Properties

Label 722.2.e.c.595.1
Level $722$
Weight $2$
Character 722.595
Analytic conductor $5.765$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $6$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 722.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.76519902594\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 595.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 722.595
Dual form 722.2.e.c.415.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.766044 - 0.642788i) q^{2} +(0.939693 + 0.342020i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.694593 - 3.93923i) q^{5} +(0.939693 - 0.342020i) q^{6} +(-1.50000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-1.53209 - 1.28558i) q^{9} +O(q^{10})\) \(q+(0.766044 - 0.642788i) q^{2} +(0.939693 + 0.342020i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.694593 - 3.93923i) q^{5} +(0.939693 - 0.342020i) q^{6} +(-1.50000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-1.53209 - 1.28558i) q^{9} +(-3.06418 - 2.57115i) q^{10} +(-1.00000 - 1.73205i) q^{11} +(0.500000 - 0.866025i) q^{12} +(0.939693 - 0.342020i) q^{13} +(0.520945 + 2.95442i) q^{14} +(0.694593 - 3.93923i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(2.29813 - 1.92836i) q^{17} -2.00000 q^{18} -4.00000 q^{20} +(-2.29813 + 1.92836i) q^{21} +(-1.87939 - 0.684040i) q^{22} +(-0.173648 + 0.984808i) q^{23} +(-0.173648 - 0.984808i) q^{24} +(-10.3366 + 3.76222i) q^{25} +(0.500000 - 0.866025i) q^{26} +(-2.50000 - 4.33013i) q^{27} +(2.29813 + 1.92836i) q^{28} +(-3.83022 - 3.21394i) q^{29} +(-2.00000 - 3.46410i) q^{30} +(4.00000 - 6.92820i) q^{31} +(-0.939693 + 0.342020i) q^{32} +(-0.347296 - 1.96962i) q^{33} +(0.520945 - 2.95442i) q^{34} +(11.2763 + 4.10424i) q^{35} +(-1.53209 + 1.28558i) q^{36} -2.00000 q^{37} +1.00000 q^{39} +(-3.06418 + 2.57115i) q^{40} +(7.51754 + 2.73616i) q^{41} +(-0.520945 + 2.95442i) q^{42} +(0.694593 + 3.93923i) q^{43} +(-1.87939 + 0.684040i) q^{44} +(-4.00000 + 6.92820i) q^{45} +(0.500000 + 0.866025i) q^{46} +(6.12836 + 5.14230i) q^{47} +(-0.766044 - 0.642788i) q^{48} +(-1.00000 - 1.73205i) q^{49} +(-5.50000 + 9.52628i) q^{50} +(2.81908 - 1.02606i) q^{51} +(-0.173648 - 0.984808i) q^{52} +(-0.173648 + 0.984808i) q^{53} +(-4.69846 - 1.71010i) q^{54} +(-6.12836 + 5.14230i) q^{55} +3.00000 q^{56} -5.00000 q^{58} +(11.4907 - 9.64181i) q^{59} +(-3.75877 - 1.36808i) q^{60} +(0.347296 - 1.96962i) q^{61} +(-1.38919 - 7.87846i) q^{62} +(5.63816 - 2.05212i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-2.00000 - 3.46410i) q^{65} +(-1.53209 - 1.28558i) q^{66} +(2.29813 + 1.92836i) q^{67} +(-1.50000 - 2.59808i) q^{68} +(-0.500000 + 0.866025i) q^{69} +(11.2763 - 4.10424i) q^{70} +(0.347296 + 1.96962i) q^{71} +(-0.347296 + 1.96962i) q^{72} +(-8.45723 - 3.07818i) q^{73} +(-1.53209 + 1.28558i) q^{74} -11.0000 q^{75} +6.00000 q^{77} +(0.766044 - 0.642788i) q^{78} +(9.39693 + 3.42020i) q^{79} +(-0.694593 + 3.93923i) q^{80} +(0.173648 + 0.984808i) q^{81} +(7.51754 - 2.73616i) q^{82} +(3.00000 - 5.19615i) q^{83} +(1.50000 + 2.59808i) q^{84} +(-9.19253 - 7.71345i) q^{85} +(3.06418 + 2.57115i) q^{86} +(-2.50000 - 4.33013i) q^{87} +(-1.00000 + 1.73205i) q^{88} +(1.38919 + 7.87846i) q^{90} +(-0.520945 + 2.95442i) q^{91} +(0.939693 + 0.342020i) q^{92} +(6.12836 - 5.14230i) q^{93} +8.00000 q^{94} -1.00000 q^{96} +(-1.53209 + 1.28558i) q^{97} +(-1.87939 - 0.684040i) q^{98} +(-0.694593 + 3.93923i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 9q^{7} - 3q^{8} + O(q^{10}) \) \( 6q - 9q^{7} - 3q^{8} - 6q^{11} + 3q^{12} - 12q^{18} - 24q^{20} + 3q^{26} - 15q^{27} - 12q^{30} + 24q^{31} - 12q^{37} + 6q^{39} - 24q^{45} + 3q^{46} - 6q^{49} - 33q^{50} + 18q^{56} - 30q^{58} - 3q^{64} - 12q^{65} - 9q^{68} - 3q^{69} - 66q^{75} + 36q^{77} + 18q^{83} + 9q^{84} - 15q^{87} - 6q^{88} + 48q^{94} - 6q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/722\mathbb{Z}\right)^\times\).

\(n\) \(363\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 0.642788i 0.541675 0.454519i
\(3\) 0.939693 + 0.342020i 0.542532 + 0.197465i 0.598725 0.800954i \(-0.295674\pi\)
−0.0561935 + 0.998420i \(0.517896\pi\)
\(4\) 0.173648 0.984808i 0.0868241 0.492404i
\(5\) −0.694593 3.93923i −0.310631 1.76168i −0.595735 0.803181i \(-0.703139\pi\)
0.285104 0.958497i \(-0.407972\pi\)
\(6\) 0.939693 0.342020i 0.383628 0.139629i
\(7\) −1.50000 + 2.59808i −0.566947 + 0.981981i 0.429919 + 0.902867i \(0.358542\pi\)
−0.996866 + 0.0791130i \(0.974791\pi\)
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) −1.53209 1.28558i −0.510696 0.428525i
\(10\) −3.06418 2.57115i −0.968978 0.813069i
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) 0.939693 0.342020i 0.260624 0.0948593i −0.208404 0.978043i \(-0.566827\pi\)
0.469027 + 0.883184i \(0.344605\pi\)
\(14\) 0.520945 + 2.95442i 0.139228 + 0.789603i
\(15\) 0.694593 3.93923i 0.179343 1.01711i
\(16\) −0.939693 0.342020i −0.234923 0.0855050i
\(17\) 2.29813 1.92836i 0.557379 0.467697i −0.320051 0.947400i \(-0.603700\pi\)
0.877431 + 0.479703i \(0.159256\pi\)
\(18\) −2.00000 −0.471405
\(19\) 0 0
\(20\) −4.00000 −0.894427
\(21\) −2.29813 + 1.92836i −0.501494 + 0.420803i
\(22\) −1.87939 0.684040i −0.400686 0.145838i
\(23\) −0.173648 + 0.984808i −0.0362081 + 0.205347i −0.997545 0.0700286i \(-0.977691\pi\)
0.961337 + 0.275375i \(0.0888021\pi\)
\(24\) −0.173648 0.984808i −0.0354458 0.201023i
\(25\) −10.3366 + 3.76222i −2.06732 + 0.752444i
\(26\) 0.500000 0.866025i 0.0980581 0.169842i
\(27\) −2.50000 4.33013i −0.481125 0.833333i
\(28\) 2.29813 + 1.92836i 0.434306 + 0.364426i
\(29\) −3.83022 3.21394i −0.711254 0.596813i 0.213696 0.976900i \(-0.431450\pi\)
−0.924951 + 0.380087i \(0.875894\pi\)
\(30\) −2.00000 3.46410i −0.365148 0.632456i
