Properties

Label 722.2.e.o.423.1
Level $722$
Weight $2$
Character 722.423
Analytic conductor $5.765$
Analytic rank $0$
Dimension $12$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [722,2,Mod(99,722)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(722, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("722.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 722.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-6,6,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.76519902594\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.186694177220038656.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 343x^{6} + 117649 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 423.1
Root \(2.48619 - 0.904900i\) of defining polynomial
Character \(\chi\) \(=\) 722.423
Dual form 722.2.e.o.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.939693 - 0.342020i) q^{2} +(-0.459430 + 2.60556i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-1.26072 - 1.05787i) q^{5} +(0.459430 + 2.60556i) q^{6} +(-1.82288 - 3.15731i) q^{7} +(0.500000 - 0.866025i) q^{8} +(-3.75877 - 1.36808i) q^{9} +(-1.54650 - 0.562880i) q^{10} +(2.32288 - 4.02334i) q^{11} +(1.32288 + 2.29129i) q^{12} +(-0.347296 - 1.96962i) q^{13} +(-2.79281 - 2.34344i) q^{14} +(3.33555 - 2.79886i) q^{15} +(0.173648 - 0.984808i) q^{16} -4.00000 q^{18} -1.64575 q^{20} +(9.06404 - 3.29904i) q^{21} +(0.806726 - 4.57517i) q^{22} +(-1.26072 + 1.05787i) q^{23} +(2.02676 + 1.70066i) q^{24} +(-0.397915 - 2.25669i) q^{25} +(-1.00000 - 1.73205i) q^{26} +(1.32288 - 2.29129i) q^{27} +(-3.42589 - 1.24692i) q^{28} +(1.54650 + 0.562880i) q^{29} +(2.17712 - 3.77089i) q^{30} +(-2.82288 - 4.88936i) q^{31} +(-0.173648 - 0.984808i) q^{32} +(9.41584 + 7.90083i) q^{33} +(-1.04189 + 5.90885i) q^{35} +(-3.75877 + 1.36808i) q^{36} -0.354249 q^{37} +5.29150 q^{39} +(-1.54650 + 0.562880i) q^{40} +(0.0506189 - 0.287074i) q^{41} +(7.38907 - 6.20017i) q^{42} +(8.64979 + 7.25804i) q^{43} +(-0.806726 - 4.57517i) q^{44} +(3.29150 + 5.70105i) q^{45} +(-0.822876 + 1.42526i) q^{46} +(-4.09166 - 1.48924i) q^{47} +(2.48619 + 0.904900i) q^{48} +(-3.14575 + 5.44860i) q^{49} +(-1.14575 - 1.98450i) q^{50} +(-1.53209 - 1.28558i) q^{52} +(9.63914 - 8.08820i) q^{53} +(0.459430 - 2.60556i) q^{54} +(-7.18466 + 2.61500i) q^{55} -3.64575 q^{56} +1.64575 q^{58} +(-7.45858 + 2.71470i) q^{59} +(0.756107 - 4.28810i) q^{60} +(0.717978 - 0.602455i) q^{61} +(-4.32490 - 3.62902i) q^{62} +(2.53231 + 14.3615i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-1.64575 + 2.85052i) q^{65} +(11.5502 + 4.20394i) q^{66} +(0.606808 + 0.220860i) q^{67} +(-2.17712 - 3.77089i) q^{69} +(1.04189 + 5.90885i) q^{70} +(2.07483 + 1.74099i) q^{71} +(-3.06418 + 2.57115i) q^{72} +(0.296677 - 1.68254i) q^{73} +(-0.332885 + 0.121160i) q^{74} +6.06275 q^{75} -16.9373 q^{77} +(4.97239 - 1.80980i) q^{78} +(0.694593 - 3.93923i) q^{79} +(-1.26072 + 1.05787i) q^{80} +(-3.83022 - 3.21394i) q^{81} +(-0.0506189 - 0.287074i) q^{82} +(-3.96863 - 6.87386i) q^{83} +(4.82288 - 8.35347i) q^{84} +(10.6105 + 3.86192i) q^{86} +(-2.17712 + 3.77089i) q^{87} +(-2.32288 - 4.02334i) q^{88} +(5.04287 + 4.23147i) q^{90} +(-5.58562 + 4.68689i) q^{91} +(-0.285782 + 1.62075i) q^{92} +(14.0364 - 5.10884i) q^{93} -4.35425 q^{94} +2.64575 q^{96} +(-3.48485 + 1.26838i) q^{97} +(-1.09251 + 6.19592i) q^{98} +(-14.2354 + 11.9449i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{7} + 6 q^{8} + 12 q^{11} - 48 q^{18} + 12 q^{20} - 12 q^{26} + 42 q^{30} - 18 q^{31} - 36 q^{37} - 24 q^{45} + 6 q^{46} - 6 q^{49} + 18 q^{50} - 12 q^{56} - 12 q^{58} - 6 q^{64} + 12 q^{65}+ \cdots - 84 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/722\mathbb{Z}\right)^\times\).

\(n\) \(363\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.939693 0.342020i 0.664463 0.241845i
\(3\) −0.459430 + 2.60556i −0.265252 + 1.50432i 0.503065 + 0.864249i \(0.332206\pi\)
−0.768317 + 0.640070i \(0.778905\pi\)
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) −1.26072 1.05787i −0.563811 0.473093i 0.315775 0.948834i \(-0.397736\pi\)
−0.879585 + 0.475741i \(0.842180\pi\)
\(6\) 0.459430 + 2.60556i 0.187561 + 1.06371i
\(7\) −1.82288 3.15731i −0.688982 1.19335i −0.972167 0.234287i \(-0.924724\pi\)
0.283185 0.959065i \(-0.408609\pi\)
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) −3.75877 1.36808i −1.25292 0.456027i
\(10\) −1.54650 0.562880i −0.489046 0.177998i
\(11\) 2.32288 4.02334i 0.700373 1.21308i −0.267962 0.963429i \(-0.586350\pi\)
0.968335 0.249653i \(-0.0803165\pi\)
\(12\) 1.32288 + 2.29129i 0.381881 + 0.661438i
\(13\) −0.347296 1.96962i −0.0963227 0.546273i −0.994334 0.106301i \(-0.966099\pi\)
0.898011 0.439972i \(-0.145012\pi\)
\(14\) −2.79281 2.34344i −0.746409 0.626312i
\(15\) 3.33555 2.79886i 0.861235 0.722662i
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(18\) −4.00000 −0.942809
\(19\) 0 0
\(20\) −1.64575 −0.368001
\(21\) 9.06404 3.29904i 1.97794 0.719910i
\(22\) 0.806726 4.57517i 0.171995 0.975430i
\(23\) −1.26072 + 1.05787i −0.262878 + 0.220581i −0.764694 0.644394i \(-0.777110\pi\)
0.501816 + 0.864974i \(0.332665\pi\)
\(24\) 2.02676 + 1.70066i 0.413711 + 0.347145i
\(25\) −0.397915 2.25669i −0.0795831 0.451338i
\(26\) −1.00000 1.73205i −0.196116 0.339683i
\(27\) 1.32288 2.29129i 0.254588 0.440959i
\(28\) −3.42589 1.24692i −0.647432 0.235646i
\(29\) 1.54650 + 0.562880i 0.287178 + 0.104524i 0.481593 0.876395i \(-0.340059\pi\)
−0.194415 + 0.980919i \(0.562281\pi\)
\(30\) 2.17712 3.77089i 0.397487 0.688467i
\(31\) −2.82288 4.88936i −0.507003 0.878156i −0.999967 0.00810584i \(-0.997420\pi\)
0.492964 0.870050i \(-0.335914\pi\)
\(32\) −0.173648 0.984808i −0.0306970 0.174091i
\(33\) 9.41584 + 7.90083i 1.63909 + 1.37536i
\(34\) 0 0
\(35\) −1.04189 + 5.90885i −0.176111 + 0.998777i
\(36\) −3.75877 + 1.36808i −0.626462 + 0.228013i
\(37\) −0.354249 −0.0582381 −0.0291191 0.999576i \(-0.509270\pi\)
−0.0291191 + 0.999576i \(0.509270\pi\)
\(38\) 0 0
\(39\) 5.29150 0.847319
\(40\) −1.54650 + 0.562880i −0.244523 + 0.0889992i
\(41\) 0.0506189 0.287074i 0.00790534 0.0448334i −0.980600 0.196020i \(-0.937198\pi\)
0.988505 + 0.151186i \(0.0483094\pi\)
\(42\) 7.38907 6.20017i 1.14016 0.956707i
\(43\) 8.64979 + 7.25804i 1.31908 + 1.10684i 0.986499 + 0.163766i \(0.0523642\pi\)
0.332582 + 0.943074i \(0.392080\pi\)
\(44\) −0.806726 4.57517i −0.121619 0.689733i
\(45\) 3.29150 + 5.70105i 0.490668 + 0.849862i
\(46\) −0.822876 + 1.42526i −0.121326 + 0.210143i
\(47\) −4.09166 1.48924i −0.596829 0.217228i 0.0259012 0.999665i \(-0.491754\pi\)
−0.622730 + 0.782436i \(0.713977\pi\)
\(48\) 2.48619 + 0.904900i 0.358851 + 0.130611i
\(49\) −3.14575 + 5.44860i −0.449393 + 0.778372i
\(50\) −1.14575 1.98450i −0.162034 0.280651i
\(51\) 0 0
\(52\) −1.53209 1.28558i −0.212463 0.178277i
\(53\) 9.63914 8.08820i 1.32404 1.11100i 0.338606 0.940928i \(-0.390045\pi\)
0.985432 0.170071i \(-0.0543999\pi\)
\(54\) 0.459430 2.60556i 0.0625205 0.354571i
\(55\) −7.18466 + 2.61500i −0.968779 + 0.352607i
\(56\) −3.64575 −0.487184
\(57\) 0 0
\(58\) 1.64575 0.216098
\(59\) −7.45858 + 2.71470i −0.971024 + 0.353424i −0.778344 0.627838i \(-0.783940\pi\)
−0.192680 + 0.981262i \(0.561718\pi\)
\(60\) 0.756107 4.28810i 0.0976130 0.553591i
\(61\) 0.717978 0.602455i 0.0919277 0.0771365i −0.595666 0.803232i \(-0.703112\pi\)
0.687593 + 0.726096i \(0.258667\pi\)
\(62\) −4.32490 3.62902i −0.549262 0.460886i
\(63\) 2.53231 + 14.3615i 0.319041 + 1.80937i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −1.64575 + 2.85052i −0.204130 + 0.353564i
