Properties

Label 722.4.a.i
Level $722$
Weight $4$
Character orbit 722.a
Self dual yes
Analytic conductor $42.599$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [722,4,Mod(1,722)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(722, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("722.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 722.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.5993790241\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{177})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} - \beta q^{3} + 4 q^{4} + ( - 2 \beta + 6) q^{5} - 2 \beta q^{6} + (\beta + 28) q^{7} + 8 q^{8} + (\beta + 17) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} - \beta q^{3} + 4 q^{4} + ( - 2 \beta + 6) q^{5} - 2 \beta q^{6} + (\beta + 28) q^{7} + 8 q^{8} + (\beta + 17) q^{9} + ( - 4 \beta + 12) q^{10} + (2 \beta + 4) q^{11} - 4 \beta q^{12} + (7 \beta - 10) q^{13} + (2 \beta + 56) q^{14} + ( - 4 \beta + 88) q^{15} + 16 q^{16} + ( - 15 \beta - 18) q^{17} + (2 \beta + 34) q^{18} + ( - 8 \beta + 24) q^{20} + ( - 29 \beta - 44) q^{21} + (4 \beta + 8) q^{22} + (13 \beta - 84) q^{23} - 8 \beta q^{24} + ( - 20 \beta + 87) q^{25} + (14 \beta - 20) q^{26} + (9 \beta - 44) q^{27} + (4 \beta + 112) q^{28} + ( - 29 \beta + 54) q^{29} + ( - 8 \beta + 176) q^{30} + 16 \beta q^{31} + 32 q^{32} + ( - 6 \beta - 88) q^{33} + ( - 30 \beta - 36) q^{34} + ( - 52 \beta + 80) q^{35} + (4 \beta + 68) q^{36} + (16 \beta - 198) q^{37} + (3 \beta - 308) q^{39} + ( - 16 \beta + 48) q^{40} + ( - 6 \beta + 398) q^{41} + ( - 58 \beta - 88) q^{42} + (48 \beta + 124) q^{43} + (8 \beta + 16) q^{44} + ( - 30 \beta + 14) q^{45} + (26 \beta - 168) q^{46} + (40 \beta - 120) q^{47} - 16 \beta q^{48} + (57 \beta + 485) q^{49} + ( - 40 \beta + 174) q^{50} + (33 \beta + 660) q^{51} + (28 \beta - 40) q^{52} + ( - 9 \beta - 194) q^{53} + (18 \beta - 88) q^{54} - 152 q^{55} + (8 \beta + 224) q^{56} + ( - 58 \beta + 108) q^{58} + (71 \beta - 136) q^{59} + ( - 16 \beta + 352) q^{60} + (44 \beta - 362) q^{61} + 32 \beta q^{62} + (46 \beta + 520) q^{63} + 64 q^{64} + (48 \beta - 676) q^{65} + ( - 12 \beta - 176) q^{66} + (43 \beta + 448) q^{67} + ( - 60 \beta - 72) q^{68} + (71 \beta - 572) q^{69} + ( - 104 \beta + 160) q^{70} + ( - 22 \beta - 192) q^{71} + (8 \beta + 136) q^{72} + ( - \beta + 62) q^{73} + (32 \beta - 396) q^{74} + ( - 67 \beta + 880) q^{75} + (62 \beta + 200) q^{77} + (6 \beta - 616) q^{78} + ( - 58 \beta - 24) q^{79} + ( - 32 \beta + 96) q^{80} + (8 \beta - 855) q^{81} + ( - 12 \beta + 796) q^{82} + ( - 6 \beta + 1116) q^{83} + ( - 116 \beta - 176) q^{84} + ( - 24 \beta + 1212) q^{85} + (96 \beta + 248) q^{86} + ( - 25 \beta + 1276) q^{87} + (16 \beta + 32) q^{88} + (10 \beta + 430) q^{89} + ( - 60 \beta + 28) q^{90} + (193 \beta + 28) q^{91} + (52 \beta - 336) q^{92} + ( - 16 \beta - 704) q^{93} + (80 \beta - 240) q^{94} - 32 \beta q^{96} + (76 \beta + 894) q^{97} + (114 \beta + 970) q^{98} + (40 \beta + 156) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - q^{3} + 8 q^{4} + 10 q^{5} - 2 q^{6} + 57 q^{7} + 16 q^{8} + 35 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - q^{3} + 8 q^{4} + 10 q^{5} - 2 q^{6} + 57 q^{7} + 16 q^{8} + 35 q^{9} + 20 q^{10} + 10 q^{11} - 4 q^{12} - 13 q^{13} + 114 q^{14} + 172 q^{15} + 32 q^{16} - 51 q^{17} + 70 q^{18} + 40 q^{20} - 117 q^{21} + 20 q^{22} - 155 q^{23} - 