\(31\) 4.00000 6.92820i 0.718421 1.24434i −0.243204 0.969975i \(-0.578198\pi\)
0.961625 0.274367i \(-0.0884683\pi\)
\(32\) −0.939693 + 0.342020i −0.166116 + 0.0604612i
\(33\) −0.347296 1.96962i −0.0604565 0.342866i
\(34\) 0.520945 2.95442i 0.0893413 0.506679i
\(35\) 11.2763 + 4.10424i 1.90604 + 0.693743i
\(36\) −1.53209 + 1.28558i −0.255348 + 0.214263i
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) −3.06418 + 2.57115i −0.484489 + 0.406535i
\(41\) 7.51754 + 2.73616i 1.17404 + 0.427317i 0.854094 0.520118i \(-0.174112\pi\)
0.319948 + 0.947435i \(0.396334\pi\)
\(42\) −0.520945 + 2.95442i −0.0803835 + 0.455877i
\(43\) 0.694593 + 3.93923i 0.105924 + 0.600727i 0.990847 + 0.134989i \(0.0431000\pi\)
−0.884923 + 0.465738i \(0.845789\pi\)
\(44\) −1.87939 + 0.684040i −0.283328 + 0.103123i
\(45\) −4.00000 + 6.92820i −0.596285 + 1.03280i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) 6.12836 + 5.14230i 0.893913 + 0.750082i 0.968991 0.247096i \(-0.0794763\pi\)
−0.0750785 + 0.997178i \(0.523921\pi\)
\(48\) −0.766044 0.642788i −0.110569 0.0927784i
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) −5.50000 + 9.52628i −0.777817 + 1.34722i
\(51\) 2.81908 1.02606i 0.394750 0.143677i
\(52\) −0.173648 0.984808i −0.0240807 0.136568i
\(53\) −0.173648 + 0.984808i −0.0238524 + 0.135274i −0.994409 0.105601i \(-0.966323\pi\)
0.970556 + 0.240875i \(0.0774344\pi\)
\(54\) −4.69846 1.71010i −0.639380 0.232715i
\(55\) −6.12836 + 5.14230i −0.826347 + 0.693388i
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) −5.00000 −0.656532
\(59\) 11.4907 9.64181i 1.49596 1.25526i 0.609205 0.793013i \(-0.291489\pi\)
0.886753 0.462244i \(-0.152956\pi\)
\(60\) −3.75877 1.36808i −0.485255 0.176618i
\(61\) 0.347296 1.96962i 0.0444667 0.252183i −0.954469 0.298311i \(-0.903577\pi\)
0.998936 + 0.0461272i \(0.0146880\pi\)
\(62\) −1.38919 7.87846i −0.176427 1.00057i
\(63\) 5.63816 2.05212i 0.710341 0.258543i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) −1.53209 1.28558i −0.188587 0.158243i
\(67\) 2.29813 + 1.92836i 0.280762 + 0.235587i 0.772283 0.635278i \(-0.219115\pi\)
−0.491522 + 0.870865i \(0.663559\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) −0.500000 + 0.866025i −0.0601929 + 0.104257i
\(70\) 11.2763 4.10424i 1.34778 0.490551i
\(71\) 0.347296 + 1.96962i 0.0412165 + 0.233750i 0.998456 0.0555458i \(-0.0176899\pi\)
−0.957240 + 0.289296i \(0.906579\pi\)
\(72\) −0.347296 + 1.96962i −0.0409293 + 0.232121i
\(73\) −8.45723 3.07818i −0.989844 0.360274i −0.204184 0.978932i \(-0.565454\pi\)
−0.785660 + 0.618659i \(0.787676\pi\)
\(74\) −1.53209 + 1.28558i −0.178102 + 0.149445i
\(75\) −11.0000 −1.27017
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0.766044 0.642788i 0.0867375 0.0727814i
\(79\) 9.39693 + 3.42020i 1.05724 + 0.384803i 0.811389 0.584506i \(-0.198712\pi\)
0.245847 + 0.969309i \(0.420934\pi\)
\(80\) −0.694593 + 3.93923i −0.0776578 + 0.440419i
\(81\) 0.173648 + 0.984808i 0.0192942 + 0.109423i
\(82\) 7.51754 2.73616i 0.830174 0.302158i
\(83\) 3.00000 5.19615i 0.329293 0.570352i −0.653079 0.757290i \(-0.726523\pi\)
0.982372 + 0.186938i \(0.0598564\pi\)
\(84\) 1.50000 + 2.59808i 0.163663 + 0.283473i
\(85\) −9.19253 7.71345i −0.997070 0.836641i
\(86\) 3.06418 + 2.57115i 0.330419 + 0.277254i
\(87\) −2.50000 4.33013i −0.268028 0.464238i
\(88\) −1.00000 + 1.73205i −0.106600 + 0.184637i
\(89\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(90\) 1.38919 + 7.87846i 0.146433 + 0.830463i
\(91\) −0.520945 + 2.95442i −0.0546098 + 0.309708i
\(92\) 0.939693 + 0.342020i 0.0979697 + 0.0356581i
\(93\) 6.12836 5.14230i 0.635481 0.533232i
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −1.53209 + 1.28558i −0.155560 + 0.130530i −0.717246 0.696820i \(-0.754597\pi\)
0.561686 + 0.827351i \(0.310153\pi\)
\(98\) −1.87939 0.684040i −0.189847 0.0690985i
\(99\) −0.694593 + 3.93923i −0.0698092 + 0.395908i
\(100\) 1.91013 + 10.8329i 0.191013 + 1.08329i
\(101\) −1.87939 + 0.684040i −0.187006 + 0.0680646i −0.433826 0.900997i \(-0.642837\pi\)
0.246820 + 0.969061i \(0.420614\pi\)
\(102\) 1.50000 2.59808i 0.148522 0.257248i
\(103\) 3.00000 + 5.19615i 0.295599 + 0.511992i 0.975124 0.221660i \(-0.0711475\pi\)
−0.679525 + 0.733652i \(0.737814\pi\)
\(104\) −0.766044 0.642788i −0.0751168 0.0630305i
\(105\) 9.19253 + 7.71345i 0.897099 + 0.752756i
\(106\) 0.500000 + 0.866025i 0.0485643 + 0.0841158i
\(107\) 3.50000 6.06218i 0.338358 0.586053i −0.645766 0.763535i \(-0.723462\pi\)
0.984124 + 0.177482i \(0.0567953\pi\)
\(108\) −4.69846 + 1.71010i −0.452110 + 0.164555i
\(109\) −2.60472 14.7721i −0.249487 1.41491i −0.809836 0.586656i \(-0.800444\pi\)
0.560349 0.828256i \(-0.310667\pi\)
\(110\) −1.38919 + 7.87846i −0.132454 + 0.751182i
\(111\) −1.87939 0.684040i −0.178383 0.0649262i
\(112\) 2.29813 1.92836i 0.217153 0.182213i
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −3.83022 + 3.21394i −0.355627 + 0.298407i
\(117\) −1.87939 0.684040i −0.173749 0.0632395i
\(118\) 2.60472 14.7721i 0.239784 1.35988i
\(119\) 1.56283 + 8.86327i 0.143265 + 0.812495i
\(120\) −3.75877 + 1.36808i −0.343127 + 0.124888i
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −1.00000 1.73205i −0.0905357 0.156813i
\(123\) 6.12836 + 5.14230i 0.552575 + 0.463666i
\(124\) −6.12836 5.14230i −0.550343 0.461792i
\(125\) 12.0000 + 20.7846i 1.07331 + 1.85903i
\(126\) 3.00000 5.19615i 0.267261 0.462910i
\(127\) −16.9145 + 6.15636i −1.50092 + 0.546289i −0.956298 0.292395i \(-0.905548\pi\)
−0.544619 + 0.838684i \(0.683326\pi\)
\(128\) 0.173648 + 0.984808i 0.0153485 + 0.0870455i
\(129\) −0.694593 + 3.93923i −0.0611555 + 0.346830i
\(130\) −3.75877 1.36808i −0.329666 0.119989i
\(131\) 9.19253 7.71345i 0.803155 0.673927i −0.145808 0.989313i \(-0.546578\pi\)
0.948964 + 0.315385i \(0.102134\pi\)
\(132\) −2.00000 −0.174078
