Properties

Label 722.2.e.c.389.1
Level $722$
Weight $2$
Character 722.389
Analytic conductor $5.765$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $6$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 722.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.76519902594\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 389.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 722.389
Dual form 722.2.e.c.245.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.173648 + 0.984808i) q^{2} +(-0.766044 + 0.642788i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(3.75877 + 1.36808i) q^{5} +(-0.766044 - 0.642788i) q^{6} +(-1.50000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-0.347296 + 1.96962i) q^{9} +O(q^{10})\) \(q+(0.173648 + 0.984808i) q^{2} +(-0.766044 + 0.642788i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(3.75877 + 1.36808i) q^{5} +(-0.766044 - 0.642788i) q^{6} +(-1.50000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-0.347296 + 1.96962i) q^{9} +(-0.694593 + 3.93923i) q^{10} +(-1.00000 - 1.73205i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-0.766044 - 0.642788i) q^{13} +(-2.81908 - 1.02606i) q^{14} +(-3.75877 + 1.36808i) q^{15} +(0.766044 - 0.642788i) q^{16} +(0.520945 + 2.95442i) q^{17} -2.00000 q^{18} -4.00000 q^{20} +(-0.520945 - 2.95442i) q^{21} +(1.53209 - 1.28558i) q^{22} +(0.939693 - 0.342020i) q^{23} +(0.939693 + 0.342020i) q^{24} +(8.42649 + 7.07066i) q^{25} +(0.500000 - 0.866025i) q^{26} +(-2.50000 - 4.33013i) q^{27} +(0.520945 - 2.95442i) q^{28} +(-0.868241 + 4.92404i) q^{29} +(-2.00000 - 3.46410i) q^{30} +(4.00000 - 6.92820i) q^{31} +(0.766044 + 0.642788i) q^{32} +(1.87939 + 0.684040i) q^{33} +(-2.81908 + 1.02606i) q^{34} +(-9.19253 + 7.71345i) q^{35} +(-0.347296 - 1.96962i) q^{36} -2.00000 q^{37} +1.00000 q^{39} +(-0.694593 - 3.93923i) q^{40} +(-6.12836 + 5.14230i) q^{41} +(2.81908 - 1.02606i) q^{42} +(-3.75877 - 1.36808i) q^{43} +(1.53209 + 1.28558i) q^{44} +(-4.00000 + 6.92820i) q^{45} +(0.500000 + 0.866025i) q^{46} +(1.38919 - 7.87846i) q^{47} +(-0.173648 + 0.984808i) q^{48} +(-1.00000 - 1.73205i) q^{49} +(-5.50000 + 9.52628i) q^{50} +(-2.29813 - 1.92836i) q^{51} +(0.939693 + 0.342020i) q^{52} +(0.939693 - 0.342020i) q^{53} +(3.83022 - 3.21394i) q^{54} +(-1.38919 - 7.87846i) q^{55} +3.00000 q^{56} -5.00000 q^{58} +(2.60472 + 14.7721i) q^{59} +(3.06418 - 2.57115i) q^{60} +(-1.87939 + 0.684040i) q^{61} +(7.51754 + 2.73616i) q^{62} +(-4.59627 - 3.85673i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-2.00000 - 3.46410i) q^{65} +(-0.347296 + 1.96962i) q^{66} +(0.520945 - 2.95442i) q^{67} +(-1.50000 - 2.59808i) q^{68} +(-0.500000 + 0.866025i) q^{69} +(-9.19253 - 7.71345i) q^{70} +(-1.87939 - 0.684040i) q^{71} +(1.87939 - 0.684040i) q^{72} +(6.89440 - 5.78509i) q^{73} +(-0.347296 - 