Properties

Label 722.2.e.d.423.1
Level $722$
Weight $2$
Character 722.423
Analytic conductor $5.765$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $6$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 722.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.76519902594\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 423.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 722.423
Dual form 722.2.e.d.99.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.939693 - 0.342020i) q^{2} +(0.173648 - 0.984808i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-3.06418 - 2.57115i) q^{5} +(-0.173648 - 0.984808i) q^{6} +(-1.50000 - 2.59808i) q^{7} +(0.500000 - 0.866025i) q^{8} +(1.87939 + 0.684040i) q^{9} +O(q^{10})\) \(q+(0.939693 - 0.342020i) q^{2} +(0.173648 - 0.984808i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-3.06418 - 2.57115i) q^{5} +(-0.173648 - 0.984808i) q^{6} +(-1.50000 - 2.59808i) q^{7} +(0.500000 - 0.866025i) q^{8} +(1.87939 + 0.684040i) q^{9} +(-3.75877 - 1.36808i) q^{10} +(-1.00000 + 1.73205i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(0.173648 + 0.984808i) q^{13} +(-2.29813 - 1.92836i) q^{14} +(-3.06418 + 2.57115i) q^{15} +(0.173648 - 0.984808i) q^{16} +(-2.81908 + 1.02606i) q^{17} +2.00000 q^{18} -4.00000 q^{20} +(-2.81908 + 1.02606i) q^{21} +(-0.347296 + 1.96962i) q^{22} +(-0.766044 + 0.642788i) q^{23} +(-0.766044 - 0.642788i) q^{24} +(1.91013 + 10.8329i) q^{25} +(0.500000 + 0.866025i) q^{26} +(2.50000 - 4.33013i) q^{27} +(-2.81908 - 1.02606i) q^{28} +(-4.69846 - 1.71010i) q^{29} +(-2.00000 + 3.46410i) q^{30} +(-4.00000 - 6.92820i) q^{31} +(-0.173648 - 0.984808i) q^{32} +(1.53209 + 1.28558i) q^{33} +(-2.29813 + 1.92836i) q^{34} +(-2.08378 + 11.8177i) q^{35} +(1.87939 - 0.684040i) q^{36} +2.00000 q^{37} +1.00000 q^{39} +(-3.75877 + 1.36808i) q^{40} +(1.38919 - 7.87846i) q^{41} +(-2.29813 + 1.92836i) q^{42} +(3.06418 + 2.57115i) q^{43} +(0.347296 + 1.96962i) q^{44} +(-4.00000 - 6.92820i) q^{45} +(-0.500000 + 0.866025i) q^{46} +(-7.51754 - 2.73616i) q^{47} +(-0.939693 - 0.342020i) q^{48} +(-1.00000 + 1.73205i) q^{49} +(5.50000 + 9.52628i) q^{50} +(0.520945 + 2.95442i) q^{51} +(0.766044 + 0.642788i) q^{52} +(0.766044 - 0.642788i) q^{53} +(0.868241 - 4.92404i) q^{54} +(7.51754 - 2.73616i) q^{55} -3.00000 q^{56} -5.00000 q^{58} +(14.0954 - 5.13030i) q^{59} +(-0.694593 + 3.93923i) q^{60} +(1.53209 - 1.28558i) q^{61} +(-6.12836 - 5.14230i) q^{62} +(-1.04189 - 5.90885i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(2.00000 - 3.46410i) q^{65} +(1.87939 + 0.684040i) q^{66} +(2.81908 + 1.02606i) q^{67} +(-1.50000 + 2.59808i) q^{68} +(0.500000 + 0.866025i) q^{69} +(2.08378 + 11.8177i) q^{70} +(-1.53209 - 1.28558i) q^{71} +(1.53209 - 1.28558i) q^{72} +(1.56283 - 8.86327i) q^{73} +(1.87939 - 0.684040i) q^{74} +11.0000 q^{75} +6.00000 q^{77} +(0.939693 - 0.342020i) q^{78} +(1.73648 - 9.84808i) q^{79} +(-3.06418 + 2.57115i) q^{80} +(0.766044 + 0.642788i) q^{81} +(-1.38919 - 7.87846i) q^{82} +(3.00000 + 5.19615i) q^{83} +(-1.50000 + 2.59808i) q^{84} +(11.2763 + 4.10424i) q^{85} +(3.75877 + 1.36808i) q^{86} +(-2.50000 + 4.33013i) q^{87} +(1.00000 + 1.73205i) q^{88} +(-6.12836 - 5.14230i) q^{90} +(2.29813 - 1.92836i) q^{91} +(-0.173648 + 0.984808i) q^{92} +(-7.51754 + 2.73616i) q^{93} -8.00000 q^{94} -1.00000 q^{96} +(-1.87939 + 0.684040i) q^{97} +(-0.347296 + 1.96962i) q^{98} +(-3.06418 + 2.57115i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 9q^{7} + 3q^{8} + O(q^{10}) \) \( 6q - 9q^{7} + 3q^{8} - 6q^{11} - 3q^{12} + 12q^{18} - 24q^{20} + 3q^{26} + 15q^{27} - 12q^{30} - 24q^{31} + 12q^{37} + 6q^{39} - 24q^{45} - 3q^{46} - 6q^{49} + 33q^{50} - 18q^{56} - 30q^{58} - 3q^{64} + 12q^{65} - 9q^{68} + 3q^{69} + 66q^{75} + 36q^{77} + 18q^{83} - 9q^{84} - 15q^{87} + 6q^{88} - 48q^{94} - 6q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/722\mathbb{Z}\right)^\times\).

\(n\) \(363\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.939693 0.342020i 0.664463 0.241845i
\(3\) 0.173648 0.984808i 0.100256 0.568579i −0.892754 0.450545i \(-0.851230\pi\)
0.993010 0.118034i \(-0.0376592\pi\)
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) −3.06418 2.57115i −1.37034 1.14985i −0.972634 0.232341i \(-0.925361\pi\)
−0.397708 0.917512i \(-0.630194\pi\)
\(6\) −0.173648 0.984808i −0.0708916 0.402046i
\(7\) −1.50000 2.59808i −0.566947 0.981981i −0.996866 0.0791130i \(-0.974791\pi\)
0.429919 0.902867i \(-0.358542\pi\)
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) 1.87939 + 0.684040i 0.626462 + 0.228013i
\(10\) −3.75877 1.36808i −1.18863 0.432625i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 0.173648 + 0.984808i 0.0481613 + 0.273137i 0.999373 0.0354021i \(-0.0112712\pi\)
−0.951212 + 0.308539i \(0.900160\pi\)
\(14\) −2.29813 1.92836i −0.614202 0.515377i
\(15\) −3.06418 + 2.57115i −0.791167 + 0.663868i
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) −2.81908 + 1.02606i −0.683727 + 0.248856i −0.660447 0.750873i \(-0.729633\pi\)
−0.0232799 + 0.999729i \(0.507411\pi\)
\(18\) 2.00000 0.471405
\(19\) 0 0
\(20\) −4.00000 −0.894427
\(21\) −2.81908 + 1.02606i −0.615173 + 0.223905i
\(22\) −0.347296 + 1.96962i −0.0740438 + 0.419923i
\(23\) −0.766044 + 0.642788i −0.159731 + 0.134030i −0.719150 0.694855i \(-0.755469\pi\)
0.559419 + 0.828885i \(0.311024\pi\)
\(24\) −0.766044 0.642788i −0.156368 0.131208i
\(25\) 1.91013 + 10.8329i 0.382026 + 2.16658i
\(26\) 0.500000 + 0.866025i 0.0980581 + 0.169842i
\(27\) 2.50000 4.33013i 0.481125 0.833333i
\(28\) −2.81908 1.02606i −0.532756 0.193907i
\(29\) −4.69846 1.71010i −0.872483 0.317558i −0.133311 0.991074i \(-0.542561\pi\)
−0.739172 + 0.673517i \(0.764783\pi\)
\(30\) −2.00000 + 3.46410i −0.365148 + 0.632456i