\(133\) 0 0
\(134\) 3.00000 0.259161
\(135\) −15.3209 + 12.8558i −1.31861 + 1.10645i
\(136\) −2.81908 1.02606i −0.241734 0.0879840i
\(137\) −2.95202 + 16.7417i −0.252208 + 1.43034i 0.550931 + 0.834551i \(0.314273\pi\)
−0.803139 + 0.595792i \(0.796838\pi\)
\(138\) 0.173648 + 0.984808i 0.0147819 + 0.0838324i
\(139\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(140\) 6.00000 10.3923i 0.507093 0.878310i
\(141\) 4.00000 + 6.92820i 0.336861 + 0.583460i
\(142\) 1.53209 + 1.28558i 0.128570 + 0.107883i
\(143\) −1.53209 1.28558i −0.128120 0.107505i
\(144\) 1.00000 + 1.73205i 0.0833333 + 0.144338i
\(145\) −10.0000 + 17.3205i −0.830455 + 1.43839i
\(146\) −8.45723 + 3.07818i −0.699926 + 0.254752i
\(147\) −0.347296 1.96962i −0.0286445 0.162451i
\(148\) −0.347296 + 1.96962i −0.0285476 + 0.161901i
\(149\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(150\) −8.42649 + 7.07066i −0.688020 + 0.577317i
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 4.59627 3.85673i 0.370378 0.310784i
\(155\) −30.0702 10.9446i −2.41529 0.879095i
\(156\) 0.173648 0.984808i 0.0139030 0.0788477i
\(157\) −0.347296 1.96962i −0.0277173 0.157192i 0.967808 0.251690i \(-0.0809865\pi\)
−0.995525 + 0.0944981i \(0.969875\pi\)
\(158\) 9.39693 3.42020i 0.747579 0.272097i
\(159\) −0.500000 + 0.866025i −0.0396526 + 0.0686803i
\(160\) 2.00000 + 3.46410i 0.158114 + 0.273861i
\(161\) −2.29813 1.92836i −0.181118 0.151976i
\(162\) 0.766044 + 0.642788i 0.0601861 + 0.0505022i
\(163\) 8.00000 + 13.8564i 0.626608 + 1.08532i 0.988227 + 0.152992i \(0.0488907\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(164\) 4.00000 6.92820i 0.312348 0.541002i
\(165\) −7.51754 + 2.73616i −0.585240 + 0.213010i
\(166\) −1.04189 5.90885i −0.0808663 0.458615i
\(167\) −2.08378 + 11.8177i −0.161248 + 0.914481i 0.791602 + 0.611037i \(0.209247\pi\)
−0.952849 + 0.303443i \(0.901864\pi\)
\(168\) 2.81908 + 1.02606i 0.217497 + 0.0791623i
\(169\) −9.19253 + 7.71345i −0.707118 + 0.593342i
\(170\) −12.0000 −0.920358
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) −4.59627 + 3.85673i −0.349448 + 0.293221i −0.800568 0.599242i \(-0.795469\pi\)
0.451121 + 0.892463i \(0.351024\pi\)
\(174\) −4.69846 1.71010i −0.356190 0.129642i
\(175\) 5.73039 32.4987i 0.433177 2.45667i
\(176\) 0.347296 + 1.96962i 0.0261784 + 0.148465i
\(177\) 14.0954 5.13030i 1.05947 0.385617i
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 6.12836 + 5.14230i 0.456781 + 0.383284i
\(181\) 16.8530 + 14.1413i 1.25267 + 1.05112i 0.996423 + 0.0845058i \(0.0269311\pi\)
0.256249 + 0.966611i \(0.417513\pi\)
\(182\) 1.50000 + 2.59808i 0.111187 + 0.192582i
\(183\) 1.00000 1.73205i 0.0739221 0.128037i
\(184\) 0.939693 0.342020i 0.0692751 0.0252141i
\(185\) 1.38919 + 7.87846i 0.102135 + 0.579236i
\(186\) 1.38919 7.87846i 0.101860 0.577677i
\(187\) −5.63816 2.05212i −0.412303 0.150066i
\(188\) 6.12836 5.14230i 0.446956 0.375041i
\(189\) 15.0000 1.09109
\(190\) 0 0
\(191\) 7.00000 0.506502 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(192\) −0.766044 + 0.642788i −0.0552845 + 0.0463892i
\(193\) 5.63816 + 2.05212i 0.405843 + 0.147715i 0.536872 0.843664i \(-0.319606\pi\)
−0.131029 + 0.991379i \(0.541828\pi\)
\(194\) −0.347296 + 1.96962i −0.0249344 + 0.141410i
\(195\) −0.694593 3.93923i −0.0497408 0.282094i
\(196\) −1.87939 + 0.684040i −0.134242 + 0.0488600i
\(197\) −4.00000 + 6.92820i −0.284988 + 0.493614i −0.972606 0.232458i \(-0.925323\pi\)
0.687618 + 0.726073i \(0.258656\pi\)
\(198\) 2.00000 + 3.46410i 0.142134 + 0.246183i
\(199\) −19.1511 16.0697i −1.35759 1.13915i −0.976720 0.214520i \(-0.931181\pi\)
−0.380867 0.924630i \(-0.624374\pi\)
\(200\) 8.42649 + 7.07066i 0.595843 + 0.499971i
\(201\) 1.50000 + 2.59808i 0.105802 + 0.183254i
\(202\) −1.00000 + 1.73205i −0.0703598 + 0.121867i
\(203\) 14.0954 5.13030i 0.989302 0.360077i
\(204\) −0.520945 2.95442i −0.0364734 0.206851i
\(205\) 5.55674 31.5138i 0.388100 2.20102i
\(206\) 5.63816 + 2.05212i 0.392829 + 0.142978i
\(207\) 1.53209 1.28558i 0.106488 0.0893537i
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 12.0000 0.828079
\(211\) 20.6832 17.3553i 1.42389 1.19479i 0.474674 0.880162i \(-0.342566\pi\)
0.949216 0.314624i \(-0.101878\pi\)
\(212\) 0.939693 + 0.342020i 0.0645384 + 0.0234900i
\(213\) −0.347296 + 1.96962i −0.0237964 + 0.134956i
\(214\) −1.21554 6.89365i −0.0830924 0.471241i
\(215\) 15.0351 5.47232i 1.02538 0.373209i
\(216\) −2.50000 + 4.33013i −0.170103 + 0.294628i
\(217\) 12.0000 + 20.7846i 0.814613 + 1.41095i
\(218\) −11.4907 9.64181i −0.778246 0.653026i
\(219\) −6.89440 5.78509i −0.465880 0.390920i
\(220\) 4.00000 + 6.92820i 0.269680 + 0.467099i
\(221\) 1.50000 2.59808i 0.100901 0.174766i
\(222\) −1.87939 + 0.684040i −0.126136 + 0.0459098i
\(223\) 2.43107 + 13.7873i 0.162797 + 0.923266i 0.951307 + 0.308245i \(0.0997416\pi\)
−0.788510 + 0.615022i \(0.789147\pi\)
\(224\) 0.520945 2.95442i 0.0348071 0.197401i
\(225\) 20.6732 + 7.52444i 1.37822 + 0.501630i
\(226\) 10.7246 8.99903i 0.713391 0.598606i
\(227\) −17.0000 −1.12833 −0.564165 0.825662i \(-0.690802\pi\)
−0.564165 + 0.825662i \(0.690802\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 3.06418 2.57115i 0.202046 0.169537i
\(231\) 5.63816 + 2.05212i 0.370963 + 0.135020i
\(232\) −0.868241 + 4.92404i −0.0570028 + 0.323279i
\(233\) −1.04189 5.90885i −0.0682564 0.387101i −0.999729 0.0232893i \(-0.992586\pi\)
0.931472 0.363812i \(-0.118525\pi\)
\(234\) −1.87939 + 0.684040i −0.122859 + 0.0447171i
\(235\) 16.0000 27.7128i 1.04372 1.80778i
\(236\) −7.50000 12.9904i −0.488208 0.845602i
\(237\) 7.66044 + 6.42788i 0.497599 + 0.417535i
\(238\) 6.89440 + 5.78509i 0.446898 + 0.374992i
\(239\) −7.50000 12.9904i −0.485135 0.840278i 0.514719 0.857359i \(-0.327896\pi\)
−0.999854 + 0.0170808i \(0.994563\pi\)