1.96962i) q^{74} -11.0000 q^{75} +6.00000 q^{77} +(0.173648 + 0.984808i) q^{78} +(-7.66044 + 6.42788i) q^{79} +(3.75877 - 1.36808i) q^{80} +(-0.939693 - 0.342020i) q^{81} +(-6.12836 - 5.14230i) q^{82} +(3.00000 - 5.19615i) q^{83} +(1.50000 + 2.59808i) q^{84} +(-2.08378 + 11.8177i) q^{85} +(0.694593 - 3.93923i) q^{86} +(-2.50000 - 4.33013i) q^{87} +(-1.00000 + 1.73205i) q^{88} +(-7.51754 - 2.73616i) q^{90} +(2.81908 - 1.02606i) q^{91} +(-0.766044 + 0.642788i) q^{92} +(1.38919 + 7.87846i) q^{93} +8.00000 q^{94} -1.00000 q^{96} +(-0.347296 - 1.96962i) q^{97} +(1.53209 - 1.28558i) q^{98} +(3.75877 - 1.36808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 9q^{7} - 3q^{8} + O(q^{10}) \) \( 6q - 9q^{7} - 3q^{8} - 6q^{11} + 3q^{12} - 12q^{18} - 24q^{20} + 3q^{26} - 15q^{27} - 12q^{30} + 24q^{31} - 12q^{37} + 6q^{39} - 24q^{45} + 3q^{46} - 6q^{49} - 33q^{50} + 18q^{56} - 30q^{58} - 3q^{64} - 12q^{65} - 9q^{68} - 3q^{69} - 66q^{75} + 36q^{77} + 18q^{83} + 9q^{84} - 15q^{87} - 6q^{88} + 48q^{94} - 6q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/722\mathbb{Z}\right)^\times\).

\(n\) \(363\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 + 0.984808i 0.122788 + 0.696364i
\(3\) −0.766044 + 0.642788i −0.442276 + 0.371114i −0.836560 0.547875i \(-0.815437\pi\)
0.394284 + 0.918989i \(0.370993\pi\)
\(4\) −0.939693 + 0.342020i −0.469846 + 0.171010i
\(5\) 3.75877 + 1.36808i 1.68097 + 0.611824i 0.993443 0.114331i \(-0.0364725\pi\)
0.687531 + 0.726155i \(0.258695\pi\)
\(6\) −0.766044 0.642788i −0.312736 0.262417i
\(7\) −1.50000 + 2.59808i −0.566947 + 0.981981i 0.429919 + 0.902867i \(0.358542\pi\)
−0.996866 + 0.0791130i \(0.974791\pi\)
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) −0.347296 + 1.96962i −0.115765 + 0.656539i
\(10\) −0.694593 + 3.93923i −0.219650 + 1.24569i
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −0.766044 0.642788i −0.212463 0.178277i 0.530346 0.847781i \(-0.322062\pi\)
−0.742808 + 0.669504i \(0.766507\pi\)
\(14\) −2.81908 1.02606i −0.753430 0.274226i
\(15\) −3.75877 + 1.36808i −0.970510 + 0.353237i
\(16\) 0.766044 0.642788i 0.191511 0.160697i
\(17\) 0.520945 + 2.95442i 0.126348 + 0.716553i 0.980498 + 0.196527i \(0.0629665\pi\)
−0.854151 + 0.520026i \(0.825922\pi\)
\(18\) −2.00000 −0.471405
\(19\) 0 0
\(20\) −4.00000 −0.894427
\(21\) −0.520945 2.95442i −0.113679 0.644708i
\(22\) 1.53209 1.28558i 0.326642 0.274086i
\(23\) 0.939693 0.342020i 0.195939 0.0713161i −0.242187 0.970230i \(-0.577865\pi\)
0.438126 + 0.898914i \(0.355642\pi\)
\(24\) 0.939693 + 0.342020i 0.191814 + 0.0698146i
\(25\) 8.42649 + 7.07066i 1.68530 + 1.41413i
\(26\) 0.500000 0.866025i 0.0980581 0.169842i
\(27\) −2.50000 4.33013i −0.481125 0.833333i
\(28\) 0.520945 2.95442i 0.0984493 0.558334i
\(29\) −0.868241 + 4.92404i −0.161228 + 0.914371i 0.791640 + 0.610988i \(0.209227\pi\)