\(66\) 11.5502 + 4.20394i 1.42174 + 0.517469i
\(67\) 0.606808 + 0.220860i 0.0741334 + 0.0269823i 0.378821 0.925470i \(-0.376330\pi\)
−0.304687 + 0.952452i \(0.598552\pi\)
\(68\) 0 0
\(69\) −2.17712 3.77089i −0.262095 0.453962i
\(70\) 1.04189 + 5.90885i 0.124530 + 0.706242i
\(71\) 2.07483 + 1.74099i 0.246237 + 0.206617i 0.757550 0.652777i \(-0.226396\pi\)
−0.511313 + 0.859395i \(0.670841\pi\)
\(72\) −3.06418 + 2.57115i −0.361117 + 0.303013i
\(73\) 0.296677 1.68254i 0.0347235 0.196927i −0.962511 0.271241i \(-0.912566\pi\)
0.997235 + 0.0743148i \(0.0236770\pi\)
\(74\) −0.332885 + 0.121160i −0.0386971 + 0.0140846i
\(75\) 6.06275 0.700066
\(76\) 0 0
\(77\) −16.9373 −1.93018
\(78\) 4.97239 1.80980i 0.563012 0.204920i
\(79\) 0.694593 3.93923i 0.0781478 0.443198i −0.920478 0.390794i \(-0.872200\pi\)
0.998626 0.0524041i \(-0.0166884\pi\)
\(80\) −1.26072 + 1.05787i −0.140953 + 0.118273i
\(81\) −3.83022 3.21394i −0.425580 0.357104i
\(82\) −0.0506189 0.287074i −0.00558992 0.0317020i
\(83\) −3.96863 6.87386i −0.435613 0.754505i 0.561732 0.827319i \(-0.310135\pi\)
−0.997345 + 0.0728147i \(0.976802\pi\)
\(84\) 4.82288 8.35347i 0.526219 0.911438i
\(85\) 0 0
\(86\) 10.6105 + 3.86192i 1.14416 + 0.416442i
\(87\) −2.17712 + 3.77089i −0.233412 + 0.404282i
\(88\) −2.32288 4.02334i −0.247619 0.428889i
\(89\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(90\) 5.04287 + 4.23147i 0.531566 + 0.446037i
\(91\) −5.58562 + 4.68689i −0.585532 + 0.491319i
\(92\) −0.285782 + 1.62075i −0.0297948 + 0.168975i
\(93\) 14.0364 5.10884i 1.45551 0.529762i
\(94\) −4.35425 −0.449106
\(95\) 0 0
\(96\) 2.64575 0.270031
\(97\) −3.48485 + 1.26838i −0.353833 + 0.128785i −0.512820 0.858496i \(-0.671399\pi\)
0.158988 + 0.987281i \(0.449177\pi\)
\(98\) −1.09251 + 6.19592i −0.110360 + 0.625882i
\(99\) −14.2354 + 11.9449i −1.43071 + 1.20051i
\(100\) −1.75539 1.47295i −0.175539 0.147295i
\(101\) −2.36956 13.4384i −0.235780 1.33717i −0.840965 0.541090i \(-0.818012\pi\)
0.605185 0.796085i \(-0.293099\pi\)
\(102\) 0 0
\(103\) −6.64575 + 11.5108i −0.654825 + 1.13419i 0.327112 + 0.944985i \(0.393924\pi\)
−0.981938 + 0.189205i \(0.939409\pi\)
\(104\) −1.87939 0.684040i −0.184289 0.0670757i
\(105\) −14.9172 5.42940i −1.45577 0.529855i
\(106\) 6.29150 10.8972i 0.611085 1.05843i
\(107\) 7.64575 + 13.2428i 0.739143 + 1.28023i 0.952882 + 0.303342i \(0.0981024\pi\)
−0.213739 + 0.976891i \(0.568564\pi\)
\(108\) −0.459430 2.60556i −0.0442087 0.250720i
\(109\) −11.1712 9.37378i −1.07001 0.897845i −0.0749564 0.997187i \(-0.523882\pi\)
−0.995053 + 0.0993420i \(0.968326\pi\)
\(110\) −5.85699 + 4.91459i −0.558442 + 0.468588i
\(111\) 0.162752 0.923015i 0.0154478 0.0876087i
\(112\) −3.42589 + 1.24692i −0.323716 + 0.117823i
\(113\) 15.5830 1.46593 0.732963 0.680269i \(-0.238137\pi\)
0.732963 + 0.680269i \(0.238137\pi\)
\(114\) 0 0
\(115\) 2.70850 0.252569
\(116\) 1.54650 0.562880i 0.143589 0.0522621i
\(117\) −1.38919 + 7.87846i −0.128430 + 0.728364i
\(118\) −6.08029 + 5.10197i −0.559736 + 0.469674i
\(119\) 0 0
\(120\) −0.756107 4.28810i −0.0690228 0.391448i
\(121\) −5.29150 9.16515i −0.481046 0.833196i
\(122\) 0.468627 0.811686i 0.0424275 0.0734866i
\(123\) 0.724732 + 0.263781i 0.0653469 + 0.0237843i
\(124\) −5.30527 1.93096i −0.476427 0.173405i
\(125\) −6.00000 + 10.3923i −0.536656 + 0.929516i
\(126\) 7.29150 + 12.6293i 0.649579 + 1.12510i
\(127\) 2.30805 + 13.0896i 0.204806 + 1.16151i 0.897745 + 0.440516i \(0.145204\pi\)
−0.692939 + 0.720996i \(0.743684\pi\)
\(128\) −0.766044 0.642788i −0.0677094 0.0568149i
\(129\) −22.8852 + 19.2030i −2.01493 + 1.69073i
\(130\) −0.571563 + 3.24150i −0.0501294 + 0.284298i
\(131\) −1.82042 + 0.662580i −0.159051 + 0.0578899i −0.420319 0.907377i \(-0.638082\pi\)
0.261268 + 0.965266i \(0.415860\pi\)
\(132\) 12.2915 1.06984
\(133\) 0 0
\(134\) 0.645751 0.0557844
\(135\) −4.09166 + 1.48924i −0.352154 + 0.128173i
\(136\) 0 0
\(137\) 11.9373 10.0166i 1.01987 0.855773i 0.0302590 0.999542i \(-0.490367\pi\)
0.989611 + 0.143769i \(0.0459224\pi\)
\(138\) −3.33555 2.79886i −0.283941 0.238255i
\(139\) 3.23780 + 18.3625i 0.274627 + 1.55749i 0.740145 + 0.672447i \(0.234757\pi\)
−0.465518 + 0.885038i \(0.654132\pi\)
\(140\) 3.00000 + 5.19615i 0.253546 + 0.439155i
\(141\) 5.76013 9.97684i 0.485090 0.840201i
\(142\) 2.54515 + 0.926361i 0.213585 + 0.0777385i
\(143\) −8.73116 3.17788i −0.730136 0.265748i
\(144\) −2.00000 + 3.46410i −0.166667 + 0.288675i
\(145\) −1.35425 2.34563i −0.112464 0.194794i
\(146\) −0.296677 1.68254i −0.0245532 0.139248i
\(147\) −12.7514 10.6997i −1.05172 0.882495i
\(148\) −0.271370 + 0.227707i −0.0223065 + 0.0187174i
\(149\) 1.89923 10.7711i 0.155591 0.882402i −0.802652 0.596448i \(-0.796578\pi\)
0.958243 0.285954i \(-0.0923106\pi\)
\(150\) 5.69712 2.07358i 0.465168 0.169307i
\(151\) −12.9373 −1.05282 −0.526409 0.850231i \(-0.676462\pi\)
−0.526409 + 0.850231i \(0.676462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −15.9158 + 5.79288i −1.28253 + 0.466804i
\(155\) −1.61345 + 9.15034i −0.129596 + 0.734973i
\(156\) 4.05353 3.40131i 0.324542 0.272323i
\(157\) −8.10705 6.80262i −0.647013 0.542909i 0.259150 0.965837i \(-0.416558\pi\)
−0.906163 + 0.422929i \(0.861002\pi\)
\(158\) −0.694593 3.93923i −0.0552588 0.313388i
\(159\) 16.6458 + 28.8313i 1.32009 + 2.28647i
\(160\) −0.822876 + 1.42526i −0.0650540 + 0.112677i
\(161\) 5.63816 + 2.05212i 0.444349 + 0.161730i
\(162\) −4.69846 1.71010i −0.369146 0.134358i
\(163\) −1.96863 + 3.40976i −0.154195 + 0.267073i −0.932766 0.360484i \(-0.882612\pi\)
0.778571 + 0.627557i \(0.215945\pi\)
\(164\) −0.145751 0.252449i −0.0113813 0.0197129i
\(165\) −3.51269 19.9214i −0.273462 1.55088i
\(166\) −6.08029 5.10197i −0.471922 0.395990i
\(167\) 9.19253 7.71345i 0.711340 0.596885i −0.213635 0.976914i \(-0.568530\pi\)
0.924975 + 0.380029i \(0.124086\pi\)
\(168\) 1.67497 9.49921i 0.129227 0.732880i
\(169\) 8.45723 3.07818i 0.650556 0.236783i
\(170\) 0 0
\(171\) 0 0
\(172\) 11.2915 0.860969
\(173\) −5.63816 + 2.05212i −0.428661 + 0.156020i −0.547335 0.836913i \(-0.684358\pi\)
0.118674 + 0.992933i \(0.462136\pi\)
\(174\) −0.756107 + 4.28810i −0.0573204 + 0.325080i
\(175\) −6.39973 + 5.37001i −0.483774 + 0.405934i
\(176\) −3.55885 2.98623i −0.268259 0.225096i
\(177\) −3.64661 20.6810i −0.274096 1.55448i
\(178\) 0 0
\(179\) 2.03137 3.51844i 0.151832 0.262981i −0.780069 0.625693i \(-0.784816\pi\)
0.931901 + 0.362713i \(0.118149\pi\)
\(180\) 6.18600 + 2.25152i 0.461077 + 0.167818i
\(181\) 20.8882 + 7.60268i 1.55261 + 0.565103i 0.969028 0.246953i \(-0.0794292\pi\)
0.583580 + 0.812056i \(0.301651\pi\)
\(182\) −3.64575 + 6.31463i −0.270241 + 0.468071i
\(183\) 1.23987 + 2.14752i 0.0916539 + 0.158749i
\(184\) 0.285782 + 1.62075i 0.0210681 + 0.119483i
\(185\) 0.446608 + 0.374749i 0.0328353 + 0.0275521i
\(186\) 11.4426 9.60148i 0.839012 0.704015i
\(187\) 0 0
\(188\) −4.09166 + 1.48924i −0.298415 + 0.108614i
\(189\) −9.64575 −0.701625
\(190\) 0 0
\(191\) 6.58301 0.476330 0.238165 0.971225i \(-0.423454\pi\)
0.238165 + 0.971225i \(0.423454\pi\)
\(192\) 2.48619 0.904900i 0.179426 0.0653055i
\(193\) −2.53231 + 14.3615i −0.182280 + 1.03376i 0.747121 + 0.664688i \(0.231436\pi\)
−0.929401 + 0.369072i \(0.879676\pi\)
\(194\) −2.84087 + 2.38378i −0.203963 + 0.171145i
\(195\) −6.67110 5.59771i −0.477727 0.400861i
\(196\) 1.09251 + 6.19592i 0.0780363 + 0.442566i
\(197\) 3.82288 + 6.62141i 0.272369 + 0.471756i 0.969468 0.245218i \(-0.0788597\pi\)
−0.697099 + 0.716975i \(0.745526\pi\)