8 q^{24} + 154 q^{25} - 26 q^{26} - 79 q^{27} + 228 q^{28} + 79 q^{29} + 344 q^{30} + 16 q^{31} + 64 q^{32} - 182 q^{33} - 102 q^{34} + 108 q^{35} + 140 q^{36} - 380 q^{37} - 613 q^{39} + 80 q^{40} + 790 q^{41} - 234 q^{42} + 296 q^{43} + 40 q^{44} - 2 q^{45} - 310 q^{46} - 200 q^{47} - 16 q^{48} + 1027 q^{49} + 308 q^{50} + 1353 q^{51} - 52 q^{52} - 397 q^{53} - 158 q^{54} - 304 q^{55} + 456 q^{56} + 158 q^{58} - 201 q^{59} + 688 q^{60} - 680 q^{61} + 32 q^{62} + 1086 q^{63} + 128 q^{64} - 1304 q^{65} - 364 q^{66} + 939 q^{67} - 204 q^{68} - 1073 q^{69} + 216 q^{70} - 406 q^{71} + 280 q^{72} + 123 q^{73} - 760 q^{74} + 1693 q^{75} + 462 q^{77} - 1226 q^{78} - 106 q^{79} + 160 q^{80} - 1702 q^{81} + 1580 q^{82} + 2226 q^{83} - 468 q^{84} + 2400 q^{85} + 592 q^{86} + 2527 q^{87} + 80 q^{88} + 870 q^{89} - 4 q^{90} + 249 q^{91} - 620 q^{92} - 1424 q^{93} - 400 q^{94} - 32 q^{96} + 1864 q^{97} + 2054 q^{98} + 352 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.15207
−6.15207
2.00000 −7.15207 4.00000 −8.30413 −14.3041 35.1521 8.00000 24.1521 −16.6083
1.2 2.00000 6.15207 4.00000 18.3041 12.3041 21.8479 8.00000 10.8479 36.6083
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 722.4.a.i 2
19.b odd 2 1 38.4.a.b 2
57.d even 2 1 342.4.a.k 2
76.d even 2 1 304.4.a.d 2
95.d odd 2 1 950.4.a.h 2
95.g even 4 2 950.4.b.g 4
133.c even 2 1 1862.4.a.b 2
152.b even 2 1 1216.4.a.l 2
152.g odd 2 1 1216.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.4.a.b 2 19.b odd 2 1
304.4.a.d 2 76.d even 2 1
342.4.a.k 2 57.d even 2 1
722.4.a.i 2 1.a even 1 1 trivial
950.4.a.h 2 95.d odd 2 1
950.4.b.g 4 95.g even 4 2
1216.4.a.j 2 152.g odd 2 1
1216.4.a.l 2 152.b even 2 1
1862.4.a.b 2 133.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(722))\):

\( T_{3}^{2} + T_{3} - 44 \) Copy content Toggle raw display
\( T_{5}^{2} - 10T_{5} - 152 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 44 \) Copy content Toggle raw display
$5$ \( T^{2} - 10T - 152 \) Copy content Toggle raw display
$7$ \( T^{2} - 57T + 768 \) Copy content Toggle raw display
$11$ \( T^{2} - 10T - 152 \) Copy content Toggle raw display
$13$ \( T^{2} + 13T - 2126 \) Copy content Toggle raw display
$17$ \( T^{2} + 51T - 9306 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 155T - 1472 \) Copy content Toggle raw display
$29$ \( T^{2} - 79T - 35654 \) Copy content Toggle raw display
$31$ \( T^{2} - 16T - 11264 \) Copy content Toggle raw display
$37$ \( T^{2} + 380T + 24772 \) Copy content Toggle raw display
$41$ \( T^{2} - 790T + 154432 \) Copy content Toggle raw display
$43$ \( T^{2} - 296T - 80048 \) Copy content Toggle raw display
$47$ \( T^{2} + 200T - 60800 \) Copy content Toggle raw display
$53$ \( T^{2} + 397T + 35818 \) Copy content Toggle raw display
$59$ \( T^{2} + 201T - 212964 \) Copy content Toggle raw display
$61$ \( T^{2} + 680T + 29932 \) Copy content Toggle raw display
$67$ \( T^{2} - 939T + 138612 \) Copy content Toggle raw display
$71$ \( T^{2} + 406T + 19792 \) Copy content Toggle raw display
$73$ \( T^{2} - 123T + 3738 \) Copy content Toggle raw display
$79$ \( T^{2} + 106T - 146048 \) Copy content Toggle raw display
$83$ \( T^{2} - 2226 T + 1237176 \) Copy content Toggle raw display
$89$ \( T^{2} - 870T + 184800 \) Copy content Toggle raw display
$97$ \( T^{2} - 1864 T + 613036 \) Copy content Toggle raw display
show more
show less