\(31\) −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i \(-0.911532\pi\)
0.243204 0.969975i \(-0.421802\pi\)
\(32\) −0.173648 0.984808i −0.0306970 0.174091i
\(33\) 1.53209 + 1.28558i 0.266702 + 0.223790i
\(34\) −2.29813 + 1.92836i −0.394127 + 0.330711i
\(35\) −2.08378 + 11.8177i −0.352223 + 1.99755i
\(36\) 1.87939 0.684040i 0.313231 0.114007i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) −3.75877 + 1.36808i −0.594314 + 0.216313i
\(41\) 1.38919 7.87846i 0.216954 1.23041i −0.660529 0.750801i \(-0.729668\pi\)
0.877483 0.479608i \(-0.159221\pi\)
\(42\) −2.29813 + 1.92836i −0.354610 + 0.297553i
\(43\) 3.06418 + 2.57115i 0.467283 + 0.392097i 0.845802 0.533497i \(-0.179122\pi\)
−0.378520 + 0.925593i \(0.623567\pi\)
\(44\) 0.347296 + 1.96962i 0.0523569 + 0.296931i
\(45\) −4.00000 6.92820i −0.596285 1.03280i
\(46\) −0.500000 + 0.866025i −0.0737210 + 0.127688i
\(47\) −7.51754 2.73616i −1.09655 0.399110i −0.270504 0.962719i \(-0.587190\pi\)
−0.826042 + 0.563609i \(0.809413\pi\)
\(48\) −0.939693 0.342020i −0.135633 0.0493664i
\(49\) −1.00000 + 1.73205i −0.142857 + 0.247436i
\(50\) 5.50000 + 9.52628i 0.777817 + 1.34722i
\(51\) 0.520945 + 2.95442i 0.0729468 + 0.413702i
\(52\) 0.766044 + 0.642788i 0.106231 + 0.0891386i
\(53\) 0.766044 0.642788i 0.105224 0.0882937i −0.588658 0.808382i \(-0.700343\pi\)
0.693882 + 0.720089i \(0.255899\pi\)
\(54\) 0.868241 4.92404i 0.118153 0.670077i
\(55\) 7.51754 2.73616i 1.01367 0.368944i
\(56\) −3.00000 −0.400892
\(57\) 0 0
\(58\) −5.00000 −0.656532
\(59\) 14.0954 5.13030i 1.83506 0.667908i 0.843692 0.536828i \(-0.180378\pi\)
0.991372 0.131080i \(-0.0418446\pi\)
\(60\) −0.694593 + 3.93923i −0.0896715 + 0.508553i
\(61\) 1.53209 1.28558i 0.196164 0.164601i −0.539415 0.842040i \(-0.681355\pi\)
0.735579 + 0.677439i \(0.236910\pi\)
\(62\) −6.12836 5.14230i −0.778302 0.653073i
\(63\) −1.04189 5.90885i −0.131266 0.744445i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 2.00000 3.46410i 0.248069 0.429669i
\(66\) 1.87939 + 0.684040i 0.231336 + 0.0841995i
\(67\) 2.81908 + 1.02606i 0.344405 + 0.125353i 0.508431 0.861103i \(-0.330226\pi\)
−0.164026 + 0.986456i \(0.552448\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 0.500000 + 0.866025i 0.0601929 + 0.104257i
\(70\) 2.08378 + 11.8177i 0.249059 + 1.41248i
\(71\) −1.53209 1.28558i −0.181825 0.152570i 0.547332 0.836915i \(-0.315643\pi\)
−0.729158 + 0.684346i \(0.760088\pi\)
\(72\) 1.53209 1.28558i 0.180558 0.151506i
\(73\) 1.56283 8.86327i 0.182916 1.03737i −0.745688 0.666295i \(-0.767879\pi\)
0.928604 0.371072i \(-0.121010\pi\)
\(74\) 1.87939 0.684040i 0.218474 0.0795181i
\(75\) 11.0000 1.27017
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0.939693 0.342020i 0.106399 0.0387262i
\(79\) 1.73648 9.84808i 0.195369 1.10800i −0.716522 0.697564i \(-0.754267\pi\)
0.911892 0.410431i \(-0.134622\pi\)
\(80\) −3.06418 + 2.57115i −0.342585 + 0.287463i
\(81\) 0.766044 + 0.642788i 0.0851160 + 0.0714208i
\(82\) −1.38919 7.87846i −0.153410 0.870031i
\(83\) 3.00000 + 5.19615i 0.329293 + 0.570352i 0.982372 0.186938i \(-0.0598564\pi\)
−0.653079 + 0.757290i \(0.726523\pi\)
\(84\) −1.50000 + 2.59808i −0.163663 + 0.283473i
\(85\) 11.2763 + 4.10424i 1.22309 + 0.445168i
\(86\) 3.75877 + 1.36808i 0.405319 + 0.147524i
\(87\) −2.50000 + 4.33013i −0.268028 + 0.464238i
\(88\) 1.00000 + 1.73205i 0.106600 + 0.184637i
\(89\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(90\) −6.12836 5.14230i −0.645985 0.542046i
\(91\) 2.29813 1.92836i 0.240910 0.202147i
\(92\) −0.173648 + 0.984808i −0.0181041 + 0.102673i
\(93\) −7.51754 + 2.73616i −0.779533 + 0.283727i
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −1.87939 + 0.684040i −0.190823 + 0.0694538i −0.435664 0.900109i \(-0.643486\pi\)
0.244841 + 0.969563i \(0.421264\pi\)
\(98\) −0.347296 + 1.96962i −0.0350822 + 0.198961i
\(99\) −3.06418 + 2.57115i −0.307961 + 0.258410i
\(100\) 8.42649 + 7.07066i 0.842649 + 0.707066i
\(101\) 0.347296 + 1.96962i 0.0345573 + 0.195984i 0.997199 0.0747944i \(-0.0238300\pi\)
−0.962642 + 0.270778i \(0.912719\pi\)
\(102\) 1.50000 + 2.59808i 0.148522 + 0.257248i
\(103\) −3.00000 + 5.19615i −0.295599 + 0.511992i −0.975124 0.221660i \(-0.928852\pi\)
0.679525 + 0.733652i \(0.262186\pi\)
\(104\) 0.939693 + 0.342020i 0.0921444 + 0.0335378i
\(105\) 11.2763 + 4.10424i 1.10046 + 0.400533i
\(106\) 0.500000 0.866025i 0.0485643 0.0841158i
\(107\) −3.50000 6.06218i −0.338358 0.586053i 0.645766 0.763535i \(-0.276538\pi\)
−0.984124 + 0.177482i \(0.943205\pi\)
\(108\) −0.868241 4.92404i −0.0835465 0.473816i
\(109\) 11.4907 + 9.64181i 1.10061 + 0.923518i 0.997466 0.0711485i \(-0.0226664\pi\)
0.103141 + 0.994667i \(0.467111\pi\)
\(110\) 6.12836 5.14230i 0.584316 0.490299i
\(111\) 0.347296 1.96962i 0.0329639 0.186948i
\(112\) −2.81908 + 1.02606i −0.266378 + 0.0969536i
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −4.69846 + 1.71010i −0.436241 + 0.158779i
\(117\) −0.347296 + 1.96962i −0.0321076 + 0.182091i
\(118\) 11.4907 9.64181i 1.05780 0.887601i
\(119\) 6.89440 + 5.78509i 0.632009 + 0.530318i
\(120\) 0.694593 + 3.93923i 0.0634073 + 0.359601i
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 1.00000 1.73205i 0.0905357 0.156813i
\(123\) −7.51754 2.73616i −0.677834 0.246711i
\(124\) −7.51754 2.73616i −0.675095 0.245715i
\(125\) 12.0000 20.7846i 1.07331 1.85903i
\(126\) −3.00000 5.19615i −0.267261 0.462910i
\(127\) −3.12567 17.7265i −0.277358 1.57298i −0.731370 0.681981i \(-0.761119\pi\)
0.454012 0.890995i \(-0.349992\pi\)
\(128\) −0.766044 0.642788i −0.0677094 0.0568149i
\(129\) 3.06418 2.57115i 0.269786 0.226377i
\(130\) 0.694593 3.93923i 0.0609198 0.345493i
\(131\) −11.2763 + 4.10424i −0.985216 + 0.358589i −0.783866 0.620930i \(-0.786755\pi\)