\(198\) −9.29150 + 16.0934i −0.660318 + 1.14370i
\(199\) 18.6759 + 6.79748i 1.32390 + 0.481861i 0.904706 0.426035i \(-0.140090\pi\)
0.419195 + 0.907896i \(0.362312\pi\)
\(200\) −2.15331 0.783740i −0.152262 0.0554188i
\(201\) −0.854249 + 1.47960i −0.0602541 + 0.104363i
\(202\) −6.82288 11.8176i −0.480056 0.831481i
\(203\) −1.04189 5.90885i −0.0731263 0.414720i
\(204\) 0 0
\(205\) −0.367503 + 0.308371i −0.0256675 + 0.0215376i
\(206\) −2.30805 + 13.0896i −0.160809 + 0.911994i
\(207\) 6.18600 2.25152i 0.429957 0.156491i
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) −15.8745 −1.09545
\(211\) −12.4899 + 4.54596i −0.859842 + 0.312957i −0.734046 0.679099i \(-0.762371\pi\)
−0.125796 + 0.992056i \(0.540148\pi\)
\(212\) 2.18502 12.3918i 0.150068 0.851075i
\(213\) −5.48948 + 4.60622i −0.376133 + 0.315613i
\(214\) 11.7140 + 9.82919i 0.800751 + 0.671909i
\(215\) −3.22690 18.3007i −0.220073 1.24810i
\(216\) −1.32288 2.29129i −0.0900103 0.155902i
\(217\) −10.2915 + 17.8254i −0.698633 + 1.21007i
\(218\) −13.7035 4.98768i −0.928121 0.337808i
\(219\) 4.24765 + 1.54602i 0.287030 + 0.104470i
\(220\) −3.82288 + 6.62141i −0.257738 + 0.446416i
\(221\) 0 0
\(222\) −0.162752 0.923015i −0.0109232 0.0619487i
\(223\) 14.4106 + 12.0920i 0.965008 + 0.809738i 0.981761 0.190122i \(-0.0608882\pi\)
−0.0167523 + 0.999860i \(0.505333\pi\)
\(224\) −2.79281 + 2.34344i −0.186602 + 0.156578i
\(225\) −1.59166 + 9.02676i −0.106111 + 0.601784i
\(226\) 14.6432 5.32970i 0.974054 0.354526i
\(227\) 7.35425 0.488119 0.244059 0.969760i \(-0.421521\pi\)
0.244059 + 0.969760i \(0.421521\pi\)
\(228\) 0 0
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 2.54515 0.926361i 0.167823 0.0610824i
\(231\) 7.78148 44.1310i 0.511984 2.90360i
\(232\) 1.26072 1.05787i 0.0827702 0.0694525i
\(233\) 14.4587 + 12.1323i 0.947222 + 0.794813i 0.978827 0.204687i \(-0.0656177\pi\)
−0.0316058 + 0.999500i \(0.510062\pi\)
\(234\) 1.38919 + 7.87846i 0.0908139 + 0.515031i
\(235\) 3.58301 + 6.20595i 0.233729 + 0.404831i
\(236\) −3.96863 + 6.87386i −0.258336 + 0.447450i
\(237\) 9.94477 + 3.61960i 0.645982 + 0.235118i
\(238\) 0 0
\(239\) 6.00000 10.3923i 0.388108 0.672222i −0.604087 0.796918i \(-0.706462\pi\)
0.992195 + 0.124696i \(0.0397955\pi\)
\(240\) −2.17712 3.77089i −0.140533 0.243410i
\(241\) 1.31678 + 7.46780i 0.0848209 + 0.481043i 0.997395 + 0.0721322i \(0.0229803\pi\)
−0.912574 + 0.408911i \(0.865909\pi\)
\(242\) −8.10705 6.80262i −0.521141 0.437289i
\(243\) 16.2141 13.6052i 1.04014 0.872777i
\(244\) 0.162752 0.923015i 0.0104192 0.0590900i
\(245\) 9.72981 3.54136i 0.621615 0.226249i
\(246\) 0.771243 0.0491727
\(247\) 0 0
\(248\) −5.64575 −0.358506
\(249\) 19.7335 7.18242i 1.25056 0.455168i
\(250\) −2.08378 + 11.8177i −0.131790 + 0.747417i
\(251\) 22.3905 18.7879i 1.41328 1.18588i 0.458450 0.888720i \(-0.348405\pi\)
0.954828 0.297160i \(-0.0960396\pi\)
\(252\) 11.1712 + 9.37378i 0.703721 + 0.590492i
\(253\) 1.32767 + 7.52960i 0.0834699 + 0.473382i
\(254\) 6.64575 + 11.5108i 0.416992 + 0.722251i
\(255\) 0 0
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) 11.5502 + 4.20394i 0.720484 + 0.262235i 0.676131 0.736781i \(-0.263655\pi\)
0.0443527 + 0.999016i \(0.485877\pi\)
\(258\) −14.9373 + 25.8721i −0.929953 + 1.61073i
\(259\) 0.645751 + 1.11847i 0.0401250 + 0.0694986i
\(260\) 0.571563 + 3.24150i 0.0354469 + 0.201029i
\(261\) −5.04287 4.23147i −0.312146 0.261922i
\(262\) −1.48402 + 1.24524i −0.0916832 + 0.0769314i
\(263\) −1.89923 + 10.7711i −0.117112 + 0.664174i 0.868571 + 0.495565i \(0.165039\pi\)
−0.985683 + 0.168609i \(0.946072\pi\)
\(264\) 11.5502 4.20394i 0.710868 0.258735i
\(265\) −20.7085 −1.27211
\(266\) 0 0
\(267\) 0 0
\(268\) 0.606808 0.220860i 0.0370667 0.0134912i
\(269\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(270\) −3.33555 + 2.79886i −0.202995 + 0.170333i
\(271\) 9.46390 + 7.94116i 0.574891 + 0.482391i 0.883265 0.468874i \(-0.155340\pi\)
−0.308374 + 0.951265i \(0.599785\pi\)
\(272\) 0 0
\(273\) −9.64575 16.7069i −0.583787 1.01115i
\(274\) 7.79150 13.4953i 0.470702 0.815280i
\(275\) −10.0037 3.64106i −0.603248 0.219564i
\(276\) −4.09166 1.48924i −0.246289 0.0896418i
\(277\) 13.7601 23.8332i 0.826766 1.43200i −0.0737960 0.997273i \(-0.523511\pi\)
0.900562 0.434727i \(-0.143155\pi\)
\(278\) 9.32288 + 16.1477i 0.559149 + 0.968474i
\(279\) 3.92150 + 22.2399i 0.234774 + 1.33147i
\(280\) 4.59627 + 3.85673i 0.274679 + 0.230483i
\(281\) −19.5016 + 16.3638i −1.16337 + 0.976181i −0.999946 0.0103755i \(-0.996697\pi\)
−0.163421 + 0.986556i \(0.552253\pi\)
\(282\) 2.00047 11.3452i 0.119126 0.675599i
\(283\) −28.7976 + 10.4815i −1.71184 + 0.623058i −0.997084 0.0763164i \(-0.975684\pi\)
−0.714755 + 0.699375i \(0.753462\pi\)
\(284\) 2.70850 0.160720
\(285\) 0 0
\(286\) −9.29150 −0.549418
\(287\) −0.998655 + 0.363481i −0.0589487 + 0.0214556i
\(288\) −0.694593 + 3.93923i −0.0409293 + 0.232121i
\(289\) −13.0228 + 10.9274i −0.766044 + 0.642788i
\(290\) −2.07483 1.74099i −0.121838 0.102234i
\(291\) −1.70379 9.66270i −0.0998782 0.566437i
\(292\) −0.854249 1.47960i −0.0499911 0.0865872i
\(293\) 14.4686 25.0604i 0.845266 1.46404i −0.0401236 0.999195i \(-0.512775\pi\)
0.885390 0.464849i \(-0.153891\pi\)
\(294\) −15.6419 5.69318i −0.912254 0.332033i
\(295\) 12.2750 + 4.46772i 0.714676 + 0.260121i
\(296\) −0.177124 + 0.306788i −0.0102951 + 0.0178317i
\(297\) −6.14575 10.6448i −0.356613 0.617671i
\(298\) −1.89923 10.7711i −0.110020 0.623953i
\(299\) 2.52144 + 2.11574i 0.145818 + 0.122356i
\(300\) 4.64433 3.89706i 0.268141 0.224997i
\(301\) 7.14840 40.5406i 0.412027 2.33672i
\(302\) −12.1570 + 4.42480i −0.699559 + 0.254619i
\(303\) 36.1033 2.07408
\(304\) 0 0
\(305\) −1.54249 −0.0883225
\(306\) 0 0
\(307\) −0.112134 + 0.635941i −0.00639980 + 0.0362951i −0.987840 0.155471i \(-0.950310\pi\)
0.981441 + 0.191766i \(0.0614215\pi\)
\(308\) −12.9747 + 10.8871i −0.739302 + 0.620348i
\(309\) −26.9387 22.6043i −1.53249 1.28591i
\(310\) 1.61345 + 9.15034i 0.0916379 + 0.519705i
\(311\) −6.82288 11.8176i −0.386890 0.670113i 0.605140 0.796119i \(-0.293117\pi\)
−0.992029 + 0.126007i \(0.959784\pi\)
\(312\) 2.64575 4.58258i 0.149786 0.259437i
\(313\) −8.33931 3.03526i −0.471366 0.171563i 0.0954052 0.995439i \(-0.469585\pi\)
−0.566771 + 0.823875i \(0.691808\pi\)
\(314\) −9.94477 3.61960i −0.561216 0.204266i
\(315\) 12.0000 20.7846i 0.676123 1.17108i
\(316\) −2.00000 3.46410i −0.112509 0.194871i
\(317\) 1.04189 + 5.90885i 0.0585183 + 0.331874i 0.999986 0.00522845i \(-0.00166427\pi\)
−0.941468 + 0.337102i \(0.890553\pi\)
\(318\) 25.5028 + 21.3994i 1.43012 + 1.20002i
\(319\) 5.85699 4.91459i 0.327928 0.275164i
\(320\) −0.285782 + 1.62075i −0.0159757 + 0.0906026i
\(321\) −38.0176 + 13.8373i −2.12194 + 0.772322i
\(322\) 6.00000 0.334367
\(323\) 0 0
\(324\) −5.00000 −0.277778
\(325\) −4.30662 + 1.56748i −0.238888 + 0.0869482i
\(326\) −0.683697 + 3.87744i −0.0378665 + 0.214751i
\(327\) 29.5563 24.8007i 1.63447 1.37148i
\(328\) −0.223304 0.187374i −0.0123299 0.0103460i
\(329\) 2.75658 + 15.6333i 0.151975 + 0.861894i
\(330\) −10.1144 17.5186i −0.556778 0.964368i
\(331\) 9.90588 17.1575i 0.544476 0.943061i −0.454163 0.890919i \(-0.650062\pi\)
0.998640 0.0521424i \(-0.0166050\pi\)
\(332\) −7.45858 2.71470i −0.409343 0.148989i
\(333\) 1.33154 + 0.484641i 0.0729679 + 0.0265581i
\(334\) 6.00000 10.3923i 0.328305 0.568642i
\(335\) −0.531373 0.920365i −0.0290320 0.0502849i
\(336\) −1.67497 9.49921i −0.0913769 0.518224i
\(337\) 7.43714 + 6.24050i 0.405127 + 0.339942i 0.822471 0.568807i \(-0.192595\pi\)