\(240\) −2.00000 + 3.46410i −0.129099 + 0.223607i
\(241\) 7.51754 2.73616i 0.484247 0.176252i −0.0883481 0.996090i \(-0.528159\pi\)
0.572596 + 0.819838i \(0.305937\pi\)
\(242\) −1.21554 6.89365i −0.0781377 0.443141i
\(243\) −2.77837 + 15.7569i −0.178233 + 1.01081i
\(244\) −1.87939 0.684040i −0.120315 0.0437912i
\(245\) −6.12836 + 5.14230i −0.391526 + 0.328530i
\(246\) 8.00000 0.510061
\(247\) 0 0
\(248\) −8.00000 −0.508001
\(249\) 4.59627 3.85673i 0.291277 0.244410i
\(250\) 22.5526 + 8.20848i 1.42635 + 0.519150i
\(251\) 0.347296 1.96962i 0.0219212 0.124321i −0.971883 0.235462i \(-0.924340\pi\)
0.993805 + 0.111141i \(0.0354506\pi\)
\(252\) −1.04189 5.90885i −0.0656328 0.372222i
\(253\) 1.87939 0.684040i 0.118156 0.0430052i
\(254\) −9.00000 + 15.5885i −0.564710 + 0.978107i
\(255\) −6.00000 10.3923i −0.375735 0.650791i
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) 6.12836 + 5.14230i 0.382276 + 0.320768i 0.813595 0.581432i \(-0.197507\pi\)
−0.431319 + 0.902199i \(0.641952\pi\)
\(258\) 2.00000 + 3.46410i 0.124515 + 0.215666i
\(259\) 3.00000 5.19615i 0.186411 0.322873i
\(260\) −3.75877 + 1.36808i −0.233109 + 0.0848448i
\(261\) 1.73648 + 9.84808i 0.107486 + 0.609581i
\(262\) 2.08378 11.8177i 0.128736 0.730100i
\(263\) −22.5526 8.20848i −1.39065 0.506157i −0.465264 0.885172i \(-0.654041\pi\)
−0.925390 + 0.379015i \(0.876263\pi\)
\(264\) −1.53209 + 1.28558i −0.0942936 + 0.0791217i
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) 0 0
\(268\) 2.29813 1.92836i 0.140381 0.117794i
\(269\) −28.1908 10.2606i −1.71882 0.625600i −0.721086 0.692846i \(-0.756357\pi\)
−0.997736 + 0.0672458i \(0.978579\pi\)
\(270\) −3.47296 + 19.6962i −0.211358 + 1.19867i
\(271\) 1.21554 + 6.89365i 0.0738386 + 0.418760i 0.999212 + 0.0397017i \(0.0126408\pi\)
−0.925373 + 0.379058i \(0.876248\pi\)
\(272\) −2.81908 + 1.02606i −0.170932 + 0.0622141i
\(273\) −1.50000 + 2.59808i −0.0907841 + 0.157243i
\(274\) 8.50000 + 14.7224i 0.513504 + 0.889415i
\(275\) 16.8530 + 14.1413i 1.01627 + 0.852754i
\(276\) 0.766044 + 0.642788i 0.0461105 + 0.0386913i
\(277\) −14.0000 24.2487i −0.841178 1.45696i −0.888899 0.458103i \(-0.848529\pi\)
0.0477206 0.998861i \(-0.484804\pi\)
\(278\) 0 0
\(279\) −15.0351 + 5.47232i −0.900127 + 0.327619i
\(280\) −2.08378 11.8177i −0.124530 0.706242i
\(281\) −1.38919 + 7.87846i −0.0828719 + 0.469990i 0.914924 + 0.403627i \(0.132251\pi\)
−0.997796 + 0.0663628i \(0.978861\pi\)
\(282\) 7.51754 + 2.73616i 0.447663 + 0.162936i
\(283\) −4.59627 + 3.85673i −0.273220 + 0.229259i −0.769094 0.639136i \(-0.779292\pi\)
0.495874 + 0.868394i \(0.334848\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) −18.3851 + 15.4269i −1.08524 + 0.910621i
\(288\) 1.87939 + 0.684040i 0.110744 + 0.0403075i
\(289\) −1.38919 + 7.87846i −0.0817168 + 0.463439i
\(290\) 3.47296 + 19.6962i 0.203939 + 1.15660i
\(291\) −1.87939 + 0.684040i −0.110172 + 0.0400992i
\(292\) −4.50000 + 7.79423i −0.263343 + 0.456123i
\(293\) −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i \(-0.251343\pi\)
−0.967009 + 0.254741i \(0.918010\pi\)
\(294\) −1.53209 1.28558i −0.0893532 0.0749763i
\(295\) −45.9627 38.5673i −2.67605 2.24547i
\(296\) 1.00000 + 1.73205i 0.0581238 + 0.100673i
\(297\) −5.00000 + 8.66025i −0.290129 + 0.502519i
\(298\) 0 0
\(299\) 0.173648 + 0.984808i 0.0100423 + 0.0569529i
\(300\) −1.91013 + 10.8329i −0.110281 + 0.625437i
\(301\) −11.2763 4.10424i −0.649956 0.236565i
\(302\) 1.53209 1.28558i 0.0881618 0.0739765i
\(303\) −2.00000 −0.114897
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) −4.59627 + 3.85673i −0.262751 + 0.220474i
\(307\) 11.2763 + 4.10424i 0.643573 + 0.234241i 0.643128 0.765758i \(-0.277636\pi\)
0.000444803 1.00000i \(0.499858\pi\)
\(308\) 1.04189 5.90885i 0.0593671 0.336688i
\(309\) 1.04189 + 5.90885i 0.0592710 + 0.336143i
\(310\) −30.0702 + 10.9446i −1.70787 + 0.621614i
\(311\) −3.50000 + 6.06218i −0.198467 + 0.343755i −0.948031 0.318177i \(-0.896930\pi\)
0.749565 + 0.661931i \(0.230263\pi\)
\(312\) −0.500000 0.866025i −0.0283069 0.0490290i
\(313\) 22.2153 + 18.6408i 1.25568 + 1.05364i 0.996128 + 0.0879141i \(0.0280201\pi\)
0.259554 + 0.965729i \(0.416424\pi\)
\(314\) −1.53209 1.28558i −0.0864608 0.0725492i
\(315\) −12.0000 20.7846i −0.676123 1.17108i
\(316\) 5.00000 8.66025i 0.281272 0.487177i
\(317\) 25.3717 9.23454i 1.42502 0.518664i 0.489518 0.871993i \(-0.337173\pi\)
0.935499 + 0.353330i \(0.114951\pi\)
\(318\) 0.173648 + 0.984808i 0.00973771 + 0.0552253i
\(319\) −1.73648 + 9.84808i −0.0972243 + 0.551386i
\(320\) 3.75877 + 1.36808i 0.210122 + 0.0764780i
\(321\) 5.36231 4.49951i 0.299295 0.251138i
\(322\) −3.00000 −0.167183
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −8.42649 + 7.07066i −0.467418 + 0.392210i
\(326\) 15.0351 + 5.47232i 0.832716 + 0.303084i
\(327\) 2.60472 14.7721i 0.144041 0.816900i
\(328\) −1.38919 7.87846i −0.0767049 0.435015i
\(329\) −22.5526 + 8.20848i −1.24337 + 0.452548i
\(330\) −4.00000 + 6.92820i −0.220193 + 0.381385i
\(331\) −8.50000 14.7224i −0.467202 0.809218i 0.532096 0.846684i \(-0.321405\pi\)
−0.999298 + 0.0374662i \(0.988071\pi\)
\(332\) −4.59627 3.85673i −0.252253 0.211665i
\(333\) 3.06418 + 2.57115i 0.167916 + 0.140898i
\(334\) 6.00000 + 10.3923i 0.328305 + 0.568642i
\(335\) 6.00000 10.3923i 0.327815 0.567792i
\(336\) 2.81908 1.02606i 0.153793 0.0559762i
\(337\) −5.55674 31.5138i −0.302695 1.71667i −0.634161 0.773201i \(-0.718654\pi\)
0.331466 0.943467i \(-0.392457\pi\)
\(338\) −2.08378 + 11.8177i −0.113343 + 0.642798i
\(339\) 13.1557 + 4.78828i 0.714519 + 0.260064i
\(340\) −9.19253 + 7.71345i −0.498535 + 0.418321i
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 3.06418 2.57115i 0.165209 0.138627i
\(345\) 3.75877 + 1.36808i 0.202365 + 0.0736550i
\(346\) −1.04189 + 5.90885i −0.0560123 + 0.317662i