−0.952869 + 0.303384i \(0.901884\pi\)
\(30\) −2.00000 3.46410i −0.365148 0.632456i
\(31\) 4.00000 6.92820i 0.718421 1.24434i −0.243204 0.969975i \(-0.578198\pi\)
0.961625 0.274367i \(-0.0884683\pi\)
\(32\) 0.766044 + 0.642788i 0.135419 + 0.113630i
\(33\) 1.87939 + 0.684040i 0.327159 + 0.119076i
\(34\) −2.81908 + 1.02606i −0.483468 + 0.175968i
\(35\) −9.19253 + 7.71345i −1.55382 + 1.30381i
\(36\) −0.347296 1.96962i −0.0578827 0.328269i
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) −0.694593 3.93923i −0.109825 0.622847i
\(41\) −6.12836 + 5.14230i −0.957088 + 0.803092i −0.980477 0.196634i \(-0.936999\pi\)
0.0233886 + 0.999726i \(0.492554\pi\)
\(42\) 2.81908 1.02606i 0.434993 0.158325i
\(43\) −3.75877 1.36808i −0.573207 0.208630i 0.0391204 0.999235i \(-0.487544\pi\)
−0.612328 + 0.790604i \(0.709767\pi\)
\(44\) 1.53209 + 1.28558i 0.230971 + 0.193808i
\(45\) −4.00000 + 6.92820i −0.596285 + 1.03280i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) 1.38919 7.87846i 0.202634 1.14919i −0.698487 0.715623i \(-0.746143\pi\)
0.901120 0.433569i \(-0.142746\pi\)
\(48\) −0.173648 + 0.984808i −0.0250640 + 0.142145i
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) −5.50000 + 9.52628i −0.777817 + 1.34722i
\(51\) −2.29813 1.92836i −0.321803 0.270025i
\(52\) 0.939693 + 0.342020i 0.130312 + 0.0474297i
\(53\) 0.939693 0.342020i 0.129077 0.0469801i −0.276674 0.960964i \(-0.589232\pi\)
0.405751 + 0.913984i \(0.367010\pi\)
\(54\) 3.83022 3.21394i 0.521227 0.437362i
\(55\) −1.38919 7.87846i −0.187318 1.06233i
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) −5.00000 −0.656532
\(59\) 2.60472 + 14.7721i 0.339106 + 1.92317i 0.382167 + 0.924093i \(0.375178\pi\)
−0.0430610 + 0.999072i \(0.513711\pi\)
\(60\) 3.06418 2.57115i 0.395584 0.331934i
\(61\) −1.87939 + 0.684040i −0.240631 + 0.0875824i −0.459520 0.888167i \(-0.651979\pi\)
0.218890 + 0.975750i \(0.429756\pi\)
\(62\) 7.51754 + 2.73616i 0.954729 + 0.347493i
\(63\) −4.59627 3.85673i −0.579075 0.485902i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) −0.347296 + 1.96962i −0.0427492 + 0.242443i
\(67\) 0.520945 2.95442i 0.0636435 0.360940i −0.936309 0.351178i \(-0.885781\pi\)
0.999952 0.00976258i \(-0.00310757\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) −0.500000 + 0.866025i −0.0601929 + 0.104257i
\(70\) −9.19253 7.71345i −1.09872 0.921934i
\(71\) −1.87939 0.684040i −0.223042 0.0811806i 0.228082 0.973642i \(-0.426755\pi\)
−0.451124 + 0.892461i \(0.648977\pi\)
\(72\) 1.87939 0.684040i 0.221488 0.0806149i
\(73\) 6.89440 5.78509i 0.806928 0.677093i −0.142944 0.989731i \(-0.545657\pi\)
0.949873 + 0.312637i \(0.101212\pi\)
\(74\) −0.347296 1.96962i −0.0403724 0.228963i
\(75\) −11.0000 −1.27017
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0.173648 + 0.984808i 0.0196618 + 0.111508i
