 0.268018 0.134009 0.990980i \(-0.457215\pi\)
0.134009 + 0.990980i \(0.457215\pi\)
\(858\) 5421.87 0.215734
\(859\) −36183.5 −1.43721 −0.718606 0.695417i \(-0.755219\pi\)
−0.718606 + 0.695417i \(0.755219\pi\)
\(860\) −12541.9 −0.497298
\(861\) 58456.6 2.31381
\(862\) −24107.1 −0.952541
\(863\) −14350.8 −0.566056 −0.283028 0.959112i \(-0.591339\pi\)
−0.283028 + 0.959112i \(0.591339\pi\)
\(864\) −3179.80 −0.125207
\(865\) 58416.5 2.29621
\(866\) −18069.2 −0.709027
\(867\) 3719.96 0.145717
\(868\) −8602.24 −0.336381
\(869\) −2763.78 −0.107888
\(870\) 52342.6 2.03975
\(871\) −9735.27 −0.378722
\(872\) −9445.93 −0.366834
\(873\) 4626.02 0.179344
\(874\) 0 0
\(875\) 34008.7 1.31395
\(876\) 1677.10 0.0646851
\(877\) 42978.6 1.65483 0.827414 0.561592i \(-0.189811\pi\)
0.827414 + 0.561592i \(0.189811\pi\)
\(878\) −6017.74 −0.231309
\(879\) 7831.65 0.300518
\(880\) −2432.00 −0.0931622
\(881\) −7298.75 −0.279116 −0.139558 0.990214i \(-0.544568\pi\)
−0.139558 + 0.990214i \(0.544568\pi\)
\(882\) 2914.45 0.111264
\(883\) 46722.1 1.78066 0.890331 0.455314i \(-0.150473\pi\)
0.890331 + 0.455314i \(0.150473\pi\)
\(884\) −15766.7 −0.599878
\(885\) −64501.7 −2.44994
\(886\) −459.187 −0.0174116
\(887\) −35268.7 −1.33507 −0.667535 0.744578i \(-0.732651\pi\)
−0.667535 + 0.744578i \(0.732651\pi\)
\(888\) −14589.4 −0.551338
\(889\) 874.928 0.0330080
\(890\) 13489.4 0.508051
\(891\) 7508.74 0.282326
\(892\) −7521.35 −0.282325
\(893\) 0 0
\(894\) 23985.0 0.897292
\(895\) 22504.8 0.840506
\(896\) 2796.54 0.104270
\(897\) 53531.3 1.99259
\(898\) 15118.9 0.561830
\(899\) −22876.8 −0.848704
\(900\) 9114.06 0.337558
\(901\) −10297.7 −0.380761
\(902\) −7223.14 −0.266635
\(903\) −23024.3 −0.848507
\(904\) 9060.05 0.333333
\(905\) 56906.6 2.09021
\(906\) −13792.8 −0.505777
\(907\) 46292.7 1.69474 0.847368 0.531007i \(-0.178186\pi\)
0.847368 + 0.531007i \(0.178186\pi\)
\(908\) −7196.92 −0.263038
\(909\) −4373.06 −0.159566
\(910\) −42441.8 −1.54608
\(911\) 42085.5 1.53058 0.765288 0.643688i \(-0.222597\pi\)
0.765288 + 0.643688i \(0.222597\pi\)
\(912\) 0 0
\(913\) −9573.94 −0.347044
\(914\) 23112.7 0.836435
\(915\) −71246.2 −2.57413
\(916\) 19341.4 0.697660
\(917\) −3886.70 −0.139967
\(918\) −14762.4 −0.530754
\(919\) 21331.8 0.765691 0.382845 0.923812i \(-0.374944\pi\)
0.382845 + 0.923812i \(0.374944\pi\)
\(920\) −24011.6 −0.860479
\(921\) −5039.49 −0.180300
\(922\) 18383.2 0.656635
\(923\) 3006.34 0.107210
\(924\) −4464.63 −0.158956
\(925\) −62263.2 −2.21319
\(926\) 2712.07 0.0962463
\(927\) 12319.7 0.436498
\(928\) 7437.12 0.263077
\(929\) −34331.5 −1.21247 −0.606233 0.795287i \(-0.707320\pi\)
−0.606233 + 0.795287i \(0.707320\pi\)
\(930\) −22168.8 −0.781658
\(931\) 0 0
\(932\) 3461.20 0.121647
\(933\) 12948.0 0.454341
\(934\) −29617.9 −1.03761
\(935\) −11290.7 −0.394915
\(936\) −4605.12 −0.160815
\(937\) 13625.1 0.475041 0.237521 0.971383i \(-0.423665\pi\)
0.237521 + 0.971383i \(0.423665\pi\)