−0.417344 + 0.908748i \(0.637039\pi\)
\(338\) 6.89440 5.78509i 0.375006 0.314667i
\(339\) −7.15930 + 40.6024i −0.388840 + 2.20522i
\(340\) 0 0
\(341\) −26.2288 −1.42037
\(342\) 0 0
\(343\) −2.58301 −0.139469
\(344\) 10.6105 3.86192i 0.572082 0.208221i
\(345\) −1.24436 + 7.05714i −0.0669943 + 0.379944i
\(346\) −4.59627 + 3.85673i −0.247097 + 0.207339i
\(347\) −17.7943 14.9312i −0.955246 0.801546i 0.0249272 0.999689i \(-0.492065\pi\)
−0.980173 + 0.198143i \(0.936509\pi\)
\(348\) 0.756107 + 4.28810i 0.0405316 + 0.229866i
\(349\) −10.5830 18.3303i −0.566495 0.981199i −0.996909 0.0785668i \(-0.974966\pi\)
0.430414 0.902632i \(-0.358368\pi\)
\(350\) −4.17712 + 7.23499i −0.223277 + 0.386727i
\(351\) −4.97239 1.80980i −0.265406 0.0966000i
\(352\) −4.36558 1.58894i −0.232686 0.0846908i
\(353\) −6.43725 + 11.1497i −0.342620 + 0.593436i −0.984918 0.173019i \(-0.944648\pi\)
0.642298 + 0.766455i \(0.277981\pi\)
\(354\) −10.5000 18.1865i −0.558069 0.966603i
\(355\) −0.774039 4.38979i −0.0410817 0.232986i
\(356\) 0 0
\(357\) 0 0
\(358\) 0.705488 4.00102i 0.0372862 0.211461i
\(359\) 4.63950 1.68864i 0.244864 0.0891230i −0.216673 0.976244i \(-0.569521\pi\)
0.461537 + 0.887121i \(0.347298\pi\)
\(360\) 6.58301 0.346955
\(361\) 0 0
\(362\) 22.2288 1.16832
\(363\) 26.3114 9.57656i 1.38099 0.502639i
\(364\) −1.26616 + 7.18073i −0.0663646 + 0.376372i
\(365\) −2.15393 + 1.80737i −0.112742 + 0.0946018i
\(366\) 1.89959 + 1.59395i 0.0992932 + 0.0833169i
\(367\) 2.81809 + 15.9822i 0.147103 + 0.834264i 0.965654 + 0.259830i \(0.0836667\pi\)
−0.818551 + 0.574434i \(0.805222\pi\)
\(368\) 0.822876 + 1.42526i 0.0428954 + 0.0742969i
\(369\) −0.583005 + 1.00979i −0.0303500 + 0.0525678i
\(370\) 0.547846 + 0.199400i 0.0284811 + 0.0103663i
\(371\) −43.1079 15.6900i −2.23805 0.814585i
\(372\) 7.46863 12.9360i 0.387230 0.670703i
\(373\) −2.00000 3.46410i −0.103556 0.179364i 0.809591 0.586994i \(-0.199689\pi\)
−0.913147 + 0.407630i \(0.866355\pi\)
\(374\) 0 0
\(375\) −24.3212 20.4079i −1.25594 1.05386i
\(376\) −3.33555 + 2.79886i −0.172018 + 0.144340i
\(377\) 0.571563 3.24150i 0.0294370 0.166946i
\(378\) −9.06404 + 3.29904i −0.466204 + 0.169684i
\(379\) −10.7085 −0.550059 −0.275029 0.961436i \(-0.588688\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(380\) 0 0
\(381\) −35.1660 −1.80161
\(382\) 6.18600 2.25152i 0.316503 0.115198i
\(383\) −0.958583 + 5.43639i −0.0489813 + 0.277787i −0.999455 0.0330191i \(-0.989488\pi\)
0.950473 + 0.310806i \(0.100599\pi\)
\(384\) 2.02676 1.70066i 0.103428 0.0867862i
\(385\) 21.3531 + 17.9174i 1.08826 + 0.913155i
\(386\) 2.53231 + 14.3615i 0.128891 + 0.730979i
\(387\) −22.5830 39.1149i −1.14796 1.98832i
\(388\) −1.85425 + 3.21165i −0.0941352 + 0.163047i
\(389\) −11.2763 4.10424i −0.571732 0.208093i 0.0399440 0.999202i \(-0.487282\pi\)
−0.611676 + 0.791109i \(0.709504\pi\)
\(390\) −8.18331 2.97848i −0.414378 0.150821i
\(391\) 0 0
\(392\) 3.14575 + 5.44860i 0.158884 + 0.275196i
\(393\) −0.890032 5.04762i −0.0448962 0.254619i
\(394\) 5.85699 + 4.91459i 0.295071 + 0.247594i
\(395\) −5.04287 + 4.23147i −0.253735 + 0.212909i
\(396\) −3.22690 + 18.3007i −0.162158 + 0.919644i
\(397\) −19.7925 + 7.20388i −0.993357 + 0.361553i −0.787019 0.616928i \(-0.788377\pi\)
−0.206338 + 0.978481i \(0.566155\pi\)
\(398\) 19.8745 0.996219
\(399\) 0 0
\(400\) −2.29150 −0.114575
\(401\) 25.9195 9.43394i 1.29436 0.471109i 0.399205 0.916862i \(-0.369286\pi\)
0.895156 + 0.445753i \(0.147064\pi\)
\(402\) −0.296677 + 1.68254i −0.0147969 + 0.0839175i
\(403\) −8.64979 + 7.25804i −0.430877 + 0.361549i
\(404\) −10.4533 8.77132i −0.520069 0.436389i
\(405\) 1.42891 + 8.10374i 0.0710030 + 0.402678i
\(406\) −3.00000 5.19615i −0.148888 0.257881i
\(407\) −0.822876 + 1.42526i −0.0407884 + 0.0706476i
\(408\) 0 0
\(409\) −7.12569 2.59354i −0.352343 0.128242i 0.159784 0.987152i \(-0.448920\pi\)
−0.512127 + 0.858910i \(0.671142\pi\)
\(410\) −0.239870 + 0.415468i −0.0118464 + 0.0205185i
\(411\) 20.6144 + 35.7052i 1.01683 + 1.76121i
\(412\) 2.30805 + 13.0896i 0.113709 + 0.644877i
\(413\) 22.1672 + 18.6005i 1.09078 + 0.915271i
\(414\) 5.04287 4.23147i 0.247844 0.207966i
\(415\) −2.26832 + 12.8643i −0.111348 + 0.631483i
\(416\) −1.87939 + 0.684040i −0.0921444 + 0.0335378i
\(417\) −49.3320 −2.41580
\(418\) 0 0
\(419\) −31.7490 −1.55104 −0.775520 0.631322i \(-0.782512\pi\)
−0.775520 + 0.631322i \(0.782512\pi\)
\(420\) −14.9172 + 5.42940i −0.727883 + 0.264928i
\(421\) 4.30852 24.4348i 0.209984 1.19088i −0.679417 0.733752i \(-0.737767\pi\)
0.889401 0.457128i \(-0.151122\pi\)
\(422\) −10.1819 + 8.54361i −0.495646 + 0.415897i
\(423\) 13.3422 + 11.1954i 0.648720 + 0.544340i
\(424\) −2.18502 12.3918i −0.106114 0.601801i
\(425\) 0 0
\(426\) −3.58301 + 6.20595i −0.173597 + 0.300679i
\(427\) −3.21092 1.16868i −0.155388 0.0565564i
\(428\) 14.3693 + 5.23000i 0.694567 + 0.252802i
\(429\) 12.2915 21.2895i 0.593439 1.02787i
\(430\) −9.29150 16.0934i −0.448076 0.776090i
\(431\) −4.84036 27.4510i −0.233152 1.32227i −0.846471 0.532435i \(-0.821277\pi\)
0.613319 0.789835i \(-0.289834\pi\)
\(432\) −2.02676 1.70066i −0.0975127 0.0818229i
\(433\) −13.6927 + 11.4895i −0.658028 + 0.552151i −0.909495 0.415715i \(-0.863531\pi\)
0.251467 + 0.967866i \(0.419087\pi\)
\(434\) −3.57420 + 20.2703i −0.171567 + 0.973006i
\(435\) 6.73385 2.45092i 0.322863 0.117513i
\(436\) −14.5830 −0.698399
\(437\) 0 0
\(438\) 4.52026 0.215986
\(439\) 10.1597 3.69784i 0.484898 0.176488i −0.0879914 0.996121i \(-0.528045\pi\)
0.572889 + 0.819633i \(0.305823\pi\)
\(440\) −1.32767 + 7.52960i −0.0632942 + 0.358959i
\(441\) 19.2783 16.1764i 0.918013 0.770305i
\(442\) 0 0
\(443\) 1.84862 + 10.4840i 0.0878304 + 0.498111i 0.996710 + 0.0810520i \(0.0258280\pi\)
−0.908880 + 0.417059i \(0.863061\pi\)
\(444\) −0.468627 0.811686i −0.0222401 0.0385209i
\(445\) 0 0
\(446\) 17.6773 + 6.43400i 0.837043 + 0.304659i
\(447\) 27.1921 + 9.89712i 1.28614 + 0.468118i
\(448\) −1.82288 + 3.15731i −0.0861228 + 0.149169i
\(449\) −12.1458 21.0371i −0.573193 0.992800i −0.996235 0.0866900i \(-0.972371\pi\)
0.423042 0.906110i \(-0.360962\pi\)
\(450\) 1.59166 + 9.02676i 0.0750316 + 0.425525i
\(451\) −1.03741 0.870494i −0.0488499 0.0409900i
\(452\) 11.9373 10.0166i 0.561482 0.471139i
\(453\) 5.94376 33.7087i 0.279262 1.58377i
\(454\) 6.91073 2.51530i 0.324337 0.118049i
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) 32.8745 1.53780 0.768902 0.639366i \(-0.220803\pi\)
0.768902 + 0.639366i \(0.220803\pi\)
\(458\) 18.7939 6.84040i 0.878179 0.319631i
\(459\) 0 0
\(460\) 2.07483 1.74099i 0.0967394 0.0811740i
\(461\) 14.6820 + 12.3197i 0.683810 + 0.573784i 0.917117 0.398619i \(-0.130510\pi\)
−0.233307 + 0.972403i \(0.574955\pi\)
\(462\) −7.78148 44.1310i −0.362027 2.05316i
\(463\) 19.2288 + 33.3052i 0.893636 + 1.54782i 0.835484 + 0.549515i \(0.185188\pi\)
0.0581525 + 0.998308i \(0.481479\pi\)
\(464\) 0.822876 1.42526i 0.0382010 0.0661661i
\(465\) −23.1005 8.40788i −1.07126 0.389906i
\(466\) 17.7362 + 6.45546i 0.821615 + 0.299043i
\(467\) 9.67712 16.7613i 0.447804 0.775619i −0.550439 0.834875i \(-0.685540\pi\)
0.998243 + 0.0592563i \(0.0188729\pi\)
\(468\) 4.00000 + 6.92820i 0.184900 + 0.320256i
\(469\) −0.408811 2.31848i −0.0188771 0.107058i
\(470\) 5.48948 + 4.60622i 0.253211 + 0.212469i
\(471\) 21.4492 17.9981i 0.988329 0.829307i
\(472\) −1.37829 + 7.81667i −0.0634409 + 0.359791i
\(473\) 49.2939 17.9415i 2.26654 0.824952i
\(474\) 10.5830 0.486094
\(475\) 0 0
\(476\) 0 0
\(477\) −47.2966 + 17.2146i −2.16556 + 0.788201i
\(478\) 2.08378 11.8177i 0.0953098 0.540529i