\(79\) −7.66044 + 6.42788i −0.861867 + 0.723193i −0.962369 0.271744i \(-0.912400\pi\)
0.100502 + 0.994937i \(0.467955\pi\)
\(80\) 3.75877 1.36808i 0.420243 0.152956i
\(81\) −0.939693 0.342020i −0.104410 0.0380022i
\(82\) −6.12836 5.14230i −0.676764 0.567872i
\(83\) 3.00000 5.19615i 0.329293 0.570352i −0.653079 0.757290i \(-0.726523\pi\)
0.982372 + 0.186938i \(0.0598564\pi\)
\(84\) 1.50000 + 2.59808i 0.163663 + 0.283473i
\(85\) −2.08378 + 11.8177i −0.226017 + 1.28181i
\(86\) 0.694593 3.93923i 0.0748999 0.424778i
\(87\) −2.50000 4.33013i −0.268028 0.464238i
\(88\) −1.00000 + 1.73205i −0.106600 + 0.184637i
\(89\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(90\) −7.51754 2.73616i −0.792418 0.288417i
\(91\) 2.81908 1.02606i 0.295520 0.107560i
\(92\) −0.766044 + 0.642788i −0.0798657 + 0.0670152i
\(93\) 1.38919 + 7.87846i 0.144052 + 0.816958i
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −0.347296 1.96962i −0.0352626 0.199984i 0.962087 0.272743i \(-0.0879308\pi\)
−0.997350 + 0.0727587i \(0.976820\pi\)
\(98\) 1.53209 1.28558i 0.154764 0.129863i
\(99\) 3.75877 1.36808i 0.377771 0.137497i
\(100\) −10.3366 3.76222i −1.03366 0.376222i
\(101\) 1.53209 + 1.28558i 0.152449 + 0.127920i 0.715822 0.698283i \(-0.246052\pi\)
−0.563373 + 0.826202i \(0.690497\pi\)
\(102\) 1.50000 2.59808i 0.148522 0.257248i
\(103\) 3.00000 + 5.19615i 0.295599 + 0.511992i 0.975124 0.221660i \(-0.0711475\pi\)
−0.679525 + 0.733652i \(0.737814\pi\)
\(104\) −0.173648 + 0.984808i −0.0170276 + 0.0965683i
\(105\) 2.08378 11.8177i 0.203356 1.15329i
\(106\) 0.500000 + 0.866025i 0.0485643 + 0.0841158i
\(107\) 3.50000 6.06218i 0.338358 0.586053i −0.645766 0.763535i \(-0.723462\pi\)
0.984124 + 0.177482i \(0.0567953\pi\)
\(108\) 3.83022 + 3.21394i 0.368563 + 0.309261i
\(109\) 14.0954 + 5.13030i 1.35009 + 0.491394i 0.912977 0.408011i \(-0.133778\pi\)
0.437116 + 0.899405i \(0.356000\pi\)
\(110\) 7.51754 2.73616i 0.716769 0.260883i
\(111\) 1.53209 1.28558i 0.145419 0.122021i
\(112\) 0.520945 + 2.95442i 0.0492246 + 0.279167i
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −0.868241 4.92404i −0.0806141 0.457186i
\(117\) 1.53209 1.28558i 0.141642 0.118851i
\(118\) −14.0954 + 5.13030i −1.29759 + 0.472283i
\(119\) −8.45723 3.07818i −0.775273 0.282176i
\(120\) 3.06418 + 2.57115i 0.279720 + 0.234713i
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −1.00000 1.73205i −0.0905357 0.156813i
\(123\) 1.38919 7.87846i 0.125259 0.710377i
\(124\) −1.38919 + 7.87846i −0.124753 + 0.707507i
\(125\) 12.0000 + 20.7846i 1.07331 + 1.85903i
\(126\) 3.00000 5.19615i 0.267261 0.462910i
\(127\) 13.7888 + 11.5702i 1.22356 + 1.02669i 0.998631 + 0.0523116i \(0.0166589\pi\)
0.224927 + 0.974376i \(0.427786\pi\)
\(128\) −0.939693 0.342020i −0.0830579 0.0302306i
\(129\) 3.75877 1.36808i 0.330941 0.120453i