\(347\) −0.347296 1.96962i −0.0186438 0.105735i 0.974066 0.226265i \(-0.0726515\pi\)
−0.992710 + 0.120531i \(0.961540\pi\)
\(348\) −4.69846 + 1.71010i −0.251864 + 0.0916710i
\(349\) −5.00000 + 8.66025i −0.267644 + 0.463573i −0.968253 0.249973i \(-0.919578\pi\)
0.700609 + 0.713545i \(0.252912\pi\)
\(350\) −16.5000 28.5788i −0.881962 1.52760i
\(351\) −3.83022 3.21394i −0.204442 0.171547i
\(352\) 1.53209 + 1.28558i 0.0816606 + 0.0685214i
\(353\) −4.50000 7.79423i −0.239511 0.414845i 0.721063 0.692869i \(-0.243654\pi\)
−0.960574 + 0.278024i \(0.910320\pi\)
\(354\) 7.50000 12.9904i 0.398621 0.690431i
\(355\) 7.51754 2.73616i 0.398990 0.145220i
\(356\) 0 0
\(357\) −1.56283 + 8.86327i −0.0827139 + 0.469094i
\(358\) 0 0
\(359\) −11.4907 + 9.64181i −0.606454 + 0.508875i −0.893513 0.449037i \(-0.851767\pi\)
0.287059 + 0.957913i \(0.407323\pi\)
\(360\) 8.00000 0.421637
\(361\) 0 0
\(362\) 22.0000 1.15629
\(363\) 5.36231 4.49951i 0.281448 0.236163i
\(364\) 2.81908 + 1.02606i 0.147760 + 0.0537802i
\(365\) −6.25133 + 35.4531i −0.327210 + 1.85570i
\(366\) −0.347296 1.96962i −0.0181535 0.102953i
\(367\) −26.3114 + 9.57656i −1.37344 + 0.499893i −0.920184 0.391486i \(-0.871961\pi\)
−0.453260 + 0.891379i \(0.649739\pi\)
\(368\) 0.500000 0.866025i 0.0260643 0.0451447i
\(369\) −8.00000 13.8564i −0.416463 0.721336i
\(370\) 6.12836 + 5.14230i 0.318598 + 0.267335i
\(371\) −2.29813 1.92836i −0.119313 0.100116i
\(372\) −4.00000 6.92820i −0.207390 0.359211i
\(373\) −14.5000 + 25.1147i −0.750782 + 1.30039i 0.196663 + 0.980471i \(0.436990\pi\)
−0.947444 + 0.319921i \(0.896344\pi\)
\(374\) −5.63816 + 2.05212i −0.291542 + 0.106113i
\(375\) 4.16756 + 23.6354i 0.215212 + 1.22053i
\(376\) 1.38919 7.87846i 0.0716418 0.406301i
\(377\) −4.69846 1.71010i −0.241983 0.0880747i
\(378\) 11.4907 9.64181i 0.591016 0.495921i
\(379\) 15.0000 0.770498 0.385249 0.922813i \(-0.374116\pi\)
0.385249 + 0.922813i \(0.374116\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.922168
\(382\) 5.36231 4.49951i 0.274360 0.230215i
\(383\) 24.4320 + 8.89252i 1.24842 + 0.454387i 0.879867 0.475221i \(-0.157632\pi\)
0.368551 + 0.929608i \(0.379854\pi\)
\(384\) −0.173648 + 0.984808i −0.00886145 + 0.0502558i
\(385\) −4.16756 23.6354i −0.212398 1.20457i
\(386\) 5.63816 2.05212i 0.286975 0.104450i
\(387\) 4.00000 6.92820i 0.203331 0.352180i
\(388\) 1.00000 + 1.73205i 0.0507673 + 0.0879316i
\(389\) −22.9813 19.2836i −1.16520 0.977719i −0.165236 0.986254i \(-0.552839\pi\)
−0.999964 + 0.00853524i \(0.997283\pi\)
\(390\) −3.06418 2.57115i −0.155161 0.130195i
\(391\) 1.50000 + 2.59808i 0.0758583 + 0.131390i
\(392\) −1.00000 + 1.73205i −0.0505076 + 0.0874818i
\(393\) 11.2763 4.10424i 0.568815 0.207032i
\(394\) 1.38919 + 7.87846i 0.0699862 + 0.396911i
\(395\) 6.94593 39.3923i 0.349488 1.98204i
\(396\) 3.75877 + 1.36808i 0.188885 + 0.0687486i
\(397\) 6.12836 5.14230i 0.307573 0.258085i −0.475915 0.879491i \(-0.657883\pi\)
0.783488 + 0.621407i \(0.213439\pi\)
\(398\) −25.0000 −1.25314
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −6.12836 + 5.14230i −0.306035 + 0.256794i −0.782851 0.622209i \(-0.786235\pi\)
0.476816 + 0.879003i \(0.341791\pi\)
\(402\) 2.81908 + 1.02606i 0.140603 + 0.0511752i
\(403\) 1.38919 7.87846i 0.0692003 0.392454i
\(404\) 0.347296 + 1.96962i 0.0172786 + 0.0979920i
\(405\) 3.75877 1.36808i 0.186775 0.0679805i
\(406\) 7.50000 12.9904i 0.372219 0.644702i
\(407\) 2.00000 + 3.46410i 0.0991363 + 0.171709i
\(408\) −2.29813 1.92836i −0.113775 0.0954682i
\(409\) −15.3209 12.8558i −0.757569 0.635676i 0.179924 0.983681i \(-0.442415\pi\)
−0.937493 + 0.348005i \(0.886859\pi\)
\(410\) −16.0000 27.7128i −0.790184 1.36864i
\(411\) −8.50000 + 14.7224i −0.419274 + 0.726204i
\(412\) 5.63816 2.05212i 0.277772 0.101101i
\(413\) 7.81417 + 44.3163i 0.384510 + 2.18066i
\(414\) 0.347296 1.96962i 0.0170687 0.0968013i
\(415\) −22.5526 8.20848i −1.10706 0.402939i
\(416\) −0.766044 + 0.642788i −0.0375584 + 0.0315153i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 9.19253 7.71345i 0.448550 0.376378i
\(421\) 12.2160 + 4.44626i 0.595372 + 0.216698i 0.622090 0.782945i \(-0.286284\pi\)
−0.0267188 + 0.999643i \(0.508506\pi\)
\(422\) 4.68850 26.5898i 0.228233 1.29437i
\(423\) −2.77837 15.7569i −0.135089 0.766128i
\(424\) 0.939693 0.342020i 0.0456355 0.0166100i
\(425\) −16.5000 + 28.5788i −0.800368 + 1.38628i
\(426\) 1.00000 + 1.73205i 0.0484502 + 0.0839181i
\(427\) 4.59627 + 3.85673i 0.222429 + 0.186640i
\(428\) −5.36231 4.49951i −0.259197 0.217492i
\(429\) −1.00000 1.73205i −0.0482805 0.0836242i
\(430\) 8.00000 13.8564i 0.385794 0.668215i
\(431\) 16.9145 6.15636i 0.814741 0.296542i 0.0991604 0.995071i \(-0.468384\pi\)
0.715581 + 0.698530i \(0.246162\pi\)
\(432\) 0.868241 + 4.92404i 0.0417733 + 0.236908i
\(433\) 2.43107 13.7873i 0.116830 0.662576i −0.868998 0.494816i \(-0.835236\pi\)
0.985828 0.167760i \(-0.0536534\pi\)
\(434\) 22.5526 + 8.20848i 1.08256 + 0.394020i
\(435\) −15.3209 + 12.8558i −0.734580 + 0.616386i
\(436\) −15.0000 −0.718370
\(437\) 0 0
\(438\) −9.00000 −0.430037
\(439\) 15.3209 12.8558i 0.731226 0.613572i −0.199239 0.979951i \(-0.563847\pi\)
0.930466 + 0.366379i \(0.119403\pi\)
\(440\) 7.51754 + 2.73616i 0.358385 + 0.130441i
\(441\) −0.694593 + 3.93923i −0.0330758 + 0.187582i
\(442\) −0.520945 2.95442i −0.0247788 0.140528i
\(443\) 24.4320 8.89252i 1.16080 0.422497i 0.311417 0.950273i \(-0.399197\pi\)
0.849383 + 0.527777i \(0.176974\pi\)
\(444\) −1.00000 + 1.73205i −0.0474579 + 0.0821995i
\(445\) 0 0
\(446\) 10.7246 + 8.99903i 0.507826 + 0.426116i
\(447\) 0 0
\(448\) −1.50000 2.59808i −0.0708683 0.122748i
\(449\) −5.00000 + 8.66025i −0.235965 + 0.408703i −0.959553 0.281529i \(-0.909158\pi\)
0.723588 + 0.690232i \(0.242492\pi\)
\(450\) 20.6732 7.52444i 0.974546 0.354706i