\(479\) 5.04287 4.23147i 0.230415 0.193341i −0.520269 0.854002i \(-0.674168\pi\)
0.750684 + 0.660661i \(0.229724\pi\)
\(480\) −3.33555 2.79886i −0.152246 0.127750i
\(481\) 0.123029 + 0.697734i 0.00560965 + 0.0318139i
\(482\) 3.79150 + 6.56708i 0.172698 + 0.299122i
\(483\) −7.93725 + 13.7477i −0.361158 + 0.625543i
\(484\) −9.94477 3.61960i −0.452035 0.164527i
\(485\) 5.73519 + 2.08744i 0.260422 + 0.0947857i
\(486\) 10.5830 18.3303i 0.480055 0.831479i
\(487\) 2.11438 + 3.66221i 0.0958116 + 0.165951i 0.909947 0.414724i \(-0.136122\pi\)
−0.814135 + 0.580675i \(0.802789\pi\)
\(488\) −0.162752 0.923015i −0.00736746 0.0417829i
\(489\) −7.97988 6.69592i −0.360863 0.302800i
\(490\) 7.93181 6.65558i 0.358323 0.300669i
\(491\) 6.82290 38.6946i 0.307913 1.74626i −0.301553 0.953449i \(-0.597505\pi\)
0.609466 0.792812i \(-0.291384\pi\)
\(492\) 0.724732 0.263781i 0.0326734 0.0118922i
\(493\) 0 0
\(494\) 0 0
\(495\) 30.5830 1.37460
\(496\) −5.30527 + 1.93096i −0.238214 + 0.0867027i
\(497\) 1.71469 9.72449i 0.0769144 0.436203i
\(498\) 16.0869 13.4985i 0.720873 0.604884i
\(499\) −3.65498 3.06690i −0.163620 0.137293i 0.557302 0.830310i \(-0.311837\pi\)
−0.720921 + 0.693017i \(0.756281\pi\)
\(500\) 2.08378 + 11.8177i 0.0931894 + 0.528503i
\(501\) 15.8745 + 27.4955i 0.709221 + 1.22841i
\(502\) 14.6144 25.3128i 0.652272 1.12977i
\(503\) 38.4684 + 14.0014i 1.71522 + 0.624290i 0.997409 0.0719447i \(-0.0229205\pi\)
0.717814 + 0.696235i \(0.245143\pi\)
\(504\) 13.7035 + 4.98768i 0.610404 + 0.222169i
\(505\) −11.2288 + 19.4488i −0.499673 + 0.865459i
\(506\) 3.82288 + 6.62141i 0.169948 + 0.294358i
\(507\) 4.13487 + 23.4500i 0.183636 + 1.04145i
\(508\) 10.1819 + 8.54361i 0.451748 + 0.379062i
\(509\) 24.3212 20.4079i 1.07802 0.904563i 0.0822617 0.996611i \(-0.473786\pi\)
0.995755 + 0.0920477i \(0.0293412\pi\)
\(510\) 0 0
\(511\) −5.85312 + 2.13036i −0.258927 + 0.0942416i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 12.2915 0.542155
\(515\) 20.5553 7.48152i 0.905775 0.329675i
\(516\) −5.18765 + 29.4206i −0.228374 + 1.29517i
\(517\) −15.4961 + 13.0028i −0.681519 + 0.571862i
\(518\) 0.989348 + 0.830162i 0.0434695 + 0.0364752i
\(519\) −2.75658 15.6333i −0.121000 0.686227i
\(520\) 1.64575 + 2.85052i 0.0721710 + 0.125004i
\(521\) −5.85425 + 10.1399i −0.256479 + 0.444235i −0.965296 0.261157i \(-0.915896\pi\)
0.708817 + 0.705392i \(0.249229\pi\)
\(522\) −6.18600 2.25152i −0.270754 0.0985464i
\(523\) −1.76146 0.641119i −0.0770233 0.0280342i 0.303221 0.952920i \(-0.401938\pi\)
−0.380244 + 0.924886i \(0.624160\pi\)
\(524\) −0.968627 + 1.67771i −0.0423147 + 0.0732912i
\(525\) −11.0516 19.1420i −0.482333 0.835425i
\(526\) 1.89923 + 10.7711i 0.0828105 + 0.469642i
\(527\) 0 0
\(528\) 9.41584 7.90083i 0.409772 0.343839i
\(529\) −3.52358 + 19.9832i −0.153199 + 0.868836i
\(530\) −19.4596 + 7.08272i −0.845272 + 0.307654i
\(531\) 31.7490 1.37779
\(532\) 0 0
\(533\) −0.583005 −0.0252528
\(534\) 0 0
\(535\) 4.37003 24.7837i 0.188933 1.07149i
\(536\) 0.494674 0.415081i 0.0213667 0.0179288i
\(537\) 8.23422 + 6.90933i 0.355333 + 0.298160i
\(538\) 0 0
\(539\) 14.6144 + 25.3128i 0.629486 + 1.09030i
\(540\) −2.17712 + 3.77089i −0.0936885 + 0.162273i
\(541\) −7.51754 2.73616i −0.323204 0.117637i 0.175322 0.984511i \(-0.443903\pi\)
−0.498527 + 0.866874i \(0.666125\pi\)
\(542\) 11.6092 + 4.22540i 0.498658 + 0.181497i
\(543\) −29.4059 + 50.9325i −1.26193 + 2.18572i
\(544\) 0 0
\(545\) 4.16756 + 23.6354i 0.178518 + 1.01243i
\(546\) −14.7781 12.4003i −0.632446 0.530686i
\(547\) −8.64979 + 7.25804i −0.369838 + 0.310331i −0.808698 0.588225i \(-0.799827\pi\)
0.438859 + 0.898556i \(0.355383\pi\)
\(548\) 2.70596 15.3463i 0.115593 0.655560i
\(549\) −3.52292 + 1.28224i −0.150355 + 0.0547246i
\(550\) −10.6458 −0.453936
\(551\) 0 0
\(552\) −4.35425 −0.185329
\(553\) −13.7035 + 4.98768i −0.582734 + 0.212098i
\(554\) 4.77884 27.1022i 0.203034 1.15146i
\(555\) −1.18161 + 0.991491i −0.0501567 + 0.0420865i
\(556\) 14.2835 + 11.9853i 0.605754 + 0.508288i
\(557\) −0.940651 5.33470i −0.0398567 0.226038i 0.958373 0.285520i \(-0.0921663\pi\)
−0.998229 + 0.0594817i \(0.981055\pi\)
\(558\) 11.2915 + 19.5575i 0.478007 + 0.827933i
\(559\) 11.2915 19.5575i 0.477580 0.827192i
\(560\) 5.63816 + 2.05212i 0.238256 + 0.0867179i
\(561\) 0 0
\(562\) −12.7288 + 22.0469i −0.536930 + 0.929990i
\(563\) 5.03137 + 8.71459i 0.212047 + 0.367276i 0.952355 0.304992i \(-0.0986536\pi\)
−0.740308 + 0.672268i \(0.765320\pi\)
\(564\) −2.00047 11.3452i −0.0842351 0.477721i
\(565\) −19.6458 16.4848i −0.826504 0.693520i
\(566\) −23.4760 + 19.6987i −0.986770 + 0.827999i
\(567\) −3.16539 + 17.9518i −0.132934 + 0.753906i
\(568\) 2.54515 0.926361i 0.106792 0.0388692i
\(569\) −6.58301 −0.275974 −0.137987 0.990434i \(-0.544063\pi\)
−0.137987 + 0.990434i \(0.544063\pi\)
\(570\) 0 0
\(571\) 7.81176 0.326912 0.163456 0.986551i \(-0.447736\pi\)
0.163456 + 0.986551i \(0.447736\pi\)
\(572\) −8.73116 + 3.17788i −0.365068 + 0.132874i
\(573\) −3.02443 + 17.1524i −0.126347 + 0.716551i
\(574\) −0.814111 + 0.683120i −0.0339803 + 0.0285129i
\(575\) 2.88894 + 2.42411i 0.120477 + 0.101092i
\(576\) 0.694593 + 3.93923i 0.0289414 + 0.164135i
\(577\) −5.50000 9.52628i −0.228968 0.396584i 0.728535 0.685009i \(-0.240202\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) −8.50000 + 14.7224i −0.353553 + 0.612372i
\(579\) −36.2562 13.1962i −1.50675 0.548414i
\(580\) −2.54515 0.926361i −0.105682 0.0384650i
\(581\) −14.4686 + 25.0604i −0.600260 + 1.03968i
\(582\) −4.90588 8.49723i −0.203355 0.352222i
\(583\) −10.1510 57.5694i −0.420413 2.38428i
\(584\) −1.30878 1.09820i −0.0541579 0.0454439i
\(585\) 10.0857 8.46295i 0.416994 0.349900i
\(586\) 5.02490 28.4976i 0.207577 1.17723i
\(587\) 13.2736 4.83120i 0.547861 0.199405i −0.0532349 0.998582i \(-0.516953\pi\)
0.601096 + 0.799177i \(0.294731\pi\)
\(588\) −16.6458 −0.686459
\(589\) 0 0
\(590\) 13.0627 0.537785
\(591\) −19.0088 + 6.91864i −0.781918 + 0.284595i
\(592\) −0.0615146 + 0.348867i −0.00252824 + 0.0143383i
\(593\) 22.7580 19.0963i 0.934560 0.784189i −0.0420702 0.999115i \(-0.513395\pi\)
0.976630 + 0.214925i \(0.0689509\pi\)
\(594\) −9.41584 7.90083i −0.386336 0.324175i
\(595\) 0 0
\(596\) −5.46863 9.47194i −0.224004 0.387986i
\(597\) −26.2915 + 45.5382i −1.07604 + 1.86376i
\(598\) 3.09300 + 1.12576i 0.126482 + 0.0460358i
\(599\) −15.9158 5.79288i −0.650302 0.236691i −0.00425849 0.999991i \(-0.501356\pi\)
−0.646044 + 0.763300i \(0.723578\pi\)
\(600\) 3.03137 5.25049i 0.123755 0.214350i
\(601\) 5.20850 + 9.02138i 0.212459 + 0.367990i 0.952484 0.304590i \(-0.0985195\pi\)
−0.740025 + 0.672580i \(0.765186\pi\)
\(602\) −7.14840 40.5406i −0.291347 1.65231i
\(603\) −1.97870 1.66032i −0.0805788 0.0676136i
\(604\) −9.91051 + 8.31591i −0.403253 + 0.338369i
\(605\) −3.02443 + 17.1524i −0.122961 + 0.697344i
\(606\) 33.9260 12.3480i 1.37815 0.501605i
\(607\) −6.93725 −0.281574 −0.140787 0.990040i \(-0.544963\pi\)
−0.140787 + 0.990040i \(0.544963\pi\)
\(608\) 0 0
\(609\) 15.8745 0.643268
\(610\) −1.44946 + 0.527562i −0.0586871 + 0.0213603i
\(611\) −1.51221 + 8.57620i −0.0611777 + 0.346956i
\(612\) 0 0
\(613\) 5.68175 + 4.76755i 0.229484 + 0.192560i 0.750278 0.661123i \(-0.229920\pi\)
−0.520794 + 0.853682i \(0.674364\pi\)
\(614\) 0.112134 + 0.635941i 0.00452534 + 0.0256645i
\(615\) −0.634637 1.09922i −0.0255911 0.0443250i
\(616\) −8.46863 + 14.6681i −0.341211 + 0.590994i
\(617\) 29.0125 + 10.5597i 1.16800 + 0.425118i 0.851949 0.523624i \(-0.175420\pi\)
0.316052 + 0.948742i \(0.397643\pi\)