\(130\) 3.06418 2.57115i 0.268746 0.225505i
\(131\) 2.08378 + 11.8177i 0.182061 + 1.03252i 0.929674 + 0.368383i \(0.120088\pi\)
−0.747614 + 0.664134i \(0.768800\pi\)
\(132\) −2.00000 −0.174078
\(133\) 0 0
\(134\) 3.00000 0.259161
\(135\) −3.47296 19.6962i −0.298905 1.69518i
\(136\) 2.29813 1.92836i 0.197063 0.165356i
\(137\) 15.9748 5.81434i 1.36482 0.496753i 0.447277 0.894396i \(-0.352394\pi\)
0.917540 + 0.397643i \(0.130172\pi\)
\(138\) −0.939693 0.342020i −0.0799919 0.0291147i
\(139\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(140\) 6.00000 10.3923i 0.507093 0.878310i
\(141\) 4.00000 + 6.92820i 0.336861 + 0.583460i
\(142\) 0.347296 1.96962i 0.0291445 0.165286i
\(143\) −0.347296 + 1.96962i −0.0290424 + 0.164708i
\(144\) 1.00000 + 1.73205i 0.0833333 + 0.144338i
\(145\) −10.0000 + 17.3205i −0.830455 + 1.43839i
\(146\) 6.89440 + 5.78509i 0.570585 + 0.478777i
\(147\) 1.87939 + 0.684040i 0.155009 + 0.0564187i
\(148\) 1.87939 0.684040i 0.154485 0.0562278i
\(149\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(150\) −1.91013 10.8329i −0.155961 0.884501i
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 1.04189 + 5.90885i 0.0839578 + 0.476148i
\(155\) 24.5134 20.5692i 1.96897 1.65216i
\(156\) −0.939693 + 0.342020i −0.0752356 + 0.0273835i
\(157\) 1.87939 + 0.684040i 0.149991 + 0.0545924i 0.415925 0.909399i \(-0.363458\pi\)
−0.265934 + 0.963991i \(0.585680\pi\)
\(158\) −7.66044 6.42788i −0.609432 0.511374i
\(159\) −0.500000 + 0.866025i −0.0396526 + 0.0686803i
\(160\) 2.00000 + 3.46410i 0.158114 + 0.273861i
\(161\) −0.520945 + 2.95442i −0.0410562 + 0.232841i
\(162\) 0.173648 0.984808i 0.0136431 0.0773738i
\(163\) 8.00000 + 13.8564i 0.626608 + 1.08532i 0.988227 + 0.152992i \(0.0488907\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(164\) 4.00000 6.92820i 0.312348 0.541002i
\(165\) 6.12836 + 5.14230i 0.477092 + 0.400328i
\(166\) 5.63816 + 2.05212i 0.437606 + 0.159275i
\(167\) 11.2763 4.10424i 0.872587 0.317596i 0.133373 0.991066i \(-0.457419\pi\)
0.739214 + 0.673470i \(0.235197\pi\)
\(168\) −2.29813 + 1.92836i −0.177305 + 0.148776i
\(169\) −2.08378 11.8177i −0.160291 0.909053i
\(170\) −12.0000 −0.920358
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) −1.04189 5.90885i −0.0792134 0.449241i −0.998456 0.0555496i \(-0.982309\pi\)
0.919243 0.393692i \(-0.128802\pi\)
\(174\) 3.83022 3.21394i 0.290368 0.243648i
\(175\) −31.0099 + 11.2867i −2.34412 + 0.853192i
\(176\) −1.87939 0.684040i −0.141664 0.0515615i
\(177\) −11.4907 9.64181i −0.863691 0.724723i
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 1.38919 7.87846i 0.103544 0.587226i
\(181\) 3.82026 21.6658i 0.283958 1.61040i −0.425027 0.905181i \(-0.639736\pi\)
0.708985 0.705224i \(-0.249153\pi\)
\(182\) 1.50000 + 2.59808i 0.111187 + 0.192582i
\(183\) 1.00000 1.73205i 0.0739221 0.128037i