\(451\) −2.77837 15.7569i −0.130828 0.741965i
\(452\) 2.43107 13.7873i 0.114348 0.648500i
\(453\) 1.87939 + 0.684040i 0.0883012 + 0.0321390i
\(454\) −13.0228 + 10.9274i −0.611188 + 0.512848i
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) −7.00000 −0.327446 −0.163723 0.986506i \(-0.552350\pi\)
−0.163723 + 0.986506i \(0.552350\pi\)
\(458\) −7.66044 + 6.42788i −0.357949 + 0.300355i
\(459\) −14.0954 5.13030i −0.657916 0.239462i
\(460\) 0.694593 3.93923i 0.0323856 0.183668i
\(461\) −4.86215 27.5746i −0.226453 1.28428i −0.859888 0.510482i \(-0.829467\pi\)
0.633435 0.773796i \(-0.281644\pi\)
\(462\) 5.63816 2.05212i 0.262311 0.0954733i
\(463\) −2.00000 + 3.46410i −0.0929479 + 0.160990i −0.908750 0.417340i \(-0.862962\pi\)
0.815802 + 0.578331i \(0.196296\pi\)
\(464\) 2.50000 + 4.33013i 0.116060 + 0.201021i
\(465\) −24.5134 20.5692i −1.13678 0.953874i
\(466\) −4.59627 3.85673i −0.212918 0.178659i
\(467\) 1.00000 + 1.73205i 0.0462745 + 0.0801498i 0.888235 0.459390i \(-0.151932\pi\)
−0.841960 + 0.539539i \(0.818598\pi\)
\(468\) −1.00000 + 1.73205i −0.0462250 + 0.0800641i
\(469\) −8.45723 + 3.07818i −0.390519 + 0.142137i
\(470\) −5.55674 31.5138i −0.256313 1.45363i
\(471\) 0.347296 1.96962i 0.0160026 0.0907551i
\(472\) −14.0954 5.13030i −0.648793 0.236141i
\(473\) 6.12836 5.14230i 0.281782 0.236443i
\(474\) 10.0000 0.459315
\(475\) 0 0
\(476\) 9.00000 0.412514
\(477\) 1.53209 1.28558i 0.0701495 0.0588624i
\(478\) −14.0954 5.13030i −0.644708 0.234655i
\(479\) −3.47296 + 19.6962i −0.158684 + 0.899940i 0.796657 + 0.604432i \(0.206600\pi\)
−0.955340 + 0.295508i \(0.904511\pi\)
\(480\) 0.694593 + 3.93923i 0.0317037 + 0.179800i
\(481\) −1.87939 + 0.684040i −0.0856926 + 0.0311896i
\(482\) 4.00000 6.92820i 0.182195 0.315571i
\(483\) −1.50000 2.59808i −0.0682524 0.118217i
\(484\) −5.36231 4.49951i −0.243741 0.204523i
\(485\) 6.12836 + 5.14230i 0.278274 + 0.233500i
\(486\) 8.00000 + 13.8564i 0.362887 + 0.628539i
\(487\) 1.00000 1.73205i 0.0453143 0.0784867i −0.842479 0.538730i \(-0.818904\pi\)
0.887793 + 0.460243i \(0.152238\pi\)
\(488\) −1.87939 + 0.684040i −0.0850758 + 0.0309650i
\(489\) 2.77837 + 15.7569i 0.125642 + 0.712553i
\(490\) −1.38919 + 7.87846i −0.0627570 + 0.355913i
\(491\) 26.3114 + 9.57656i 1.18742 + 0.432184i 0.858816 0.512285i \(-0.171201\pi\)
0.328601 + 0.944469i \(0.393423\pi\)
\(492\) 6.12836 5.14230i 0.276288 0.231833i
\(493\) −15.0000 −0.675566
\(494\) 0 0
\(495\) 16.0000 0.719147
\(496\) −6.12836 + 5.14230i −0.275171 + 0.230896i
\(497\) −5.63816 2.05212i −0.252906 0.0920502i
\(498\) 1.04189 5.90885i 0.0466882 0.264782i
\(499\) 6.94593 + 39.3923i 0.310942 + 1.76344i 0.594122 + 0.804375i \(0.297500\pi\)
−0.283179 + 0.959067i \(0.591389\pi\)
\(500\) 22.5526 8.20848i 1.00858 0.367095i
\(501\) −6.00000 + 10.3923i −0.268060 + 0.464294i
\(502\) −1.00000 1.73205i −0.0446322 0.0773052i
\(503\) 29.8757 + 25.0687i 1.33209 + 1.11776i 0.983583 + 0.180454i \(0.0577566\pi\)
0.348510 + 0.937305i \(0.386688\pi\)
\(504\) −4.59627 3.85673i −0.204734 0.171792i
\(505\) 4.00000 + 6.92820i 0.177998 + 0.308301i
\(506\) 1.00000 1.73205i 0.0444554 0.0769991i
\(507\) −11.2763 + 4.10424i −0.500799 + 0.182276i
\(508\) 3.12567 + 17.7265i 0.138679 + 0.786488i
\(509\) −5.20945 + 29.5442i −0.230905 + 1.30953i 0.620165 + 0.784472i \(0.287066\pi\)
−0.851069 + 0.525053i \(0.824045\pi\)
\(510\) −11.2763 4.10424i −0.499323 0.181739i
\(511\) 20.6832 17.3553i 0.914971 0.767752i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) 18.3851 15.4269i 0.810143 0.679791i
\(516\) 3.75877 + 1.36808i 0.165471 + 0.0602264i
\(517\) 2.77837 15.7569i 0.122193 0.692989i
\(518\) −1.04189 5.90885i −0.0457780 0.259620i
\(519\) −5.63816 + 2.05212i −0.247488 + 0.0900781i
\(520\) −2.00000 + 3.46410i −0.0877058 + 0.151911i
\(521\) 14.0000 + 24.2487i 0.613351 + 1.06236i 0.990671 + 0.136272i \(0.0435123\pi\)
−0.377320 + 0.926083i \(0.623154\pi\)
\(522\) 7.66044 + 6.42788i 0.335289 + 0.281340i
\(523\) 22.2153 + 18.6408i 0.971407 + 0.815107i 0.982771 0.184828i \(-0.0591729\pi\)
−0.0113641 + 0.999935i \(0.503617\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 16.5000 28.5788i 0.720119 1.24728i
\(526\) −22.5526 + 8.20848i −0.983341 + 0.357907i
\(527\) −4.16756 23.6354i −0.181542 1.02957i
\(528\) −0.347296 + 1.96962i −0.0151141 + 0.0857165i
\(529\) 20.6732 + 7.52444i 0.898836 + 0.327150i
\(530\) 3.06418 2.57115i 0.133099 0.111684i
\(531\) −30.0000 −1.30189
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) −26.3114 9.57656i −1.13754 0.414031i
\(536\) 0.520945 2.95442i 0.0225014 0.127612i
\(537\) 0 0
\(538\) −28.1908 + 10.2606i −1.21539 + 0.442366i
\(539\) −2.00000 + 3.46410i −0.0861461 + 0.149209i
\(540\) 10.0000 + 17.3205i 0.430331 + 0.745356i
\(541\) 1.53209 + 1.28558i 0.0658696 + 0.0552712i 0.675128 0.737701i \(-0.264088\pi\)
−0.609258 + 0.792972i \(0.708533\pi\)
\(542\) 5.36231 + 4.49951i 0.230331 + 0.193271i
\(543\) 11.0000 + 19.0526i 0.472055 + 0.817624i
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) −56.3816 + 20.5212i −2.41512 + 0.879032i
\(546\) 0.520945 + 2.95442i 0.0222944 + 0.126438i
\(547\) 4.86215 27.5746i 0.207890 1.17901i −0.684936 0.728604i \(-0.740170\pi\)
0.892826 0.450402i \(-0.148719\pi\)
\(548\) 15.9748 + 5.81434i 0.682409 + 0.248376i
\(549\) −3.06418 + 2.57115i −0.130776 + 0.109734i
\(550\) 22.0000 0.938083
\(551\) 0 0
\(552\) 1.00000 0.0425628
\(553\) −22.9813 + 19.2836i −0.977266 + 0.820023i
\(554\) −26.3114 9.57656i −1.11786 0.406869i
\(555\) −1.38919 + 7.87846i −0.0589676 + 0.334422i
\(556\) 0 0
\(557\) −26.3114 + 9.57656i −1.11485 + 0.405772i −0.832770 0.553619i \(-0.813246\pi\)
−0.282079 + 0.959391i \(0.591024\pi\)
\(558\) −8.00000 + 13.8564i −0.338667 + 0.586588i
\(559\) 2.00000 + 3.46410i 0.0845910 + 0.146516i