\(618\) −33.0452 12.0275i −1.32927 0.483816i
\(619\) 4.22876 7.32442i 0.169968 0.294393i −0.768440 0.639921i \(-0.778967\pi\)
0.938408 + 0.345528i \(0.112300\pi\)
\(620\) 4.64575 + 8.04668i 0.186578 + 0.323162i
\(621\) 0.756107 + 4.28810i 0.0303415 + 0.172075i
\(622\) −10.4533 8.77132i −0.419137 0.351698i
\(623\) 0 0
\(624\) 0.918860 5.21111i 0.0367838 0.208611i
\(625\) 7.79146 2.83586i 0.311659 0.113434i
\(626\) −8.87451 −0.354697
\(627\) 0 0
\(628\) −10.5830 −0.422308
\(629\) 0 0
\(630\) 4.16756 23.6354i 0.166039 0.941656i
\(631\) −19.0069 + 15.9487i −0.756653 + 0.634907i −0.937253 0.348649i \(-0.886640\pi\)
0.180600 + 0.983557i \(0.442196\pi\)
\(632\) −3.06418 2.57115i −0.121886 0.102275i
\(633\) −6.10651 34.6318i −0.242712 1.37649i
\(634\) 3.00000 + 5.19615i 0.119145 + 0.206366i
\(635\) 10.9373 18.9439i 0.434032 0.751765i
\(636\) 31.2838 + 11.3864i 1.24048 + 0.451499i
\(637\) 11.8242 + 4.30364i 0.468490 + 0.170516i
\(638\) 3.82288 6.62141i 0.151349 0.262144i
\(639\) −5.41699 9.38251i −0.214293 0.371166i
\(640\) 0.285782 + 1.62075i 0.0112965 + 0.0640657i
\(641\) −9.86245 8.27557i −0.389543 0.326866i 0.426892 0.904303i \(-0.359608\pi\)
−0.816435 + 0.577437i \(0.804053\pi\)
\(642\) −30.9923 + 26.0056i −1.22317 + 1.02636i
\(643\) −1.13223 + 6.42120i −0.0446508 + 0.253227i −0.998960 0.0455933i \(-0.985482\pi\)
0.954309 + 0.298821i \(0.0965933\pi\)
\(644\) 5.63816 2.05212i 0.222174 0.0808649i
\(645\) 49.1660 1.93591
\(646\) 0 0
\(647\) −22.4575 −0.882896 −0.441448 0.897287i \(-0.645535\pi\)
−0.441448 + 0.897287i \(0.645535\pi\)
\(648\) −4.69846 + 1.71010i −0.184573 + 0.0671791i
\(649\) −6.40319 + 36.3143i −0.251347 + 1.42546i
\(650\) −3.51079 + 2.94590i −0.137704 + 0.115548i
\(651\) −41.7169 35.0046i −1.63501 1.37194i
\(652\) 0.683697 + 3.87744i 0.0267756 + 0.151852i
\(653\) −12.0000 20.7846i −0.469596 0.813365i 0.529799 0.848123i \(-0.322267\pi\)
−0.999396 + 0.0347583i \(0.988934\pi\)
\(654\) 19.2915 33.4139i 0.754357 1.30659i
\(655\) 2.99596 + 1.09044i 0.117062 + 0.0426071i
\(656\) −0.273923 0.0996998i −0.0106949 0.00389262i
\(657\) −3.41699 + 5.91841i −0.133310 + 0.230899i
\(658\) 7.93725 + 13.7477i 0.309426 + 0.535942i
\(659\) 3.22690 + 18.3007i 0.125702 + 0.712894i 0.980888 + 0.194572i \(0.0623318\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(660\) −15.4961 13.0028i −0.603186 0.506133i
\(661\) −12.4319 + 10.4316i −0.483547 + 0.405744i −0.851707 0.524018i \(-0.824432\pi\)
0.368160 + 0.929762i \(0.379988\pi\)
\(662\) 3.44028 19.5108i 0.133710 0.758308i
\(663\) 0 0
\(664\) −7.93725 −0.308025
\(665\) 0 0
\(666\) 1.41699 0.0549074
\(667\) −2.54515 + 0.926361i −0.0985488 + 0.0358688i
\(668\) 2.08378 11.8177i 0.0806238 0.457240i
\(669\) −38.1270 + 31.9923i −1.47407 + 1.23690i
\(670\) −0.814111 0.683120i −0.0314518 0.0263912i
\(671\) −0.756107 4.28810i −0.0291892 0.165540i
\(672\) −4.82288 8.35347i −0.186046 0.322242i
\(673\) −6.93725 + 12.0157i −0.267411 + 0.463170i −0.968193 0.250206i \(-0.919502\pi\)
0.700781 + 0.713376i \(0.252835\pi\)
\(674\) 9.12300 + 3.32050i 0.351405 + 0.127901i
\(675\) −5.69712 2.07358i −0.219282 0.0798122i
\(676\) 4.50000 7.79423i 0.173077 0.299778i
\(677\) −5.70850 9.88741i −0.219395 0.380004i 0.735228 0.677820i \(-0.237075\pi\)
−0.954623 + 0.297816i \(0.903742\pi\)
\(678\) 7.15930 + 40.6024i 0.274951 + 1.55933i
\(679\) 10.3571 + 8.69066i 0.397470 + 0.333517i
\(680\) 0 0
\(681\) −3.37876 + 19.1619i −0.129474 + 0.734286i
\(682\) −24.6470 + 8.97076i −0.943781 + 0.343508i
\(683\) 5.41699 0.207276 0.103638 0.994615i \(-0.466952\pi\)
0.103638 + 0.994615i \(0.466952\pi\)
\(684\) 0 0
\(685\) −25.6458 −0.979874
\(686\) −2.42723 + 0.883440i −0.0926721 + 0.0337299i
\(687\) −9.18860 + 52.1111i −0.350567 + 1.98816i
\(688\) 8.64979 7.25804i 0.329770 0.276710i
\(689\) −19.2783 16.1764i −0.734444 0.616272i
\(690\) 1.24436 + 7.05714i 0.0473722 + 0.268661i
\(691\) −1.29150 2.23695i −0.0491311 0.0850975i 0.840414 0.541945i \(-0.182312\pi\)
−0.889545 + 0.456847i \(0.848979\pi\)
\(692\) −3.00000 + 5.19615i −0.114043 + 0.197528i
\(693\) 63.6633 + 23.1715i 2.41837 + 0.880214i
\(694\) −21.8279 7.94470i −0.828575 0.301577i
\(695\) 15.3431 26.5751i 0.581998 1.00805i
\(696\) 2.17712 + 3.77089i 0.0825237 + 0.142935i
\(697\) 0 0
\(698\) −16.2141 13.6052i −0.613713 0.514966i
\(699\) −38.2542 + 32.0990i −1.44691 + 1.21410i
\(700\) −1.45070 + 8.22733i −0.0548313 + 0.310964i
\(701\) −9.72981 + 3.54136i −0.367490 + 0.133755i −0.519163 0.854675i \(-0.673756\pi\)
0.151673 + 0.988431i \(0.451534\pi\)
\(702\) −5.29150 −0.199715
\(703\) 0 0
\(704\) −4.64575 −0.175093
\(705\) −17.8161 + 6.48452i −0.670993 + 0.244221i
\(706\) −2.23563 + 12.6789i −0.0841392 + 0.477177i
\(707\) −38.1100 + 31.9781i −1.43327 + 1.20266i
\(708\) −16.0869 13.4985i −0.604584 0.507306i
\(709\) 0.633078 + 3.59036i 0.0237757 + 0.134839i 0.994385 0.105821i \(-0.0337472\pi\)
−0.970609 + 0.240660i \(0.922636\pi\)
\(710\) −2.22876 3.86032i −0.0836437 0.144875i
\(711\) −8.00000 + 13.8564i −0.300023 + 0.519656i
\(712\) 0 0
\(713\) 8.73116 + 3.17788i 0.326984 + 0.119013i
\(714\) 0 0
\(715\) 7.64575 + 13.2428i 0.285935 + 0.495254i
\(716\) −0.705488 4.00102i −0.0263653 0.149525i
\(717\) 24.3212 + 20.4079i 0.908290 + 0.762146i
\(718\) 3.78216 3.17361i 0.141149 0.118438i
\(719\) 0.470326 2.66735i 0.0175402 0.0994753i −0.974781 0.223164i \(-0.928361\pi\)
0.992321 + 0.123689i \(0.0394725\pi\)
\(720\) 6.18600 2.25152i 0.230539 0.0839092i
\(721\) 48.4575 1.80465
\(722\) 0 0
\(723\) −20.0627 −0.746142
\(724\) 20.8882 7.60268i 0.776304 0.282551i
\(725\) 0.654870 3.71395i 0.0243212 0.137933i
\(726\) 21.4492 17.9981i 0.796056 0.667970i
\(727\) 1.08548 + 0.910827i 0.0402583 + 0.0337807i 0.662695 0.748890i \(-0.269413\pi\)
−0.622437 + 0.782670i \(0.713857\pi\)
\(728\) 1.26616 + 7.18073i 0.0469269 + 0.266135i
\(729\) 20.5000 + 35.5070i 0.759259 + 1.31508i
\(730\) −1.40588 + 2.43506i −0.0520340 + 0.0901255i
\(731\) 0 0
\(732\) 2.33019 + 0.848121i 0.0861265 + 0.0313475i
\(733\) 8.05163 13.9458i 0.297394 0.515101i −0.678145 0.734928i \(-0.737216\pi\)
0.975539 + 0.219827i \(0.0705492\pi\)
\(734\) 8.11438 + 14.0545i 0.299507 + 0.518762i
\(735\) 4.75705 + 26.9786i 0.175466 + 0.995120i
\(736\) 1.26072 + 1.05787i 0.0464707 + 0.0389936i
\(737\) 2.29813 1.92836i 0.0846528 0.0710322i
\(738\) −0.202476 + 1.14830i −0.00745323 + 0.0422694i
\(739\) 31.7727 11.5643i 1.16878 0.425400i 0.316551 0.948575i \(-0.397475\pi\)
0.852225 + 0.523176i \(0.175253\pi\)
\(740\) 0.583005 0.0214317
\(741\) 0 0
\(742\) −45.8745 −1.68411
\(743\) −44.6544 + 16.2529i −1.63821 + 0.596261i −0.986725 0.162399i \(-0.948077\pi\)
−0.651487 + 0.758660i \(0.725855\pi\)
\(744\) 2.59383 14.7103i 0.0950943 0.539307i
\(745\) −13.7888 + 11.5702i −0.505183 + 0.423898i
\(746\) −3.06418 2.57115i −0.112188 0.0941365i
\(747\) 5.51316 + 31.2667i 0.201716 + 1.14399i
\(748\) 0 0
\(749\) 27.8745 48.2801i 1.01851 1.76412i
\(750\) −29.8343 10.8588i −1.08940 0.396507i
\(751\) −7.39962 2.69324i −0.270016 0.0982777i 0.203464 0.979082i \(-0.434780\pi\)
−0.473480 + 0.880805i \(0.657002\pi\)
\(752\) −2.17712 + 3.77089i −0.0793916 + 0.137510i
\(753\) 38.6660 + 66.9715i 1.40907 + 2.44058i
\(754\) −0.571563 3.24150i −0.0208151 0.118048i
\(755\) 16.3102 + 13.6859i 0.593590 + 0.498081i
\(756\) −7.38907 + 6.20017i −0.268738 + 0.225498i
\(757\) −0.795831 + 4.51338i −0.0289250 + 0.164042i −0.995849 0.0910241i \(-0.970986\pi\)
0.966924 + 0.255066i \(0.0820971\pi\)
\(758\) −10.0627 + 3.66252i −0.365494 + 0.133029i
\(759\) −20.2288 −0.734257