\(184\) −0.766044 0.642788i −0.0564735 0.0473869i
\(185\) −7.51754 2.73616i −0.552701 0.201167i
\(186\) −7.51754 + 2.73616i −0.551213 + 0.200625i
\(187\) 4.59627 3.85673i 0.336112 0.282032i
\(188\) 1.38919 + 7.87846i 0.101317 + 0.574596i
\(189\) 15.0000 1.09109
\(190\) 0 0
\(191\) 7.00000 0.506502 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(192\) −0.173648 0.984808i −0.0125320 0.0710724i
\(193\) −4.59627 + 3.85673i −0.330847 + 0.277613i −0.793045 0.609163i \(-0.791505\pi\)
0.462198 + 0.886777i \(0.347061\pi\)
\(194\) 1.87939 0.684040i 0.134932 0.0491112i
\(195\) 3.75877 + 1.36808i 0.269171 + 0.0979703i
\(196\) 1.53209 + 1.28558i 0.109435 + 0.0918268i
\(197\) −4.00000 + 6.92820i −0.284988 + 0.493614i −0.972606 0.232458i \(-0.925323\pi\)
0.687618 + 0.726073i \(0.258656\pi\)
\(198\) 2.00000 + 3.46410i 0.142134 + 0.246183i
\(199\) −4.34120 + 24.6202i −0.307740 + 1.74528i 0.302580 + 0.953124i \(0.402152\pi\)
−0.610320 + 0.792155i \(0.708959\pi\)
\(200\) 1.91013 10.8329i 0.135067 0.766001i
\(201\) 1.50000 + 2.59808i 0.105802 + 0.183254i
\(202\) −1.00000 + 1.73205i −0.0703598 + 0.121867i
\(203\) −11.4907 9.64181i −0.806487 0.676723i
\(204\) 2.81908 + 1.02606i 0.197375 + 0.0718386i
\(205\) −30.0702 + 10.9446i −2.10019 + 0.764407i
\(206\) −4.59627 + 3.85673i −0.320237 + 0.268711i
\(207\) 0.347296 + 1.96962i 0.0241388 + 0.136898i
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 12.0000 0.828079
\(211\) 4.68850 + 26.5898i 0.322770 + 1.83052i 0.524906 + 0.851160i \(0.324101\pi\)
−0.202136 + 0.979357i \(0.564788\pi\)
\(212\) −0.766044 + 0.642788i −0.0526121 + 0.0441468i
\(213\) 1.87939 0.684040i 0.128773 0.0468697i
\(214\) 6.57785 + 2.39414i 0.449652 + 0.163660i
\(215\) −12.2567 10.2846i −0.835901 0.701404i
\(216\) −2.50000 + 4.33013i −0.170103 + 0.294628i
\(217\) 12.0000 + 20.7846i 0.814613 + 1.41095i
\(218\) −2.60472 + 14.7721i −0.176414 + 1.00049i
\(219\) −1.56283 + 8.86327i −0.105607 + 0.598924i
\(220\) 4.00000 + 6.92820i 0.269680 + 0.467099i
\(221\) 1.50000 2.59808i 0.100901 0.174766i
\(222\) 1.53209 + 1.28558i 0.102827 + 0.0862822i
\(223\) −13.1557 4.78828i −0.880971 0.320647i −0.138369 0.990381i \(-0.544186\pi\)
−0.742601 + 0.669734i \(0.766408\pi\)
\(224\) −2.81908 + 1.02606i −0.188358 + 0.0685565i
\(225\) −16.8530 + 14.1413i −1.12353 + 0.942755i
\(226\) 2.43107 + 13.7873i 0.161713 + 0.917118i
\(227\) −17.0000 −1.12833 −0.564165 0.825662i \(-0.690802\pi\)
−0.564165 + 0.825662i \(0.690802\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0.694593 + 3.93923i 0.0458001 + 0.259745i
\(231\) −4.59627 + 3.85673i −0.302412 + 0.253754i
\(232\) 4.69846 1.71010i 0.308469 0.112274i
\(233\) 5.63816 + 2.05212i 0.369368 + 0.134439i 0.520033 0.854146i \(-0.325919\pi\)
−0.150666 + 0.988585i \(0.548142\pi\)
\(234\) 1.53209 + 1.28558i 0.100156 + 0.0840407i
\(235\) 16.0000 27.7128i 1.04372 1.80778i