\(560\) −9.19253 7.71345i −0.388455 0.325953i
\(561\) −4.59627 3.85673i −0.194055 0.162831i
\(562\) 4.00000 + 6.92820i 0.168730 + 0.292249i
\(563\) 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331202i \(-0.107454\pi\)
\(564\) 7.51754 2.73616i 0.316546 0.115213i
\(565\) −9.72430 55.1492i −0.409104 2.32015i
\(566\) −1.04189 + 5.90885i −0.0437939 + 0.248367i
\(567\) −2.81908 1.02606i −0.118390 0.0430905i
\(568\) 1.53209 1.28558i 0.0642850 0.0539415i
\(569\) 40.0000 1.67689 0.838444 0.544988i \(-0.183466\pi\)
0.838444 + 0.544988i \(0.183466\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) −1.53209 + 1.28558i −0.0640599 + 0.0537526i
\(573\) 6.57785 + 2.39414i 0.274794 + 0.100017i
\(574\) −4.16756 + 23.6354i −0.173950 + 0.986522i
\(575\) −1.91013 10.8329i −0.0796579 0.451763i
\(576\) 1.87939 0.684040i 0.0783077 0.0285017i
\(577\) 18.5000 32.0429i 0.770165 1.33397i −0.167307 0.985905i \(-0.553507\pi\)
0.937472 0.348060i \(-0.113160\pi\)
\(578\) 4.00000 + 6.92820i 0.166378 + 0.288175i
\(579\) 4.59627 + 3.85673i 0.191014 + 0.160280i
\(580\) 15.3209 + 12.8558i 0.636165 + 0.533806i
\(581\) 9.00000 + 15.5885i 0.373383 + 0.646718i
\(582\) −1.00000 + 1.73205i −0.0414513 + 0.0717958i
\(583\) 1.87939 0.684040i 0.0778362 0.0283301i
\(584\) 1.56283 + 8.86327i 0.0646705 + 0.366765i
\(585\) −1.38919 + 7.87846i −0.0574357 + 0.325734i
\(586\) −8.45723 3.07818i −0.349365 0.127158i
\(587\) −9.19253 + 7.71345i −0.379416 + 0.318368i −0.812473 0.582998i \(-0.801879\pi\)
0.433057 + 0.901367i \(0.357435\pi\)
\(588\) −2.00000 −0.0824786
\(589\) 0 0
\(590\) −60.0000 −2.47016
\(591\) −6.12836 + 5.14230i −0.252087 + 0.211526i
\(592\) 1.87939 + 0.684040i 0.0772423 + 0.0281139i
\(593\) 5.90404 33.4835i 0.242450 1.37500i −0.583892 0.811832i \(-0.698471\pi\)
0.826341 0.563169i \(-0.190418\pi\)
\(594\) 1.73648 + 9.84808i 0.0712487 + 0.404072i
\(595\) 33.8289 12.3127i 1.38685 0.504773i
\(596\) 0 0
\(597\) −12.5000 21.6506i −0.511591 0.886102i
\(598\) 0.766044 + 0.642788i 0.0313259 + 0.0262855i
\(599\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(600\) 5.50000 + 9.52628i 0.224537 + 0.388909i
\(601\) 4.00000 6.92820i 0.163163 0.282607i −0.772838 0.634603i \(-0.781164\pi\)
0.936002 + 0.351996i \(0.114497\pi\)
\(602\) −11.2763 + 4.10424i −0.459588 + 0.167276i
\(603\) −1.04189 5.90885i −0.0424290 0.240627i
\(604\) 0.347296 1.96962i 0.0141313 0.0801425i
\(605\) −26.3114 9.57656i −1.06971 0.389343i
\(606\) −1.53209 + 1.28558i −0.0622369 + 0.0522229i
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 0 0
\(609\) 15.0000 0.607831
\(610\) −6.12836 + 5.14230i −0.248130 + 0.208206i
\(611\) 7.51754 + 2.73616i 0.304127 + 0.110693i
\(612\) −1.04189 + 5.90885i −0.0421159 + 0.238851i
\(613\) 5.90404 + 33.4835i 0.238462 + 1.35238i 0.835199 + 0.549948i \(0.185352\pi\)
−0.596737 + 0.802437i \(0.703537\pi\)
\(614\) 11.2763 4.10424i 0.455075 0.165634i
\(615\) 16.0000 27.7128i 0.645182 1.11749i
\(616\) −3.00000 5.19615i −0.120873 0.209359i
\(617\) 13.7888 + 11.5702i 0.555116 + 0.465798i 0.876669 0.481094i \(-0.159760\pi\)
−0.321553 + 0.946892i \(0.604205\pi\)
\(618\) 4.59627 + 3.85673i 0.184889 + 0.155140i
\(619\) −5.00000 8.66025i −0.200967 0.348085i 0.747873 0.663842i \(-0.231075\pi\)
−0.948840 + 0.315757i \(0.897742\pi\)
\(620\) −16.0000 + 27.7128i −0.642575 + 1.11297i
\(621\) 4.69846 1.71010i 0.188543 0.0686240i
\(622\) 1.21554 + 6.89365i 0.0487386 + 0.276410i
\(623\) 0 0
\(624\) −0.939693 0.342020i −0.0376178 0.0136918i
\(625\) 31.4078 26.3543i 1.25631 1.05417i
\(626\) 29.0000 1.15907
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −4.59627 + 3.85673i −0.183265 + 0.153778i
\(630\) −22.5526 8.20848i −0.898518 0.327034i
\(631\) 5.55674 31.5138i 0.221210 1.25455i −0.648588 0.761140i \(-0.724640\pi\)
0.869799 0.493407i \(-0.164249\pi\)
\(632\) −1.73648 9.84808i −0.0690735 0.391735i
\(633\) 25.3717 9.23454i 1.00843 0.367040i
\(634\) 13.5000 23.3827i 0.536153 0.928645i
\(635\) 36.0000 + 62.3538i 1.42862 + 2.47444i
\(636\) 0.766044 + 0.642788i 0.0303756 + 0.0254882i
\(637\) −1.53209 1.28558i −0.0607036 0.0509363i
\(638\) 5.00000 + 8.66025i 0.197952 + 0.342863i
\(639\) 2.00000 3.46410i 0.0791188 0.137038i
\(640\) 3.75877 1.36808i 0.148578 0.0540781i
\(641\) 7.29322 + 41.3619i 0.288065 + 1.63370i 0.694127 + 0.719852i \(0.255791\pi\)
−0.406062 + 0.913845i \(0.633098\pi\)
\(642\) 1.21554 6.89365i 0.0479734 0.272071i
\(643\) 24.4320 + 8.89252i 0.963504 + 0.350687i 0.775406 0.631463i \(-0.217545\pi\)
0.188099 + 0.982150i \(0.439768\pi\)
\(644\) −2.29813 + 1.92836i −0.0905591 + 0.0759881i
\(645\) 16.0000 0.629999
\(646\) 0 0
\(647\) 23.0000 0.904223 0.452112 0.891961i \(-0.350671\pi\)
0.452112 + 0.891961i \(0.350671\pi\)
\(648\) 0.766044 0.642788i 0.0300931 0.0252511i
\(649\) −28.1908 10.2606i −1.10658 0.402764i
\(650\) −1.91013 + 10.8329i −0.0749215 + 0.424901i
\(651\) 4.16756 + 23.6354i 0.163339 + 0.926344i
\(652\) 15.0351 5.47232i 0.588819 0.214313i
\(653\) 18.0000 31.1769i 0.704394 1.22005i −0.262515 0.964928i \(-0.584552\pi\)
0.966910 0.255119i \(-0.0821147\pi\)
\(654\) −7.50000 12.9904i −0.293273 0.507964i
\(655\) −36.7701 30.8538i −1.43673 1.20556i
\(656\) −6.12836 5.14230i −0.239272 0.200773i
\(657\) 9.00000 + 15.5885i 0.351123 + 0.608164i
\(658\) −12.0000 + 20.7846i −0.467809 + 0.810268i
\(659\) −4.69846 + 1.71010i −0.183026 + 0.0666161i −0.431907 0.901918i \(-0.642159\pi\)
0.248881 + 0.968534i \(0.419937\pi\)
\(660\) 1.38919 + 7.87846i 0.0540740 + 0.306669i
\(661\) −3.99391 + 22.6506i −0.155345 + 0.881005i 0.803125 + 0.595811i \(0.203169\pi\)
−0.958470 + 0.285194i \(0.907942\pi\)
\(662\) −15.9748 5.81434i −0.620877 0.225981i
\(663\) 2.29813 1.92836i 0.0892521 0.0748914i
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) 3.83022 3.21394i 0.148307 0.124444i