\(760\) 0 0
\(761\) 42.8745 1.55420 0.777100 0.629377i \(-0.216690\pi\)
0.777100 + 0.629377i \(0.216690\pi\)
\(762\) −33.0452 + 12.0275i −1.19710 + 0.435710i
\(763\) −9.23218 + 52.3583i −0.334227 + 1.89550i
\(764\) 5.04287 4.23147i 0.182445 0.153089i
\(765\) 0 0
\(766\) 0.958583 + 5.43639i 0.0346350 + 0.196425i
\(767\) 7.93725 + 13.7477i 0.286598 + 0.496402i
\(768\) 1.32288 2.29129i 0.0477352 0.0826797i
\(769\) −33.1632 12.0704i −1.19589 0.435270i −0.334105 0.942536i \(-0.608434\pi\)
−0.861790 + 0.507266i \(0.830656\pi\)
\(770\) 26.1935 + 9.53364i 0.943947 + 0.343569i
\(771\) −16.2601 + 28.1634i −0.585594 + 1.01428i
\(772\) 7.29150 + 12.6293i 0.262427 + 0.454537i
\(773\) 0.857345 + 4.86225i 0.0308366 + 0.174883i 0.996336 0.0855209i \(-0.0272554\pi\)
−0.965500 + 0.260404i \(0.916144\pi\)
\(774\) −34.5992 29.0322i −1.24364 1.04354i
\(775\) −9.91051 + 8.31591i −0.355996 + 0.298716i
\(776\) −0.643974 + 3.65216i −0.0231173 + 0.131105i
\(777\) −3.21092 + 1.16868i −0.115191 + 0.0419262i
\(778\) −12.0000 −0.430221
\(779\) 0 0
\(780\) −8.70850 −0.311814
\(781\) 11.8242 4.30364i 0.423102 0.153996i
\(782\) 0 0
\(783\) 3.33555 2.79886i 0.119203 0.100023i
\(784\) 4.81957 + 4.04410i 0.172128 + 0.144432i
\(785\) 3.02443 + 17.1524i 0.107947 + 0.612195i
\(786\) −2.56275 4.43881i −0.0914101 0.158327i
\(787\) −21.2601 + 36.8236i −0.757842 + 1.31262i 0.186107 + 0.982529i \(0.440413\pi\)
−0.943949 + 0.330091i \(0.892921\pi\)
\(788\) 7.18466 + 2.61500i 0.255943 + 0.0931556i
\(789\) −27.1921 9.89712i −0.968065 0.352347i
\(790\) −3.29150 + 5.70105i −0.117106 + 0.202834i
\(791\) −28.4059 49.2004i −1.01000 1.74937i
\(792\) 3.22690 + 18.3007i 0.114663 + 0.650287i
\(793\) −1.43596 1.20491i −0.0509923 0.0427876i
\(794\) −16.1350 + 13.5389i −0.572610 + 0.480477i
\(795\) 9.51410 53.9572i 0.337430 1.91366i
\(796\) 18.6759 6.79748i 0.661951 0.240930i
\(797\) 44.8118 1.58731 0.793657 0.608365i \(-0.208174\pi\)
0.793657 + 0.608365i \(0.208174\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.15331 + 0.783740i −0.0761309 + 0.0277094i
\(801\) 0 0
\(802\) 21.1298 17.7300i 0.746119 0.626069i
\(803\) −6.08029 5.10197i −0.214569 0.180045i
\(804\) 0.296677 + 1.68254i 0.0104630 + 0.0593387i
\(805\) −4.93725 8.55157i −0.174015 0.301403i
\(806\) −5.64575 + 9.77873i −0.198863 + 0.344441i
\(807\) 0 0
\(808\) −12.8228 4.66712i −0.451105 0.164189i
\(809\) 4.50000 7.79423i 0.158212 0.274030i −0.776012 0.630718i \(-0.782761\pi\)
0.934224 + 0.356687i \(0.116094\pi\)
\(810\) 4.11438 + 7.12631i 0.144565 + 0.250393i
\(811\) 5.43371 + 30.8161i 0.190803 + 1.08210i 0.918269 + 0.395956i \(0.129587\pi\)
−0.727466 + 0.686144i \(0.759302\pi\)
\(812\) −4.59627 3.85673i −0.161297 0.135345i
\(813\) −25.0391 + 21.0103i −0.878161 + 0.736864i
\(814\) −0.285782 + 1.62075i −0.0100166 + 0.0568072i
\(815\) 6.08896 2.21620i 0.213287 0.0776302i
\(816\) 0 0
\(817\) 0 0
\(818\) −7.58301 −0.265134
\(819\) 27.4071 9.97536i 0.957681 0.348567i
\(820\) −0.0833061 + 0.472452i −0.00290918 + 0.0164988i
\(821\) −4.59627 + 3.85673i −0.160411 + 0.134601i −0.719460 0.694534i \(-0.755611\pi\)
0.559049 + 0.829134i \(0.311166\pi\)
\(822\) 31.5831 + 26.5013i 1.10159 + 0.924340i
\(823\) −5.53495 31.3903i −0.192936 1.09420i −0.915327 0.402711i \(-0.868068\pi\)
0.722391 0.691485i \(-0.243043\pi\)
\(824\) 6.64575 + 11.5108i 0.231516 + 0.400997i
\(825\) 14.0830 24.3925i 0.490307 0.849237i
\(826\) 27.1921 + 9.89712i 0.946135 + 0.344365i
\(827\) −49.4708 18.0059i −1.72027 0.626127i −0.722406 0.691469i \(-0.756964\pi\)
−0.997863 + 0.0653422i \(0.979186\pi\)
\(828\) 3.29150 5.70105i 0.114388 0.198125i
\(829\) −8.58301 14.8662i −0.298100 0.516325i 0.677601 0.735430i \(-0.263020\pi\)
−0.975701 + 0.219105i \(0.929686\pi\)
\(830\) 2.26832 + 12.8643i 0.0787346 + 0.446526i
\(831\) 55.7770 + 46.8025i 1.93488 + 1.62356i
\(832\) −1.53209 + 1.28558i −0.0531156 + 0.0445693i
\(833\) 0 0
\(834\) −46.3569 + 16.8725i −1.60521 + 0.584248i
\(835\) −19.7490 −0.683443
\(836\) 0 0
\(837\) −14.9373 −0.516307
\(838\) −29.8343 + 10.8588i −1.03061 + 0.375111i
\(839\) 7.20992 40.8895i 0.248914 1.41166i −0.562310 0.826926i \(-0.690087\pi\)
0.811224 0.584735i \(-0.198802\pi\)
\(840\) −12.1606 + 10.2039i −0.419580 + 0.352069i
\(841\) −20.1405 16.8999i −0.694499 0.582754i
\(842\) −4.30852 24.4348i −0.148481 0.842079i
\(843\) −33.6771 58.3305i −1.15990 2.00901i
\(844\) −6.64575 + 11.5108i −0.228756 + 0.396217i
\(845\) −13.9185 5.06592i −0.478811 0.174273i
\(846\) 16.3666 + 5.95696i 0.562696 + 0.204805i
\(847\) −19.2915 + 33.4139i −0.662864 + 1.14811i
\(848\) −6.29150 10.8972i −0.216051 0.374211i
\(849\) −14.0796 79.8492i −0.483210 2.74042i
\(850\) 0 0
\(851\) 0.446608 0.374749i 0.0153095 0.0128462i
\(852\) −1.24436 + 7.05714i −0.0426312 + 0.241774i
\(853\) −8.06539 + 2.93556i −0.276154 + 0.100512i −0.476385 0.879237i \(-0.658053\pi\)
0.200231 + 0.979749i \(0.435831\pi\)
\(854\) −3.41699 −0.116927
\(855\) 0 0
\(856\) 15.2915 0.522653
\(857\) 19.7335 7.18242i 0.674085 0.245347i 0.0177793 0.999842i \(-0.494340\pi\)
0.656306 + 0.754495i \(0.272118\pi\)
\(858\) 4.26879 24.2095i 0.145734 0.826500i
\(859\) 10.1338 8.50328i 0.345761 0.290128i −0.453324 0.891346i \(-0.649762\pi\)
0.799085 + 0.601218i \(0.205318\pi\)
\(860\) −14.2354 11.9449i −0.485423 0.407319i
\(861\) −0.488257 2.76904i −0.0166398 0.0943688i
\(862\) −13.9373 24.1400i −0.474705 0.822213i
\(863\) −15.5314 + 26.9011i −0.528694 + 0.915725i 0.470746 + 0.882269i \(0.343985\pi\)
−0.999440 + 0.0334563i \(0.989349\pi\)
\(864\) −2.48619 0.904900i −0.0845820 0.0307853i
\(865\) 9.27900 + 3.37728i 0.315496 + 0.114831i
\(866\) −8.93725 + 15.4798i −0.303700 + 0.526024i
\(867\) −22.4889 38.9519i −0.763763 1.32288i
\(868\) 3.57420 + 20.2703i 0.121316 + 0.688019i
\(869\) −14.2354 11.9449i −0.482903 0.405204i
\(870\) 5.48948 4.60622i 0.186111 0.156166i
\(871\) 0.224267 1.27188i 0.00759900 0.0430961i
\(872\) −13.7035 + 4.98768i −0.464061 + 0.168904i
\(873\) 14.8340 0.502054
\(874\) 0 0
\(875\) 43.7490 1.47899
\(876\) 4.24765 1.54602i 0.143515 0.0522352i
\(877\) 7.23171 41.0131i 0.244197 1.38491i −0.578152 0.815929i \(-0.696226\pi\)
0.822349 0.568983i \(-0.192663\pi\)
\(878\) 8.28229 6.94967i 0.279514 0.234540i
\(879\) 58.6490 + 49.2123i 1.97818 + 1.65989i
\(880\) 1.32767 + 7.52960i 0.0447558 + 0.253823i
\(881\) 18.4373 + 31.9343i 0.621167 + 1.07589i 0.989269 + 0.146107i \(0.0466744\pi\)
−0.368102 + 0.929785i \(0.619992\pi\)
\(882\) 12.5830 21.7944i 0.423692 0.733856i
\(883\) 26.6824 + 9.71158i 0.897933 + 0.326821i 0.749424 0.662090i \(-0.230330\pi\)
0.148509 + 0.988911i \(0.452553\pi\)
\(884\) 0 0
\(885\) −17.2804 + 29.9305i −0.580874 + 1.00610i
\(886\) 5.32288 + 9.21949i 0.178826 + 0.309735i
\(887\) 3.02443 + 17.1524i 0.101550 + 0.575921i 0.992542 + 0.121902i \(0.0388992\pi\)
−0.890992 + 0.454019i \(0.849990\pi\)
\(888\) −0.717978 0.602455i −0.0240938 0.0202171i
\(889\) 37.1206 31.1479i 1.24499 1.04467i
\(890\) 0 0
\(891\) −21.8279 + 7.94470i −0.731262 + 0.266158i
\(892\) 18.8118 0.629864
\(893\) 0 0
\(894\) 28.9373 0.967807
\(895\) −6.28304 + 2.28684i −0.210019 + 0.0764406i
\(896\) −0.633078 + 3.59036i −0.0211497 + 0.119946i
\(897\) −6.67110 + 5.59771i −0.222741 + 0.186902i
\(898\) −18.6084 15.6143i −0.620969 0.521055i
\(899\) −1.61345 9.15034i −0.0538117 0.305181i
\(900\) 4.58301 + 7.93800i 0.152767 + 0.264600i
\(901\) 0 0
\(902\) −1.27258 0.463180i −0.0423722 0.0154222i
\(903\) 102.347 + 37.2511i 3.40588 + 1.23964i
\(904\) 7.79150 13.4953i 0.259142 0.448846i
\(905\) −18.2915 31.6818i −0.608030 1.05314i