−0.201350 + 0.979519i \(0.564533\pi\)
\(132\) 2.00000 0.174078
\(133\) 0 0
\(134\) 3.00000 0.259161
\(135\) −18.7939 + 6.84040i −1.61752 + 0.588728i
\(136\) −0.520945 + 2.95442i −0.0446706 + 0.253340i
\(137\) −13.0228 + 10.9274i −1.11261 + 0.933590i −0.998208 0.0598447i \(-0.980939\pi\)
−0.114401 + 0.993435i \(0.536495\pi\)
\(138\) 0.766044 + 0.642788i 0.0652100 + 0.0547177i
\(139\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(140\) 6.00000 + 10.3923i 0.507093 + 0.878310i
\(141\) −4.00000 + 6.92820i −0.336861 + 0.583460i
\(142\) −1.87939 0.684040i −0.157715 0.0574034i
\(143\) −1.87939 0.684040i −0.157162 0.0572023i
\(144\) 1.00000 1.73205i 0.0833333 0.144338i
\(145\) 10.0000 + 17.3205i 0.830455 + 1.43839i
\(146\) −1.56283 8.86327i −0.129341 0.733529i
\(147\) 1.53209 + 1.28558i 0.126365 + 0.106032i
\(148\) 1.53209 1.28558i 0.125937 0.105674i
\(149\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(150\) 10.3366 3.76222i 0.843981 0.307184i
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 5.63816 2.05212i 0.454336 0.165365i
\(155\) −5.55674 + 31.5138i −0.446328 + 2.53125i
\(156\) 0.766044 0.642788i 0.0613326 0.0514642i
\(157\) −1.53209 1.28558i −0.122274 0.102600i 0.579600 0.814901i \(-0.303209\pi\)
−0.701874 + 0.712301i \(0.747653\pi\)
\(158\) −1.73648 9.84808i −0.138147 0.783471i
\(159\) −0.500000 0.866025i −0.0396526 0.0686803i
\(160\) −2.00000 + 3.46410i −0.158114 + 0.273861i
\(161\) 2.81908 + 1.02606i 0.222174 + 0.0808649i
\(162\) 0.939693 + 0.342020i 0.0738292 + 0.0268716i
\(163\) 8.00000 13.8564i 0.626608 1.08532i −0.361619 0.932326i \(-0.617776\pi\)
0.988227 0.152992i \(-0.0488907\pi\)
\(164\) −4.00000 6.92820i −0.312348 0.541002i
\(165\) −1.38919 7.87846i −0.108148 0.613337i
\(166\) 4.59627 + 3.85673i 0.356739 + 0.299340i
\(167\) 9.19253 7.71345i 0.711340 0.596885i −0.213635 0.976914i \(-0.568530\pi\)
0.924975 + 0.380029i \(0.124086\pi\)
\(168\) −0.520945 + 2.95442i −0.0401917 + 0.227939i
\(169\) 11.2763 4.10424i 0.867409 0.315711i
\(170\) 12.0000 0.920358
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) −5.63816 + 2.05212i −0.428661 + 0.156020i −0.547335 0.836913i \(-0.684358\pi\)
0.118674 + 0.992933i \(0.462136\pi\)
\(174\) −0.868241 + 4.92404i −0.0658212 + 0.373290i
\(175\) 25.2795 21.2120i 1.91095 1.60348i
\(176\) 1.53209 + 1.28558i 0.115486 + 0.0969039i
\(177\) −2.60472 14.7721i −0.195783 1.11034i
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) −7.51754 2.73616i −0.560324 0.203941i
\(181\) 20.6732 + 7.52444i 1.53663 + 0.559287i 0.965234 0.261387i \(-0.0841800\pi\)
0.571396 + 0.820675i \(0.306402\pi\)
\(182\) 1.50000 2.59808i 0.111187 0.192582i
\(183\) −1.00000 1.73205i −0.0739221 0.128037i
\(184\) 0.173648 + 0.984808i 0.0128015 + 0.0726010i
\(185\) −6.12836 5.14230i −0.450566 0.378069i
\(186\) −6.12836 + 5.14230i −0.449353 + 0.377052i
\(187\) 1.04189 5.90885i 0.0761905 0.432098i
\(188\) −7.51754 + 2.73616i −0.548273 + 0.199555i
\(189\) −15.0000 −1.09109
\(190\) 0 0
\(191\) 7.00000 0.506502 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(192\) −0.939693 + 0.342020i −0.0678165 + 0.0246832i
\(193\) 1.04189 5.90885i 0.0749968 0.425328i −0.924073 0.382215i \(-0.875161\pi\)
0.999070 0.0431130i \(-0.0137275\pi\)
\(194\) −1.53209 + 1.28558i −0.109998 + 0.0922989i
\(195\) −3.06418 2.57115i −0.219430 0.184124i
\(196\) 0.347296 + 1.96962i 0.0248069 + 0.140687i
\(197\) −4.00000 6.92820i −0.284988 0.493614i 0.687618 0.726073i \(-0.258656\pi\)
−0.972606 + 0.232458i \(0.925323\pi\)
\(198\) −2.00000 + 3.46410i −0.142134 + 0.246183i
\(199\) 23.4923 + 8.55050i 1.66533 + 0.606129i 0.991186 0.132475i \(-0.0422923\pi\)
0.674140 + 0.738604i \(0.264515\pi\)
\(200\) 10.3366 + 3.76222i 0.730909 + 0.266029i
\(201\) 1.50000 2.59808i 0.105802 0.183254i
\(202\) 1.00000 + 1.73205i 0.0703598 + 0.121867i
\(203\) 2.60472 + 14.7721i 0.182816 + 1.03680i
\(204\) 2.29813 + 1.92836i 0.160902 + 0.135012i
\(205\) −24.5134 + 20.5692i −1.71209 + 1.43662i
\(206\) −1.04189 + 5.90885i −0.0725919 + 0.411689i
\(207\) −1.87939 + 0.684040i −0.130626 + 0.0475441i
\(208\) 1.00000 0.0693375
\(209\) 0 0
\(210\) 12.0000 0.828079
\(211\) 25.3717 9.23454i 1.74666 0.635732i 0.747081 0.664734i \(-0.231455\pi\)
0.999579 + 0.0290013i \(0.00923270\pi\)
\(212\) 0.173648 0.984808i 0.0119262 0.0676369i
\(213\) −1.53209 + 1.28558i −0.104977 + 0.0880862i
\(214\) −5.36231 4.49951i −0.366560 0.307580i
\(215\) −2.77837 15.7569i −0.189483 1.07461i
\(216\) −2.50000 4.33013i −0.170103 0.294628i
\(217\) −12.0000 + 20.7846i −0.814613 + 1.41095i
\(218\) 14.0954 + 5.13030i 0.954660 + 0.347468i
\(219\) −8.45723 3.07818i −0.571487 0.208004i
\(220\) 4.00000 6.92820i 0.269680 0.467099i
\(221\) −1.50000 2.59808i −0.100901 0.174766i
\(222\) −0.347296 1.96962i −0.0233090 0.132192i
\(223\) −10.7246 8.99903i −0.718174 0.602619i 0.208706 0.977979i \(-0.433075\pi\)
−0.926879 + 0.375359i \(0.877519\pi\)
\(224\) −2.29813 + 1.92836i −0.153550 + 0.128844i
\(225\) −3.82026 + 21.6658i −0.254684 + 1.44438i
\(226\) −13.1557 + 4.78828i −0.875104 + 0.318512i
\(227\) 17.0000 1.12833 0.564165 0.825662i \(-0.309198\pi\)
0.564165 + 0.825662i \(0.309198\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 3.75877 1.36808i 0.247846 0.0902086i
\(231\) 1.04189 5.90885i 0.0685513 0.388774i
\(232\) −3.83022 + 3.21394i −0.251466 + 0.211005i
\(233\) −4.59627 3.85673i −0.301111 0.252662i 0.479695 0.877435i \(-0.340747\pi\)
−0.780807 + 0.624773i \(0.785192\pi\)
\(234\) 0.347296 + 1.96962i 0.0227035 + 0.128758i
\(235\) 16.0000 + 27.7128i 1.04372 + 1.80778i
\(236\) 7.50000 12.9904i 0.488208 0.845602i
\(237\) −9.39693 3.42020i −0.610396 0.222166i
\(238\) 8.45723 + 3.07818i 0.548201 + 0.199529i
\(239\) −7.50000 + 12.9904i −0.485135 + 0.840278i −0.999854 0.0170808i \(-0.994563\pi\)