\(668\) 11.2763 + 4.10424i 0.436294 + 0.158798i
\(669\) −2.43107 + 13.7873i −0.0939908 + 0.533048i
\(670\) −2.08378 11.8177i −0.0805034 0.456557i
\(671\) −3.75877 + 1.36808i −0.145106 + 0.0528142i
\(672\) 1.50000 2.59808i 0.0578638 0.100223i
\(673\) −22.0000 38.1051i −0.848038 1.46884i −0.882957 0.469454i \(-0.844451\pi\)
0.0349191 0.999390i \(-0.488883\pi\)
\(674\) −24.5134 20.5692i −0.944222 0.792296i
\(675\) 42.1324 + 35.3533i 1.62168 + 1.36075i
\(676\) 6.00000 + 10.3923i 0.230769 + 0.399704i
\(677\) −6.50000 + 11.2583i −0.249815 + 0.432693i −0.963474 0.267800i \(-0.913703\pi\)
0.713659 + 0.700493i \(0.247037\pi\)
\(678\) 13.1557 4.78828i 0.505241 0.183893i
\(679\) −1.04189 5.90885i −0.0399840 0.226761i
\(680\) −2.08378 + 11.8177i −0.0799092 + 0.453188i
\(681\) −15.9748 5.81434i −0.612155 0.222806i
\(682\) −12.2567 + 10.2846i −0.469334 + 0.393818i
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 68.0000 2.59815
\(686\) −11.4907 + 9.64181i −0.438716 + 0.368126i
\(687\) −9.39693 3.42020i −0.358515 0.130489i
\(688\) 0.694593 3.93923i 0.0264811 0.150182i
\(689\) 0.173648 + 0.984808i 0.00661547 + 0.0375182i
\(690\) 3.75877 1.36808i 0.143094 0.0520819i
\(691\) −21.0000 + 36.3731i −0.798878 + 1.38370i 0.121470 + 0.992595i \(0.461239\pi\)
−0.920348 + 0.391102i \(0.872094\pi\)
\(692\) 3.00000 + 5.19615i 0.114043 + 0.197528i
\(693\) −9.19253 7.71345i −0.349195 0.293010i
\(694\) −1.53209 1.28558i −0.0581573 0.0487998i
\(695\) 0 0
\(696\) −2.50000 + 4.33013i −0.0947623 + 0.164133i
\(697\) 22.5526 8.20848i 0.854242 0.310918i
\(698\) 1.73648 + 9.84808i 0.0657268 + 0.372755i
\(699\) 1.04189 5.90885i 0.0394079 0.223493i
\(700\) −31.0099 11.2867i −1.17206 0.426596i
\(701\) −21.4492 + 17.9981i −0.810127 + 0.679777i −0.950638 0.310302i \(-0.899570\pi\)
0.140511 + 0.990079i \(0.455125\pi\)
\(702\) −5.00000 −0.188713
\(703\) 0 0
\(704\) 2.00000 0.0753778
\(705\) 24.5134 20.5692i 0.923229 0.774681i
\(706\) −8.45723 3.07818i −0.318292 0.115849i
\(707\) 1.04189 5.90885i 0.0391843 0.222225i
\(708\) −2.60472 14.7721i −0.0978915 0.555170i
\(709\) 28.1908 10.2606i 1.05873 0.385345i 0.246777 0.969072i \(-0.420628\pi\)
0.811950 + 0.583727i \(0.198406\pi\)
\(710\) 4.00000 6.92820i 0.150117 0.260011i
\(711\) −10.0000 17.3205i −0.375029 0.649570i
\(712\) 0 0
\(713\) 6.12836 + 5.14230i 0.229509 + 0.192581i
\(714\) 4.50000 + 7.79423i 0.168408 + 0.291692i
\(715\) −4.00000 + 6.92820i −0.149592 + 0.259100i
\(716\) 0 0
\(717\) −2.60472 14.7721i −0.0972752 0.551675i
\(718\) −2.60472 + 14.7721i −0.0972074 + 0.551290i
\(719\) 4.69846 + 1.71010i 0.175223 + 0.0637760i 0.428142 0.903712i \(-0.359168\pi\)
−0.252919 + 0.967488i \(0.581391\pi\)
\(720\) 6.12836 5.14230i 0.228390 0.191642i
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) 8.00000 0.297523
\(724\) 16.8530 14.1413i 0.626336 0.525558i
\(725\) 51.6831 + 18.8111i 1.91946 + 0.698627i
\(726\) 1.21554 6.89365i 0.0451128 0.255848i
\(727\) −2.95202 16.7417i −0.109484 0.620916i −0.989334 0.145664i \(-0.953468\pi\)
0.879850 0.475252i \(-0.157643\pi\)
\(728\) 2.81908 1.02606i 0.104482 0.0380283i
\(729\) −6.50000 + 11.2583i −0.240741 + 0.416975i
\(730\) 18.0000 + 31.1769i 0.666210 + 1.15391i
\(731\) 9.19253 + 7.71345i 0.339998 + 0.285292i
\(732\) −1.53209 1.28558i −0.0566276 0.0475162i
\(733\) 18.0000 + 31.1769i 0.664845 + 1.15155i 0.979327 + 0.202282i \(0.0648358\pi\)
−0.314482 + 0.949263i \(0.601831\pi\)
\(734\) −14.0000 + 24.2487i −0.516749 + 0.895036i
\(735\) −7.51754 + 2.73616i −0.277289 + 0.100925i
\(736\) −0.173648 0.984808i −0.00640076 0.0363005i
\(737\) 1.04189 5.90885i 0.0383785 0.217655i
\(738\) −15.0351 5.47232i −0.553449 0.201439i
\(739\) −30.6418 + 25.7115i −1.12718 + 0.945813i −0.998945 0.0459313i \(-0.985374\pi\)
−0.128231 + 0.991744i \(0.540930\pi\)
\(740\) 8.00000 0.294086
\(741\) 0 0
\(742\) −3.00000 −0.110133
\(743\) −12.2567 + 10.2846i −0.449655 + 0.377305i −0.839308 0.543656i \(-0.817039\pi\)
0.389653 + 0.920962i \(0.372595\pi\)
\(744\) −7.51754 2.73616i −0.275606 0.100313i
\(745\) 0 0
\(746\) 5.03580 + 28.5594i 0.184374 + 1.04563i
\(747\) −11.2763 + 4.10424i −0.412579 + 0.150166i
\(748\) −3.00000 + 5.19615i −0.109691 + 0.189990i
\(749\) 10.5000 + 18.1865i 0.383662 + 0.664521i
\(750\) 18.3851 + 15.4269i 0.671328 + 0.563311i
\(751\) 24.5134 + 20.5692i 0.894507 + 0.750581i 0.969109 0.246633i \(-0.0793241\pi\)
−0.0746016 + 0.997213i \(0.523769\pi\)
\(752\) −4.00000 6.92820i −0.145865 0.252646i
\(753\) 1.00000 1.73205i 0.0364420 0.0631194i
\(754\) −4.69846 + 1.71010i −0.171108 + 0.0622782i
\(755\) −1.38919 7.87846i −0.0505576 0.286727i
\(756\) 2.60472 14.7721i 0.0947328 0.537257i
\(757\) 1.87939 + 0.684040i 0.0683074 + 0.0248619i 0.375948 0.926641i \(-0.377317\pi\)
−0.307640 + 0.951503i \(0.599539\pi\)
\(758\) 11.4907 9.64181i 0.417360 0.350206i
\(759\) 2.00000 0.0725954
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) −13.7888 + 11.5702i −0.499516 + 0.419143i
\(763\) 42.2862 + 15.3909i 1.53086 + 0.557188i
\(764\) 1.21554 6.89365i 0.0439766 0.249404i
\(765\) 4.16756 + 23.6354i 0.150678 + 0.854539i
\(766\) 24.4320 8.89252i 0.882764 0.321300i
\(767\) 7.50000 12.9904i 0.270809 0.469055i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −26.8116 22.4976i −0.966849 0.811283i 0.0152043 0.999884i \(-0.495160\pi\)
−0.982054 + 0.188601i \(0.939605\pi\)
\(770\) −18.3851 15.4269i −0.662552 0.555947i
\(771\) 4.00000 + 6.92820i 0.144056 + 0.249513i
\(772\) 3.00000 5.19615i 0.107972 0.187014i
\(773\) −8.45723 + 3.07818i −0.304186 + 0.110714i −0.489603 0.871945i \(-0.662858\pi\)
0.185418 + 0.982660i \(0.440636\pi\)
\(774\) −1.38919 7.87846i −0.0499332 0.283185i
\(775\) −15.2810 + 86.6631i −0.548911 + 3.11303i
\(776\) 1.87939 + 0.684040i 0.0674660 + 0.0245556i