\(906\) −5.94376 33.7087i −0.197468 1.11990i
\(907\) −30.5937 25.6712i −1.01585 0.852397i −0.0267475 0.999642i \(-0.508515\pi\)
−0.989100 + 0.147245i \(0.952959\pi\)
\(908\) 5.63368 4.72722i 0.186960 0.156878i
\(909\) −9.47824 + 53.7538i −0.314373 + 1.78290i
\(910\) 11.2763 4.10424i 0.373806 0.136054i
\(911\) −16.9373 −0.561156 −0.280578 0.959831i \(-0.590526\pi\)
−0.280578 + 0.959831i \(0.590526\pi\)
\(912\) 0 0
\(913\) −36.8745 −1.22037
\(914\) 30.8919 11.2437i 1.02181 0.371910i
\(915\) 0.708665 4.01904i 0.0234277 0.132865i
\(916\) 15.3209 12.8558i 0.506216 0.424766i
\(917\) 5.41038 + 4.53985i 0.178666 + 0.149919i
\(918\) 0 0
\(919\) 9.93725 + 17.2118i 0.327800 + 0.567766i 0.982075 0.188491i \(-0.0603595\pi\)
−0.654275 + 0.756257i \(0.727026\pi\)
\(920\) 1.35425 2.34563i 0.0446483 0.0773330i
\(921\) −1.60546 0.584341i −0.0529018 0.0192547i
\(922\) 18.0102 + 6.55516i 0.593133 + 0.215883i
\(923\) 2.70850 4.69126i 0.0891513 0.154415i
\(924\) −22.4059 38.8081i −0.737099 1.27669i
\(925\) 0.140961 + 0.799429i 0.00463477 + 0.0262851i
\(926\) 29.4602 + 24.7200i 0.968121 + 0.812350i
\(927\) 40.7275 34.1745i 1.33767 1.12244i
\(928\) 0.285782 1.62075i 0.00938124 0.0532037i
\(929\) 9.00508 3.27758i 0.295447 0.107534i −0.190044 0.981776i \(-0.560863\pi\)
0.485491 + 0.874242i \(0.338641\pi\)
\(930\) −24.5830 −0.806108
\(931\) 0 0
\(932\) 18.8745 0.618255
\(933\) 33.9260 12.3480i 1.11069 0.404257i
\(934\) 3.36083 19.0602i 0.109970 0.623669i
\(935\) 0 0
\(936\) 6.12836 + 5.14230i 0.200312 + 0.168081i
\(937\) 1.23733 + 7.01724i 0.0404218 + 0.229243i 0.998325 0.0578464i \(-0.0184234\pi\)
−0.957904 + 0.287090i \(0.907312\pi\)
\(938\) −1.17712 2.03884i −0.0384345 0.0665705i
\(939\) 11.7399 20.3341i 0.383116 0.663577i
\(940\) 6.73385 + 2.45092i 0.219634 + 0.0799402i
\(941\) 15.8188 + 5.75756i 0.515677 + 0.187691i 0.586732 0.809781i \(-0.300414\pi\)
−0.0710546 + 0.997472i \(0.522636\pi\)
\(942\) 14.0000 24.2487i 0.456145 0.790066i
\(943\) 0.239870 + 0.415468i 0.00781126 + 0.0135295i
\(944\) 1.37829 + 7.81667i 0.0448595 + 0.254411i
\(945\) 12.1606 + 10.2039i 0.395584 + 0.331934i
\(946\) 40.1848 33.7190i 1.30652 1.09630i
\(947\) −1.34560 + 7.63129i −0.0437262 + 0.247984i −0.998834 0.0482745i \(-0.984628\pi\)
0.955108 + 0.296258i \(0.0957389\pi\)
\(948\) 9.94477 3.61960i 0.322991 0.117559i
\(949\) −3.41699 −0.110920
\(950\) 0 0
\(951\) −15.8745 −0.514766
\(952\) 0 0
\(953\) 2.33687 13.2531i 0.0756987 0.429309i −0.923280 0.384127i \(-0.874502\pi\)
0.998979 0.0451814i \(-0.0143866\pi\)
\(954\) −38.5566 + 32.3528i −1.24831 + 1.04746i
\(955\) −8.29932 6.96395i −0.268560 0.225348i
\(956\) −2.08378 11.8177i −0.0673942 0.382212i
\(957\) 10.1144 + 17.5186i 0.326951 + 0.566296i
\(958\) 3.29150 5.70105i 0.106344 0.184193i
\(959\) −53.3856 19.4308i −1.72391 0.627452i
\(960\) −4.09166 1.48924i −0.132058 0.0480650i
\(961\) −0.437254 + 0.757346i −0.0141050 + 0.0244305i
\(962\) 0.354249 + 0.613577i 0.0114214 + 0.0197825i
\(963\) −10.6214 60.2368i −0.342269 1.94110i
\(964\) 5.80892 + 4.87426i 0.187093 + 0.156989i
\(965\) 18.3851 15.4269i 0.591836 0.496610i
\(966\) −2.75658 + 15.6333i −0.0886915 + 0.502994i
\(967\) 12.4899 4.54596i 0.401649 0.146188i −0.133294 0.991077i \(-0.542555\pi\)
0.534943 + 0.844888i \(0.320333\pi\)
\(968\) −10.5830 −0.340151
\(969\) 0 0
\(970\) 6.10326 0.195964
\(971\) −51.1144 + 18.6041i −1.64034 + 0.597034i −0.987098 0.160117i \(-0.948813\pi\)
−0.653240 + 0.757151i \(0.726591\pi\)
\(972\) 3.67544 20.8445i 0.117890 0.668586i
\(973\) 52.0740 43.6953i 1.66942 1.40081i
\(974\) 3.23942 + 2.71819i 0.103798 + 0.0870965i
\(975\) −2.10557 11.9413i −0.0674322 0.382427i
\(976\) −0.468627 0.811686i −0.0150004 0.0259814i
\(977\) −3.72876 + 6.45840i −0.119293 + 0.206622i −0.919488 0.393118i \(-0.871396\pi\)
0.800194 + 0.599741i \(0.204730\pi\)
\(978\) −9.78877 3.56282i −0.313010 0.113926i
\(979\) 0 0
\(980\) 5.17712 8.96704i 0.165377 0.286442i
\(981\) 29.1660 + 50.5170i 0.931199 + 1.61288i
\(982\) −6.82290 38.6946i −0.217727 1.23479i
\(983\) −24.3212 20.4079i −0.775724 0.650910i 0.166444 0.986051i \(-0.446772\pi\)
−0.942168 + 0.335141i \(0.891216\pi\)
\(984\) 0.590807 0.495746i 0.0188342 0.0158038i
\(985\) 2.18502 12.3918i 0.0696204 0.394837i
\(986\) 0 0
\(987\) −42.0000 −1.33687
\(988\) 0 0
\(989\) −18.5830 −0.590905
\(990\) 28.7386 10.4600i 0.913373 0.332441i
\(991\) 0.492117 2.79093i 0.0156326 0.0886570i −0.975993 0.217801i \(-0.930112\pi\)
0.991626 + 0.129144i \(0.0412228\pi\)
\(992\) −4.32490 + 3.62902i −0.137316 + 0.115221i
\(993\) 40.1537 + 33.6930i 1.27424 + 1.06921i
\(994\) −1.71469 9.72449i −0.0543867 0.308442i
\(995\) −16.3542 28.3264i −0.518465 0.898007i
\(996\) 10.5000 18.1865i 0.332705 0.576262i
\(997\) −15.2500 5.55056i −0.482974 0.175788i 0.0890467 0.996027i \(-0.471618\pi\)
−0.572020 + 0.820239i \(0.693840\pi\)
\(998\) −4.48350 1.63186i −0.141923 0.0516557i
\(999\) −0.468627 + 0.811686i −0.0148267 + 0.0256806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 722.2.e.o.423.1 12
19.2 odd 18 722.2.a.j.1.2 2
19.3 odd 18 38.2.c.b.7.1 4
19.4 even 9 inner 722.2.e.o.99.1 12
19.5 even 9 722.2.c.j.429.2 4
19.6 even 9 inner 722.2.e.o.389.1 12
19.7 even 3 inner 722.2.e.o.245.1 12
19.8 odd 6 722.2.e.n.415.1 12
19.9 even 9 inner 722.2.e.o.595.2 12
19.10 odd 18 722.2.e.n.595.1 12
19.11 even 3 inner 722.2.e.o.415.2 12
19.12 odd 6 722.2.e.n.245.2 12
19.13 odd 18 722.2.e.n.389.2 12
19.14 odd 18 38.2.c.b.11.1 yes 4
19.15 odd 18 722.2.e.n.99.2 12
19.16 even 9 722.2.c.j.653.2 4
19.17 even 9 722.2.a.g.1.1 2
19.18 odd 2 722.2.e.n.423.2 12
57.2 even 18 6498.2.a.ba.1.2 2
57.14 even 18 342.2.g.f.163.1 4
57.17 odd 18 6498.2.a.bg.1.2 2
57.41 even 18 342.2.g.f.235.1 4
76.3 even 18 304.2.i.e.273.2 4
76.55 odd 18 5776.2.a.z.1.2 2
76.59 even 18 5776.2.a.ba.1.1 2
76.71 even 18 304.2.i.e.49.2 4
95.3 even 36 950.2.j.g.349.2 8
95.14 odd 18 950.2.e.k.201.2 4
95.22 even 36 950.2.j.g.349.3 8
95.33 even 36 950.2.j.g.49.3 8
95.52 even 36 950.2.j.g.49.2 8
95.79 odd 18 950.2.e.k.501.2 4
152.3 even 18 1216.2.i.k.577.1 4
152.109 odd 18 1216.2.i.l.961.2 4
152.117 odd 18 1216.2.i.l.577.2 4
152.147 even 18 1216.2.i.k.961.1 4
228.71 odd 18 2736.2.s.v.1873.1 4
228.155 odd 18 2736.2.s.v.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.c.b.7.1 4 19.3 odd 18
38.2.c.b.11.1 yes 4 19.14 odd 18
304.2.i.e.49.2 4 76.71 even 18
304.2.i.e.273.2 4 76.3 even 18
342.2.g.f.163.1 4 57.14 even 18
342.2.g.f.235.1 4 57.41 even 18
722.2.a.g.1.1 2 19.17 even 9
722.2.a.j.1.2 2 19.2 odd 18
722.2.c.j.429.2 4 19.5 even 9
722.2.c.j.653.2 4 19.16 even 9
722.2.e.n.99.2 12 19.15 odd 18
722.2.e.n.245.2 12 19.12 odd 6
722.2.e.n.389.2 12 19.13 odd 18
722.2.e.n.415.1 12 19.8 odd 6
722.2.e.n.423.2 12 19.18 odd 2
722.2.e.n.595.1 12 19.10 odd 18
722.2.e.o.99.1 12 19.4 even 9 inner
722.2.e.o.245.1 12 19.7 even 3 inner
722.2.e.o.389.1 12 19.6 even 9 inner
722.2.e.o.415.2 12 19.11 even 3 inner
722.2.e.o.423.1 12 1.1 even 1 trivial
722.2.e.o.595.2 12 19.9 even 9 inner
950.2.e.k.201.2 4 95.14 odd 18
950.2.e.k.501.2 4 95.79 odd 18
950.2.j.g.49.2 8 95.52 even 36
950.2.j.g.49.3 8 95.33 even 36
950.2.j.g.349.2 8 95.3 even 36
950.2.j.g.349.3 8 95.22 even 36
1216.2.i.k.577.1 4 152.3 even 18
1216.2.i.k.961.1 4 152.147 even 18
1216.2.i.l.577.2 4 152.117 odd 18
1216.2.i.l.961.2 4 152.109 odd 18
2736.2.s.v.577.1 4 228.155 odd 18
2736.2.s.v.1873.1 4 228.71 odd 18
5776.2.a.z.1.2 2 76.55 odd 18
5776.2.a.ba.1.1 2 76.59 even 18
6498.2.a.ba.1.2 2 57.2 even 18
6498.2.a.bg.1.2 2 57.17 odd 18