0.514719 + 0.857359i \(0.327896\pi\)
\(240\) 2.00000 + 3.46410i 0.129099 + 0.223607i
\(241\) 1.38919 + 7.87846i 0.0894853 + 0.507496i 0.996298 + 0.0859632i \(0.0273968\pi\)
−0.906813 + 0.421533i \(0.861492\pi\)
\(242\) 5.36231 + 4.49951i 0.344702 + 0.289240i
\(243\) 12.2567 10.2846i 0.786268 0.659758i
\(244\) 0.347296 1.96962i 0.0222334 0.126092i
\(245\) 7.51754 2.73616i 0.480278 0.174807i
\(246\) −8.00000 −0.510061
\(247\) 0 0
\(248\) −8.00000 −0.508001
\(249\) 5.63816 2.05212i 0.357304 0.130048i
\(250\) 4.16756 23.6354i 0.263579 1.49483i
\(251\) 1.53209 1.28558i 0.0967046 0.0811448i −0.593154 0.805089i \(-0.702117\pi\)
0.689858 + 0.723945i \(0.257673\pi\)
\(252\) −4.59627 3.85673i −0.289538 0.242951i
\(253\) −0.347296 1.96962i −0.0218343 0.123829i
\(254\) −9.00000 15.5885i −0.564710 0.978107i
\(255\) 6.00000 10.3923i 0.375735 0.650791i
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) 7.51754 + 2.73616i 0.468931 + 0.170677i 0.565668 0.824633i \(-0.308618\pi\)
−0.0967369 + 0.995310i \(0.530841\pi\)
\(258\) 2.00000 3.46410i 0.124515 0.215666i
\(259\) −3.00000 5.19615i −0.186411 0.322873i
\(260\) −0.694593 3.93923i −0.0430768 0.244301i
\(261\) −7.66044 6.42788i −0.474170 0.397876i
\(262\) −9.19253 + 7.71345i −0.567917 + 0.476539i
\(263\) 4.16756 23.6354i 0.256983 1.45742i −0.533950 0.845516i \(-0.679293\pi\)
0.790932 0.611904i \(-0.209596\pi\)
\(264\) 1.87939 0.684040i 0.115668 0.0420998i
\(265\) −4.00000 −0.245718
\(266\) 0 0
\(267\) 0 0
\(268\) 2.81908 1.02606i 0.172203 0.0626766i
\(269\) −5.20945 + 29.5442i −0.317625 + 1.80134i 0.239479 + 0.970901i \(0.423023\pi\)
−0.557105 + 0.830442i \(0.688088\pi\)
\(270\) −15.3209 + 12.8558i −0.932400 + 0.782376i
\(271\) 5.36231 + 4.49951i 0.325737 + 0.273326i 0.790960 0.611868i \(-0.209581\pi\)
−0.465223 + 0.885193i \(0.654026\pi\)
\(272\) 0.520945 + 2.95442i 0.0315869 + 0.179138i
\(273\) −1.50000 2.59808i −0.0907841 0.157243i
\(274\) −8.50000 + 14.7224i −0.513504 + 0.889415i
\(275\) −20.6732 7.52444i −1.24664 0.453741i
\(276\) 0.939693 + 0.342020i 0.0565628 + 0.0205872i
\(277\) −14.0000 + 24.2487i −0.841178 + 1.45696i 0.0477206 + 0.998861i \(0.484804\pi\)
−0.888899 + 0.458103i \(0.848529\pi\)
\(278\) 0 0
\(279\) −2.77837 15.7569i −0.166337 0.943342i
\(280\) 9.19253 + 7.71345i 0.549359 + 0.460967i
\(281\) 6.12836 5.14230i 0.365587 0.306764i −0.441426 0.897298i \(-0.645527\pi\)
0.807013 + 0.590534i \(0.201083\pi\)
\(282\) −1.38919 + 7.87846i −0.0827248 + 0.469156i
\(283\) 5.63816 2.05212i 0.335154 0.121986i −0.168961 0.985623i \(-0.554041\pi\)
0.504115 + 0.863637i \(0.331819\pi\)
\(284\) −2.00000 −0.118678
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) −22.5526 + 8.20848i −1.33124 + 0.484531i
\(288\) 0.347296 1.96962i 0.0204646 0.116061i
\(289\) −6.12836 + 5.14230i −0.360492 + 0.302488i
\(290\) 15.3209 + 12.8558i 0.899674 + 0.754916i
\(291\) 0.347296 + 1.96962i 0.0203589 + 0.115461i
\(292\) −4.50000 7.79423i −0.263343 0.456123i
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) 1.87939 + 0.684040i 0.109608 + 0.0398940i
\(295\) −56.3816 20.5212i −3.28266 1.19479i
\(296\) 1.00000 1.73205i 0.0581238 0.100673i
\(297\) 5.00000 + 8.66025i 0.290129 + 0.502519i
\(298\) 0 0
\(299\) −0.766044 0.642788i −0.0443015 0.0371734i
\(300\) 8.42649 7.07066i 0.486504 0.408225i
\(301\) 2.08378 11.8177i 0.120107 0.681161i
\(302\) −1.87939 + 0.684040i −0.108146 + 0.0393621i
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) −5.63816 + 2.05212i −0.322312 + 0.117312i
\(307\) 2.08378 11.8177i 0.118927 0.674471i −0.865803 0.500385i \(-0.833192\pi\)
0.984730 0.174086i \(-0.0556971\pi\)
\(308\) 4.59627 3.85673i 0.261897 0.219757i
\(309\) 4.59627 + 3.85673i 0.261472 + 0.219401i
\(310\) 5.55674 + 31.5138i 0.315602 + 1.78987i
\(311\) −3.50000 6.06218i −0.198467 0.343755i 0.749565 0.661931i \(-0.230263\pi\)
−0.948031 + 0.318177i \(0.896930\pi\)
\(312\) 0.500000 0.866025i 0.0283069 0.0490290i
\(313\) −27.2511 9.91858i −1.54032 0.560632i −0.574200 0.818715i \(-0.694687\pi\)
−0.966123 + 0.258084i \(0.916909\pi\)
\(314\) −1.87939 0.684040i −0.106060 0.0386026i
\(315\) −12.0000 + 20.7846i −0.676123 + 1.17108i
\(316\) −5.00000 8.66025i −0.281272 0.487177i
\(317\) 4.68850 + 26.5898i 0.263332 + 1.49343i 0.773742 + 0.633501i \(0.218383\pi\)
−0.510409 + 0.859932i \(0.670506\pi\)
\(318\) −0.766044 0.642788i −0.0429576 0.0360457i
\(319\) 7.66044 6.42788i 0.428903 0.359892i
\(320\) −0.694593 + 3.93923i −0.0388289 + 0.220210i
\(321\) −6.57785 + 2.39414i −0.367140 + 0.133628i
\(322\) 3.00000 0.167183
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −10.3366 + 3.76222i −0.573372 + 0.208691i
\(326\) 2.77837 15.7569i 0.153880 0.872695i
\(327\) 11.4907 9.64181i 0.635435 0.533194i
\(328\) −6.12836 5.14230i −0.338382 0.283936i
\(329\) 4.16756 + 23.6354i 0.229765 + 1.30306i
\(330\) −4.00000 6.92820i −0.220193 0.381385i
\(331\) 8.50000 14.7224i 0.467202 0.809218i −0.532096 0.846684i \(-0.678595\pi\)
0.999298 + 0.0374662i \(0.0119287\pi\)
\(332\) 5.63816 + 2.05212i 0.309434 + 0.112625i
\(333\) 3.75877 + 1.36808i 0.205979 + 0.0749704i
\(334\) 6.00000 10.3923i 0.328305 0.568642i
\(335\) −6.00000 10.3923i −0.327815 0.567792i
\(336\) 0.520945 + 2.95442i 0.0284199 + 0.161177i
\(337\) 24.5134 + 20.5692i 1.33533 + 1.12048i 0.982799 + 0.184676i \(0.0591236\pi\)
0.352532 + 0.935800i \(0.385321\pi\)
\(338\) 9.19253 7.71345i 0.500008 0.419556i
\(339\) −2.43107 + 13.7873i −0.132038 + 0.748824i
\(340\) 11.2763 4.10424i 0.611544 0.222584i
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 3.75877 1.36808i 0.202659 0.0737620i
\(345\) 0.694593 3.93923i 0.0373956 0.212081i
\(346\) −4.59627 + 3.85673i −0.247097 + 0.207339i
\(347\) −1.53209 1.28558i −0.0822468 0.0690133i 0.600737 0.799446i \(-0.294874\pi\)