\(938\) 8016.49 0.279049
\(939\) 14737.1 0.512168
\(940\) −26803.3 −0.930029
\(941\) −7086.48 −0.245497 −0.122748 0.992438i \(-0.539171\pi\)
−0.122748 + 0.992438i \(0.539171\pi\)
\(942\) −29040.6 −1.00445
\(943\) −71315.6 −2.46273
\(944\) −9164.75 −0.315982
\(945\) −39738.3 −1.36792
\(946\) 2844.98 0.0977784
\(947\) 38735.9 1.32920 0.664598 0.747202i \(-0.268603\pi\)
0.664598 + 0.747202i \(0.268603\pi\)
\(948\) 8190.12 0.280594
\(949\) −3616.45 −0.123704
\(950\) 0 0
\(951\) −13277.6 −0.452740
\(952\) 12983.1 0.442000
\(953\) −30964.3 −1.05250 −0.526249 0.850330i \(-0.676402\pi\)
−0.526249 + 0.850330i \(0.676402\pi\)
\(954\) −3007.73 −0.102074
\(955\) −25909.1 −0.877906
\(956\) −19057.1 −0.644717
\(957\) −11873.3 −0.401053
\(958\) 19669.3 0.663347
\(959\) −540.962 −0.0182154
\(960\) 7206.93 0.242294
\(961\) −20101.9 −0.674765
\(962\) 31460.1 1.05438
\(963\) 4123.26 0.137975
\(964\) −2461.34 −0.0822350
\(965\) −26420.2 −0.881344
\(966\) −44080.2 −1.46818
\(967\) 10968.0 0.364743 0.182371 0.983230i \(-0.441623\pi\)
0.182371 + 0.983230i \(0.441623\pi\)
\(968\) −10096.3 −0.335236
\(969\) 0 0
\(970\) 15611.3 0.516752
\(971\) 30081.2 0.994183 0.497091 0.867698i \(-0.334401\pi\)
0.497091 + 0.867698i \(0.334401\pi\)
\(972\) −11519.4 −0.380128
\(973\) 62642.5 2.06395
\(974\) −7375.64 −0.242640
\(975\) −68569.3 −2.25228
\(976\) −10123.1 −0.331999
\(977\) −26628.1 −0.871962 −0.435981 0.899956i \(-0.643599\pi\)
−0.435981 + 0.899956i \(0.643599\pi\)
\(978\) 10604.0 0.346706
\(979\) −3059.90 −0.0998926
\(980\) 9835.34 0.320590
\(981\) −12808.6 −0.416867
\(982\) −22394.7 −0.727744
\(983\) −25495.3 −0.827236 −0.413618 0.910450i \(-0.635735\pi\)
−0.413618 + 0.910450i \(0.635735\pi\)
\(984\) 21404.9 0.693458
\(985\) 96498.0 3.12150
\(986\) 34527.3 1.11519
\(987\) −49205.2 −1.58685
\(988\) 0 0
\(989\) 28089.1 0.903116
\(990\) −3297.77 −0.105869
\(991\) 54385.4 1.74330 0.871649 0.490130i \(-0.163051\pi\)
0.871649 + 0.490130i \(0.163051\pi\)
\(992\) −3149.86 −0.100815
\(993\) −3185.43 −0.101799
\(994\) −2475.57 −0.0789942
\(995\) −45946.8 −1.46393
\(996\) 28371.2 0.902586
\(997\) −36846.5 −1.17045 −0.585227 0.810870i \(-0.698994\pi\)
−0.585227 + 0.810870i \(0.698994\pi\)
\(998\) −24203.3 −0.767677
\(999\) 29456.1 0.932884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 722.4.a.i.1.2 2
19.18 odd 2 38.4.a.b.1.1 2
57.56 even 2 342.4.a.k.1.1 2
76.75 even 2 304.4.a.d.1.2 2
95.18 even 4 950.4.b.g.799.3 4
95.37 even 4 950.4.b.g.799.2 4
95.94 odd 2 950.4.a.h.1.2 2
133.132 even 2 1862.4.a.b.1.2 2
152.37 odd 2 1216.4.a.j.1.2 2
152.75 even 2 1216.4.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.a.b.1.1 2 19.18 odd 2
304.4.a.d.1.2 2 76.75 even 2
342.4.a.k.1.1 2 57.56 even 2
722.4.a.i.1.2 2 1.1 even 1 trivial
950.4.a.h.1.2 2 95.94 odd 2
950.4.b.g.799.2 4 95.37 even 4
950.4.b.g.799.3 4 95.18 even 4
1216.4.a.j.1.2 2 152.37 odd 2
1216.4.a.l.1.1 2 152.75 even 2
1862.4.a.b.1.2 2 133.132 even 2