−0.682984 + 0.730433i \(0.739318\pi\)
\(348\) 0.868241 + 4.92404i 0.0465426 + 0.263956i
\(349\) −5.00000 8.66025i −0.267644 0.463573i 0.700609 0.713545i \(-0.252912\pi\)
−0.968253 + 0.249973i \(0.919578\pi\)
\(350\) 16.5000 28.5788i 0.881962 1.52760i
\(351\) 4.69846 + 1.71010i 0.250785 + 0.0912784i
\(352\) 1.87939 + 0.684040i 0.100172 + 0.0364595i
\(353\) −4.50000 + 7.79423i −0.239511 + 0.414845i −0.960574 0.278024i \(-0.910320\pi\)
0.721063 + 0.692869i \(0.243654\pi\)
\(354\) −7.50000 12.9904i −0.398621 0.690431i
\(355\) 1.38919 + 7.87846i 0.0737303 + 0.418145i
\(356\) 0 0
\(357\) 6.89440 5.78509i 0.364890 0.306179i
\(358\) 0 0
\(359\) 14.0954 5.13030i 0.743926 0.270767i 0.0578786 0.998324i \(-0.481566\pi\)
0.686048 + 0.727557i \(0.259344\pi\)
\(360\) −8.00000 −0.421637
\(361\) 0 0
\(362\) 22.0000 1.15629
\(363\) 6.57785 2.39414i 0.345248 0.125660i
\(364\) 0.520945 2.95442i 0.0273049 0.154854i
\(365\) −27.5776 + 23.1404i −1.44348 + 1.21122i
\(366\) −1.53209 1.28558i −0.0800836 0.0671981i
\(367\) 4.86215 + 27.5746i 0.253802 + 1.43938i 0.799129 + 0.601160i \(0.205294\pi\)
−0.545327 + 0.838224i \(0.683594\pi\)
\(368\) 0.500000 + 0.866025i 0.0260643 + 0.0451447i
\(369\) 8.00000 13.8564i 0.416463 0.721336i
\(370\) −7.51754 2.73616i −0.390818 0.142246i
\(371\) −2.81908 1.02606i −0.146359 0.0532704i
\(372\) −4.00000 + 6.92820i −0.207390 + 0.359211i
\(373\) 14.5000 + 25.1147i 0.750782 + 1.30039i 0.947444 + 0.319921i \(0.103656\pi\)
−0.196663 + 0.980471i \(0.563010\pi\)
\(374\) −1.04189 5.90885i −0.0538748 0.305539i
\(375\) −18.3851 15.4269i −0.949401 0.796642i
\(376\) −6.12836 + 5.14230i −0.316046 + 0.265194i
\(377\) 0.868241 4.92404i 0.0447167 0.253601i
\(378\) −14.0954 + 5.13030i −0.724989 + 0.263874i
\(379\) −15.0000 −0.770498 −0.385249 0.922813i \(-0.625884\pi\)
−0.385249 + 0.922813i \(0.625884\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.922168
\(382\) 6.57785 2.39414i 0.336552 0.122495i
\(383\) 4.51485 25.6050i 0.230698 1.30835i −0.620788 0.783978i \(-0.713187\pi\)
0.851487 0.524376i \(-0.175701\pi\)
\(384\) −0.766044 + 0.642788i −0.0390920 + 0.0328021i
\(385\) −18.3851 15.4269i −0.936990 0.786228i
\(386\) −1.04189 5.90885i −0.0530308 0.300752i
\(387\) 4.00000 + 6.92820i 0.203331 + 0.352180i
\(388\) −1.00000 + 1.73205i −0.0507673 + 0.0879316i
\(389\) 28.1908 + 10.2606i 1.42933 + 0.520233i 0.936739 0.350028i \(-0.113828\pi\)
0.492590 + 0.870261i \(0.336050\pi\)
\(390\) −3.75877 1.36808i −0.190333 0.0692755i
\(391\) 1.50000 2.59808i 0.0758583 0.131390i
\(392\) 1.00000 + 1.73205i 0.0505076 + 0.0874818i
\(393\) 2.08378 + 11.8177i 0.105113 + 0.596124i
\(394\) −6.12836 5.14230i −0.308742 0.259065i
\(395\) −30.6418 + 25.7115i −1.54176 + 1.29369i
\(396\) −0.694593 + 3.93923i −0.0349046 + 0.197954i
\(397\) −7.51754 + 2.73616i −0.377295 + 0.137324i −0.523704 0.851900i \(-0.675450\pi\)
0.146410 + 0.989224i \(0.453228\pi\)
\(398\) 25.0000 1.25314
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −7.51754 + 2.73616i −0.375408 + 0.136637i −0.522831 0.852436i \(-0.675124\pi\)
0.147423 + 0.989073i \(0.452902\pi\)
\(402\) 0.520945 2.95442i 0.0259824 0.147353i
\(403\) 6.12836 5.14230i 0.305275 0.256156i
\(404\) 1.53209 + 1.28558i 0.0762243 + 0.0639598i
\(405\) −0.694593 3.93923i −0.0345146 0.195742i
\(406\) 7.50000 + 12.9904i 0.372219 + 0.644702i
\(407\) −2.00000 + 3.46410i −0.0991363 + 0.171709i
\(408\) 2.81908 + 1.02606i 0.139565 + 0.0507976i
\(409\) −18.7939 6.84040i −0.929296 0.338236i −0.167366 0.985895i \(-0.553526\pi\)
−0.761931 + 0.647659i \(0.775748\pi\)
\(410\) −16.0000 + 27.7128i −0.790184 + 1.36864i
\(411\) 8.50000 + 14.7224i 0.419274 + 0.726204i
\(412\) 1.04189 + 5.90885i 0.0513302 + 0.291108i
\(413\) −34.4720 28.9254i −1.69626 1.42333i
\(414\) −1.53209 + 1.28558i −0.0752981 + 0.0631826i
\(415\) 4.16756 23.6354i 0.204577 1.16022i
\(416\) 0.939693 0.342020i 0.0460722 0.0167689i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 11.2763 4.10424i 0.550228 0.200266i
\(421\) 2.25743 12.8025i 0.110020 0.623956i −0.879076 0.476682i \(-0.841839\pi\)
0.989096 0.147273i \(-0.0470497\pi\)
\(422\) 20.6832 17.3553i 1.00684 0.844841i
\(423\) −12.2567 10.2846i −0.595942 0.500054i
\(424\) −0.173648 0.984808i −0.00843310 0.0478265i
\(425\) −16.5000 28.5788i −0.800368 1.38628i
\(426\) −1.00000 + 1.73205i −0.0484502 + 0.0839181i
\(427\) −5.63816 2.05212i −0.272849 0.0993091i
\(428\) −6.57785 2.39414i −0.317952 0.115725i
\(429\) −1.00000 + 1.73205i −0.0482805 + 0.0836242i
\(430\) −8.00000 13.8564i −0.385794 0.668215i
\(431\) 3.12567 + 17.7265i 0.150558 + 0.853857i 0.962735 + 0.270446i \(0.0871712\pi\)
−0.812177 + 0.583411i \(0.801718\pi\)
\(432\) −3.83022 3.21394i −0.184282 0.154631i
\(433\) −10.7246 + 8.99903i −0.515392 + 0.432466i −0.863022 0.505166i \(-0.831431\pi\)
0.347630 + 0.937632i \(0.386987\pi\)
\(434\) −4.16756 + 23.6354i −0.200049 + 1.13453i
\(435\) 18.7939 6.84040i 0.901096 0.327972i
\(436\) 15.0000 0.718370
\(437\) 0 0
\(438\) −9.00000 −0.430037
\(439\) 18.7939 6.84040i 0.896982 0.326475i 0.147939 0.988996i \(-0.452736\pi\)
0.749043 + 0.662522i \(0.230514\pi\)
\(440\) 1.38919 7.87846i 0.0662268 0.375591i
\(441\) −3.06418 + 2.57115i −0.145913 + 0.122436i
\(442\) −2.29813 1.92836i −0.109311 0.0917229i
\(443\) −4.51485 25.6050i −0.214507 1.21653i −0.881760 0.471699i \(-0.843641\pi\)
0.667253 0.744832i \(-0.267470\pi\)
\(444\) −1.00000 1.73205i −0.0474579 0.0821995i
\(445\) 0 0
\(446\) −13.1557 4.78828i −0.622940 0.226732i
\(447\) 0 0
\(448\) −1.50000 + 2.59808i −0.0708683 + 0.122748i
\(449\) 5.00000 + 8.66025i 0.235965 + 0.408703i 0.959553 0.281529i \(-0.0908417\pi\)
−0.723588 + 0.690232i \(0.757508\pi\)
\(450\) 3.82026 + 21.6658i 0.180089 + 1.02133i
\(451\) 12.2567 + 10.2846i 0.577146 + 0.484283i
\(452\) −10.7246 + 8.99903i −0.504444 + 0.423279i
\(453\) −0.347296 + 1.96962i −0.0163174 + 0.0925406i
\(454\) 15.9748 5.81434i 0.749733 0.272881i
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −7.00000 −0.327446 −0.163723 0.986506i \(-0.552350\pi\)
−0.163723 + 0.986506i \(0.552350\pi\)
\(458\) −9.39693 + 3.42020i −0.439090 + 0.159816i
\(459\) −2.60472 + 14.7721i −0.121578 + 0.689503i
\(460\) 3.06418 2.57115i 0.142868 0.119881i
\(461\) −21.4492 17.9981i −0.998991 0.838253i −0.0121466 0.999926i \(-0.503866\pi\)
−0.986844 + 0.161673i \(0.948311\pi\)
\(462\) −1.04189 5.90885i −0.0484731 0.274904i
\(463\) −2.00000 3.46410i −0.0929479 0.160990i 0.815802 0.578331i \(-0.196296\pi\)
−0.908750 + 0.417340i \(0.862962\pi\)
\(464\) −2.50000 + 4.33013i −0.116060 + 0.201021i
\(465\) 30.0702 + 10.9446i 1.39447 + 0.507546i
\(466\) −5.63816 2.05212i −0.261183 0.0950627i
\(467\) 1.00000 1.73205i 0.0462745 0.0801498i −0.841960 0.539539i \(-0.818598\pi\)
0.888235 + 0.459390i \(0.151932\pi\)
\(468\) 1.00000 + 1.73205i 0.0462250 + 0.0800641i
\(469\) −1.56283 8.86327i −0.0721650 0.409268i
\(470\) 24.5134 + 20.5692i 1.13072 + 0.948787i
\(471\) −1.53209 + 1.28558i −0.0705949 + 0.0592362i
\(472\) 2.60472 14.7721i 0.119892 0.679942i
\(473\) −7.51754 + 2.73616i −0.345657 + 0.125809i
\(474\) −10.0000 −0.459315
\(475\) 0 0
\(476\) 9.00000 0.412514
\(477\) 1.87939 0.684040i 0.0860511 0.0313201i
\(478\) −2.60472 + 14.7721i −0.119137 + 0.675661i
\(479\) −15.3209 + 12.8558i −0.700029 + 0.587394i −0.921782 0.387709i \(-0.873267\pi\)
0.221753 + 0.975103i \(0.428822\pi\)
\(480\) 3.06418 + 2.57115i 0.139860 + 0.117356i
\(481\) 0.347296 + 1.96962i 0.0158354 + 0.0898067i
\(482\) 4.00000 + 6.92820i 0.182195 + 0.315571i
\(483\) 1.50000 2.59808i 0.0682524 0.118217i
\(484\) 6.57785 + 2.39414i 0.298993 + 0.108825i
\(485\) 7.51754 + 2.73616i 0.341354 + 0.124243i
\(486\) 8.00000 13.8564i 0.362887 0.628539i
\(487\) −1.00000 1.73205i −0.0453143 0.0784867i 0.842479 0.538730i \(-0.181096\pi\)
−0.887793 + 0.460243i \(0.847762\pi\)
\(488\) −0.347296 1.96962i −0.0157214 0.0891603i
\(489\) −12.2567 10.2846i −0.554268 0.465086i
\(490\) 6.12836 5.14230i 0.276851 0.232305i
\(491\) −4.86215 + 27.5746i −0.219426 + 1.24443i 0.653634 + 0.756811i \(0.273244\pi\)
−0.873059 + 0.487614i \(0.837867\pi\)
\(492\) −7.51754 + 2.73616i −0.338917 + 0.123356i
\(493\) 15.0000 0.675566
\(494\) 0 0
\(495\) 16.0000 0.719147
\(496\) −7.51754 + 2.73616i −0.337548 + 0.122857i
\(497\) −1.04189 + 5.90885i −0.0467351 + 0.265048i
\(498\) 4.59627 3.85673i 0.205964 0.172824i
\(499\) 30.6418 + 25.7115i 1.37171 + 1.15101i 0.972166 + 0.234293i \(0.0752775\pi\)
0.399548 + 0.916712i \(0.369167\pi\)
\(500\) −4.16756 23.6354i −0.186379 1.05701i
\(501\) −6.00000 10.3923i −0.268060 0.464294i
\(502\) 1.00000 1.73205i 0.0446322 0.0773052i
\(503\) −36.6480 13.3388i −1.63405 0.594747i −0.648069 0.761581i \(-0.724423\pi\)
−0.985985 + 0.166834i \(0.946645\pi\)
\(504\) −5.63816 2.05212i −0.251143 0.0914087i
\(505\) 4.00000 6.92820i 0.177998 0.308301i
\(506\) −1.00000 1.73205i −0.0444554 0.0769991i
\(507\) −2.08378 11.8177i −0.0925438 0.524842i
\(508\) −13.7888 11.5702i −0.611779 0.513344i
\(509\) 22.9813 19.2836i 1.01863 0.854732i 0.0291750 0.999574i \(-0.490712\pi\)
0.989455 + 0.144843i \(0.0462676\pi\)
\(510\) 2.08378 11.8177i 0.0922712 0.523296i
\(511\) −25.3717 + 9.23454i −1.12238 + 0.408512i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) 22.5526 8.20848i 0.993787 0.361709i
\(516\) 0.694593 3.93923i 0.0305777 0.173415i
\(517\) 12.2567 10.2846i 0.539050 0.452316i
\(518\) −4.59627 3.85673i −0.201948 0.169455i
\(519\) 1.04189 + 5.90885i 0.0457339 + 0.259370i
\(520\) −2.00000 3.46410i −0.0877058 0.151911i
\(521\) −14.0000 + 24.2487i −0.613351 + 1.06236i 0.377320 + 0.926083i \(0.376846\pi\)
−0.990671 + 0.136272i \(0.956488\pi\)
\(522\) −9.39693 3.42020i −0.411292 0.149698i
\(523\) 27.2511 + 9.91858i 1.19161 + 0.433709i 0.860287 0.509809i \(-0.170284\pi\)
0.331319 + 0.943519i \(0.392506\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) −16.5000 28.5788i −0.720119 1.24728i
\(526\) −4.16756 23.6354i −0.181714 1.03055i
\(527\) 18.3851 + 15.4269i 0.800866 + 0.672006i
\(528\) 1.53209 1.28558i 0.0666756 0.0559475i
\(529\) −3.82026 + 21.6658i −0.166098 + 0.941990i
\(530\) −3.75877 + 1.36808i −0.163271 + 0.0594256i
\(531\) 30.0000 1.30189
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) −4.86215 + 27.5746i −0.210209 + 1.19215i
\(536\) 2.29813 1.92836i 0.0992642 0.0832926i
\(537\) 0 0
\(538\) 5.20945 + 29.5442i 0.224595 + 1.27374i
\(539\) −2.00000 3.46410i −0.0861461 0.149209i
\(540\) −10.0000 + 17.3205i −0.430331 + 0.745356i
\(541\) −1.87939 0.684040i −0.0808011 0.0294092i 0.301303 0.953528i \(-0.402578\pi\)
−0.382104 + 0.924119i \(0.624801\pi\)
\(542\) 6.57785 + 2.39414i 0.282543 + 0.102837i
\(543\) 11.0000 19.0526i 0.472055 0.817624i
\(544\) 1.50000 + 2.59808i 0.0643120 + 0.111392i
\(545\) −10.4189 59.0885i −0.446296 2.53107i
\(546\) −2.29813 1.92836i −0.0983510 0.0825263i
\(547\) −21.4492 + 17.9981i −0.917103 + 0.769541i −0.973457 0.228870i \(-0.926497\pi\)
0.0563536 + 0.998411i \(0.482053\pi\)
\(548\) −2.95202 + 16.7417i −0.126104 + 0.715171i
\(549\) 3.75877 1.36808i 0.160420 0.0583883i
\(550\) −22.0000 −0.938083
\(551\) 0 0
\(552\) 1.00000 0.0425628
\(553\) −28.1908 + 10.2606i −1.19879 + 0.436325i
\(554\) −4.86215 + 27.5746i −0.206573 + 1.17153i
\(555\) −6.12836 + 5.14230i −0.260134 + 0.218279i
\(556\) 0 0
\(557\) 4.86215 + 27.5746i 0.206016 + 1.16837i 0.895833 + 0.444391i \(0.146580\pi\)
−0.689817 + 0.723983i \(0.742309\pi\)
\(558\) −8.00000 13.8564i −0.338667 0.586588i
\(559\) −2.00000 + 3.46410i −0.0845910 + 0.146516i
\(560\) 11.2763 + 4.10424i 0.476511 + 0.173436i
\(561\) −5.63816 2.05212i −0.238043 0.0866406i
\(562\) 4.00000 6.92820i 0.168730 0.292249i
\(563\) −18.0000 31.1769i −0.758610 1.31395i −0.943560 0.331202i \(-0.892546\pi\)
0.184950 0.982748i \(-0.440788\pi\)
\(564\) 1.38919 + 7.87846i 0.0584953 + 0.331743i
\(565\) 42.8985 + 35.9961i 1.80475 + 1.51437i
\(566\) 4.59627 3.85673i 0.193195 0.162110i
\(567\) 0.520945 2.95442i 0.0218776 0.124074i
\(568\) −1.87939 + 0.684040i −0.0788573 + 0.0287017i
\(569\) −40.0000 −1.67689 −0.838444 0.544988i \(-0.816534\pi\)
−0.838444 + 0.544988i \(0.816534\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) −1.87939 + 0.684040i −0.0785810 + 0.0286012i
\(573\) 1.21554 6.89365i 0.0507798 0.287987i
\(574\) −18.3851 + 15.4269i −0.767378 + 0.643906i
\(575\) −8.42649 7.07066i −0.351409 0.294867i
\(576\) −0.347296 1.96962i −0.0144707 0.0820673i
\(577\) 18.5000 + 32.0429i 0.770165 + 1.33397i 0.937472 + 0.348060i \(0.113160\pi\)
−0.167307 + 0.985905i \(0.553507\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) −5.63816 2.05212i −0.234314 0.0852832i
\(580\) 18.7939 + 6.84040i 0.780372 + 0.284032i
\(581\) 9.00000 15.5885i 0.373383 0.646718i
\(582\) 1.00000 + 1.73205i 0.0414513 + 0.0717958i
\(583\) 0.347296 + 1.96962i 0.0143835 + 0.0815731i
\(584\) −6.89440 5.78509i −0.285292 0.239389i
\(585\) 6.12836 5.14230i 0.253376 0.212608i
\(586\) 1.56283 8.86327i 0.0645601 0.366138i
\(587\) 11.2763 4.10424i 0.465423 0.169400i −0.0986548 0.995122i \(-0.531454\pi\)
0.564078 + 0.825722i \(0.309232\pi\)
\(588\) 2.00000 0.0824786
\(589\) 0 0
\(590\) −60.0000 −2.47016
\(591\) −7.51754 + 2.73616i −0.309230 + 0.112551i
\(592\) 0.347296 1.96962i 0.0142738 0.0809507i
\(593\) 26.0455 21.8548i 1.06956 0.897468i 0.0745483 0.997217i \(-0.476248\pi\)
0.995013 + 0.0997492i \(0.0318040\pi\)
\(594\) 7.66044 + 6.42788i 0.314312 + 0.263739i
\(595\) −6.25133 35.4531i −0.256280 1.45343i
\(596\) 0 0
\(597\) 12.5000 21.6506i 0.511591 0.886102i
\(598\) −0.939693 0.342020i −0.0384269 0.0139862i
\(599\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(600\) 5.50000 9.52628i 0.224537 0.388909i
\(601\) −4.00000 6.92820i −0.163163 0.282607i 0.772838 0.634603i \(-0.218836\pi\)
−0.936002 + 0.351996i \(0.885503\pi\)
\(602\) −2.08378 11.8177i −0.0849285 0.481653i
\(603\) 4.59627 + 3.85673i 0.187174 + 0.157058i
\(604\) −1.53209 + 1.28558i −0.0623398 + 0.0523093i
\(605\) 4.86215 27.5746i 0.197674 1.12107i
\(606\) 1.87939 0.684040i 0.0763448 0.0277872i
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 15.0000 0.607831
\(610\) −7.51754 + 2.73616i −0.304376 + 0.110784i
\(611\) 1.38919 7.87846i 0.0562004 0.318728i
\(612\) −4.59627 + 3.85673i −0.185793 + 0.155899i
\(613\) 26.0455 + 21.8548i 1.05197 + 0.882706i 0.993299 0.115571i \(-0.0368699\pi\)
0.0586691 + 0.998277i \(0.481314\pi\)
\(614\) −2.08378 11.8177i −0.0840944 0.476923i
\(615\) 16.0000 + 27.7128i 0.645182 + 1.11749i
\(616\) 3.00000 5.19615i 0.120873 0.209359i
\(617\) −16.9145 6.15636i −0.680951 0.247846i −0.0216951 0.999765i \(-0.506906\pi\)
−0.659256 + 0.751919i \(0.729129\pi\)
\(618\) 5.63816 + 2.05212i 0.226800 + 0.0825484i
\(619\) −5.00000 + 8.66025i −0.200967 + 0.348085i −0.948840 0.315757i \(-0.897742\pi\)
0.747873 + 0.663842i \(0.231075\pi\)
\(620\) 16.0000 + 27.7128i 0.642575 + 1.11297i
\(621\) 0.868241 + 4.92404i 0.0348413 + 0.197595i
\(622\) −5.36231 4.49951i −0.215009 0.180414i
\(623\) 0 0
\(624\) 0.173648 0.984808i 0.00695149 0.0394239i
\(625\) −38.5274 + 14.0228i −1.54110 + 0.560913i
\(626\) −29.0000 −1.15907
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −5.63816 + 2.05212i −0.224808 + 0.0818234i
\(630\) −4.16756 + 23.6354i −0.166039 + 0.941656i
\(631\) 24.5134 20.5692i 0.975864 0.818847i −0.00759632 0.999971i \(-0.502418\pi\)
0.983460 + 0.181124i \(0.0579736\pi\)
\(632\) −7.66044 6.42788i −0.304716 0.255687i
\(633\) −4.68850 26.5898i −0.186351 1.05685i
\(634\) 13.5000 + 23.3827i 0.536153 + 0.928645i
\(635\) −36.0000 + 62.3538i −1.42862 + 2.47444i
\(636\) −0.939693 0.342020i −0.0372612 0.0135620i
\(637\) −1.87939 0.684040i −0.0744640 0.0271027i
\(638\) 5.00000 8.66025i 0.197952 0.342863i
\(639\) −2.00000 3.46410i −0.0791188 0.137038i
\(640\) 0.694593 + 3.93923i 0.0274562 + 0.155712i
\(641\) −32.1739 26.9971i −1.27079 1.06632i −0.994444 0.105263i \(-0.966432\pi\)
−0.276347 0.961058i \(-0.589124\pi\)
\(642\) −5.36231 + 4.49951i −0.211634 + 0.177582i
\(643\) −4.51485 + 25.6050i −0.178048 + 1.00976i 0.756518 + 0.653973i \(0.226899\pi\)
−0.934566 + 0.355789i \(0.884212\pi\)
\(644\) 2.81908 1.02606i 0.111087 0.0404324i
\(645\) −16.0000 −0.629999
\(646\) 0 0
\(647\) 23.0000 0.904223 0.452112 0.891961i \(-0.350671\pi\)
0.452112 + 0.891961i \(0.350671\pi\)
\(648\) 0.939693 0.342020i 0.0369146 0.0134358i
\(649\) −5.20945 + 29.5442i −0.204489 + 1.15971i
\(650\) −8.42649 + 7.07066i −0.330514 + 0.277334i
\(651\) 18.3851 + 15.4269i 0.720568 + 0.604628i
\(652\) −2.77837 15.7569i −0.108809 0.617089i
\(653\) 18.0000 + 31.1769i 0.704394 + 1.22005i 0.966910 + 0.255119i \(0.0821147\pi\)
−0.262515 + 0.964928i \(0.584552\pi\)
\(654\) 7.50000 12.9904i 0.293273 0.507964i
\(655\) 45.1052 + 16.4170i 1.76241 + 0.641464i
\(656\) −7.51754 2.73616i −0.293511 0.106829i
\(657\) 9.00000 15.5885i 0.351123 0.608164i
\(658\) 12.0000 + 20.7846i 0.467809 + 0.810268i
\(659\) −0.868241 4.92404i −0.0338219 0.191813i 0.963216 0.268729i \(-0.0866037\pi\)
−0.997038 + 0.0769161i \(0.975493\pi\)
\(660\) −6.12836 5.14230i −0.238546 0.200164i
\(661\) 17.6190 14.7841i 0.685301 0.575035i −0.232249 0.972656i \(-0.574609\pi\)
0.917550 + 0.397621i \(0.130164\pi\)
\(662\) 2.95202 16.7417i 0.114733 0.650686i
\(663\) −2.81908 + 1.02606i −0.109484 + 0.0398489i
\(664\) 6.00000 0.232845
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) 4.69846 1.71010i 0.181925 0.0662154i
\(668\) 2.08378 11.8177i 0.0806238 0.457240i
\(669\) −10.7246 + 8.99903i −0.414638 + 0.347922i
\(670\) −9.19253 7.71345i −0.355139 0.297997i
\(671\) 0.694593 + 3.93923i 0.0268145 + 0.152072i
\(672\) 1.50000 + 2.59808i 0.0578638 + 0.100223i
\(673\) 22.0000 38.1051i 0.848038 1.46884i −0.0349191 0.999390i \(-0.511117\pi\)
0.882957 0.469454i \(-0.155549\pi\)
\(674\) 30.0702 + 10.9446i 1.15826 + 0.421572i
\(675\) 51.6831 + 18.8111i 1.98928 + 0.724040i
\(676\) 6.00000 10.3923i 0.230769 0.399704i
\(677\) 6.50000 + 11.2583i 0.249815 + 0.432693i 0.963474 0.267800i \(-0.0862968\pi\)
−0.713659 + 0.700493i \(0.752963\pi\)
\(678\) 2.43107 + 13.7873i 0.0933649 + 0.529498i
\(679\) 4.59627 + 3.85673i 0.176389 + 0.148008i
\(680\) 9.19253 7.71345i 0.352518 0.295797i
\(681\) 2.95202 16.7417i 0.113122 0.641545i
\(682\) 15.0351 5.47232i 0.575723 0.209546i
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) 68.0000 2.59815
\(686\) −14.0954 + 5.13030i −0.538164 + 0.195876i
\(687\) −1.73648 + 9.84808i −0.0662509 + 0.375728i
\(688\) 3.06418 2.57115i 0.116821 0.0980242i
\(689\) 0.766044 + 0.642788i 0.0291840 + 0.0244883i
\(690\) −0.694593 3.93923i −0.0264427 0.149964i
\(691\) −21.0000 36.3731i −0.798878 1.38370i −0.920348 0.391102i \(-0.872094\pi\)
0.121470 0.992595i \(-0.461239\pi\)
\(692\) −3.00000 + 5.19615i −0.114043 + 0.197528i
\(693\) 11.2763 + 4.10424i 0.428352 + 0.155907i
\(694\) −1.87939 0.684040i −0.0713405 0.0259658i
\(695\) 0 0
\(696\) 2.50000 + 4.33013i 0.0947623 + 0.164133i
\(697\) 4.16756 + 23.6354i 0.157857 + 0.895254i
\(698\) −7.66044 6.42788i −0.289952 0.243299i
\(699\) −4.59627 + 3.85673i −0.173847 + 0.145875i
\(700\) 5.73039 32.4987i 0.216588 1.22833i
\(701\) 26.3114 9.57656i 0.993768 0.361702i 0.206590 0.978428i \(-0.433764\pi\)
0.787178 + 0.616726i \(0.211541\pi\)
\(702\) 5.00000 0.188713
\(703\) 0 0
\(704\) 2.00000 0.0753778
\(705\) 30.0702 10.9446i 1.13251 0.412199i
\(706\) −1.56283 + 8.86327i −0.0588180 + 0.333574i
\(707\) 4.59627 3.85673i 0.172860 0.145047i
\(708\) −11.4907 9.64181i −0.431846 0.362362i
\(709\) −5.20945 29.5442i −0.195645 1.10956i −0.911498 0.411306i \(-0.865073\pi\)
0.715853 0.698251i \(-0.246038\pi\)
\(710\) 4.00000 + 6.92820i 0.150117 + 0.260011i
\(711\) 10.0000 17.3205i 0.375029 0.649570i
\(712\) 0 0
\(713\) 7.51754 + 2.73616i 0.281534 + 0.102470i
\(714\) 4.50000 7.79423i 0.168408 0.291692i
\(715\) 4.00000 + 6.92820i 0.149592 + 0.259100i
\(716\) 0 0
\(717\) 11.4907 + 9.64181i 0.429127 + 0.360080i
\(718\) 11.4907 9.64181i 0.428828 0.359829i
\(719\) −0.868241 + 4.92404i −0.0323799 + 0.183636i −0.996708 0.0810740i \(-0.974165\pi\)
0.964328 + 0.264710i \(0.0852761\pi\)
\(720\) −7.51754 + 2.73616i −0.280162 + 0.101971i
\(721\) 18.0000 0.670355
\(722\) 0 0
\(723\) 8.00000 0.297523
\(724\) 20.6732 7.52444i 0.768315 0.279644i
\(725\) 9.55065 54.1644i 0.354702 2.01162i
\(726\) 5.36231 4.49951i 0.199014 0.166993i
\(727\) −13.0228 10.9274i −0.482987 0.405274i 0.368518 0.929621i \(-0.379865\pi\)
−0.851505 + 0.524346i \(0.824310\pi\)
\(728\) −0.520945 2.95442i −0.0193075 0.109498i
\(729\) −6.50000 11.2583i −0.240741 0.416975i
\(730\) −18.0000 + 31.1769i −0.666210 + 1.15391i
\(731\) −11.2763 4.10424i −0.417069 0.151801i
\(732\) −1.87939 0.684040i −0.0694641 0.0252829i
\(733\) 18.0000 31.1769i 0.664845 1.15155i −0.314482 0.949263i \(-0.601831\pi\)
0.979327 0.202282i \(-0.0648358\pi\)
\(734\) 14.0000 + 24.2487i 0.516749 + 0.895036i
\(735\) −1.38919 7.87846i −0.0512409 0.290601i
\(736\) 0.766044 + 0.642788i 0.0282368 + 0.0236935i
\(737\) −4.59627 + 3.85673i −0.169306 + 0.142064i
\(738\) 2.77837 15.7569i 0.102273 0.580020i
\(739\) 37.5877 13.6808i 1.38269 0.503257i 0.459695 0.888077i \(-0.347959\pi\)
0.922991 + 0.384820i \(0.125737\pi\)
\(740\) −8.00000 −0.294086
\(741\) 0 0
\(742\) −3.00000 −0.110133
\(743\) −15.0351 + 5.47232i −0.551584 + 0.200760i −0.602750 0.797930i \(-0.705928\pi\)
0.0511663 + 0.998690i \(0.483706\pi\)
\(744\) −1.38919 + 7.87846i −0.0509300 + 0.288838i
\(745\) 0 0
\(746\) 22.2153 + 18.6408i 0.813360 + 0.682490i
\(747\) 2.08378 + 11.8177i 0.0762415 + 0.432387i
\(748\) −3.00000 5.19615i −0.109691 0.189990i
\(749\) −10.5000 + 18.1865i −0.383662 + 0.664521i
\(750\) −22.5526 8.20848i −0.823505 0.299731i
\(751\) 30.0702 + 10.9446i 1.09728 + 0.399376i 0.826311 0.563214i \(-0.190435\pi\)
0.270965 + 0.962589i \(0.412657\pi\)
\(752\) −4.00000 + 6.92820i −0.145865 + 0.252646i
\(753\) −1.00000 1.73205i −0.0364420 0.0631194i
\(754\) −0.868241 4.92404i −0.0316195 0.179323i
\(755\) 6.12836 + 5.14230i 0.223034 + 0.187147i
\(756\) −11.4907 + 9.64181i −0.417912 + 0.350669i
\(757\) −0.347296 + 1.96962i −0.0126227 + 0.0715869i −0.990468 0.137740i \(-0.956016\pi\)
0.977846 + 0.209327i \(0.0671273\pi\)
\(758\) −14.0954 + 5.13030i −0.511968 + 0.186341i
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) −16.9145 + 6.15636i −0.612746 + 0.223021i
\(763\) 7.81417 44.3163i 0.282892 1.60436i
\(764\) 5.36231 4.49951i 0.194002 0.162787i
\(765\) 18.3851 + 15.4269i 0.664713 + 0.557761i
\(766\) −4.51485 25.6050i −0.163128 0.925146i
\(767\) 7.50000 + 12.9904i 0.270809 + 0.469055i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) 32.8892 + 11.9707i 1.18602 + 0.431675i 0.858323 0.513110i \(-0.171507\pi\)
0.327693 + 0.944784i \(0.393729\pi\)
\(770\) −22.5526 8.20848i −0.812740 0.295813i
\(771\) 4.00000 6.92820i 0.144056 0.249513i
\(772\) −3.00000 5.19615i −0.107972 0.187014i
\(773\) −1.56283 8.86327i −0.0562112 0.318790i 0.943717 0.330753i \(-0.107303\pi\)
−0.999928 + 0.0119638i \(0.996192\pi\)
\(774\) 6.12836 + 5.14230i 0.220279 + 0.184836i
\(775\) 67.4119 56.5653i 2.42151 2.03189i
\(776\)