\(236\) −7.50000 12.9904i −0.488208 0.845602i
\(237\) 1.73648 9.84808i 0.112797 0.639701i
\(238\) 1.56283 8.86327i 0.101303 0.574520i
\(239\) −7.50000 12.9904i −0.485135 0.840278i 0.514719 0.857359i \(-0.327896\pi\)
−0.999854 + 0.0170808i \(0.994563\pi\)
\(240\) −2.00000 + 3.46410i −0.129099 + 0.223607i
\(241\) −6.12836 5.14230i −0.394762 0.331245i 0.423703 0.905801i \(-0.360730\pi\)
−0.818465 + 0.574557i \(0.805175\pi\)
\(242\) 6.57785 + 2.39414i 0.422840 + 0.153901i
\(243\) 15.0351 5.47232i 0.964501 0.351050i
\(244\) 1.53209 1.28558i 0.0980819 0.0823005i
\(245\) −1.38919 7.87846i −0.0887518 0.503336i
\(246\) 8.00000 0.510061
\(247\) 0 0
\(248\) −8.00000 −0.508001
\(249\) 1.04189 + 5.90885i 0.0660270 + 0.374458i
\(250\) −18.3851 + 15.4269i −1.16277 + 0.975683i
\(251\) −1.87939 + 0.684040i −0.118626 + 0.0431762i −0.400651 0.916231i \(-0.631216\pi\)
0.282025 + 0.959407i \(0.408994\pi\)
\(252\) 5.63816 + 2.05212i 0.355170 + 0.129271i
\(253\) −1.53209 1.28558i −0.0963216 0.0808234i
\(254\) −9.00000 + 15.5885i −0.564710 + 0.978107i
\(255\) −6.00000 10.3923i −0.375735 0.650791i
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) 1.38919 7.87846i 0.0866550 0.491445i −0.910332 0.413878i \(-0.864174\pi\)
0.996987 0.0775665i \(-0.0247150\pi\)
\(258\) 2.00000 + 3.46410i 0.124515 + 0.215666i
\(259\) 3.00000 5.19615i 0.186411 0.322873i
\(260\) 3.06418 + 2.57115i 0.190032 + 0.159456i
\(261\) −9.39693 3.42020i −0.581655 0.211705i
\(262\) −11.2763 + 4.10424i −0.696653 + 0.253561i
\(263\) 18.3851 15.4269i 1.13367 0.951264i 0.134458 0.990919i \(-0.457071\pi\)
0.999213 + 0.0396557i \(0.0126261\pi\)
\(264\) −0.347296 1.96962i −0.0213746 0.121221i
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) 0 0
\(268\) 0.520945 + 2.95442i 0.0318218 + 0.180470i
\(269\) 22.9813 19.2836i 1.40120 1.17574i 0.440632 0.897688i \(-0.354755\pi\)
0.960565 0.278056i \(-0.0896899\pi\)
\(270\) 18.7939 6.84040i 1.14376 0.416294i
\(271\) −6.57785 2.39414i −0.399576 0.145434i 0.134413 0.990925i \(-0.457085\pi\)
−0.533989 + 0.845492i \(0.679307\pi\)
\(272\) 2.29813 + 1.92836i 0.139345 + 0.116924i
\(273\) −1.50000 + 2.59808i −0.0907841 + 0.157243i
\(274\) 8.50000 + 14.7224i 0.513504 + 0.889415i
\(275\) 3.82026 21.6658i 0.230370 1.30650i
\(276\) 0.173648 0.984808i 0.0104524 0.0592785i
\(277\) −14.0000 24.2487i −0.841178 1.45696i −0.888899 0.458103i \(-0.848529\pi\)
0.0477206 0.998861i \(-0.484804\pi\)
\(278\) 0 0
\(279\) 12.2567 + 10.2846i 0.733790 + 0.615723i
\(280\) 11.2763 + 4.10424i 0.673889 + 0.245275i
\(281\) 7.51754 2.73616i 0.448459 0.163226i −0.107911 0.994161i \(-0.534416\pi\)
0.556370 + 0.830935i \(0.312194\pi\)
\(282\) −6.12836 + 5.14230i −0.364938 + 0.306220i
\(283\) −1.04189 5.90885i −0.0619339 0.351244i −0.999989 0.00475755i \(-0.998486\pi\)
0.938055 0.346487i \(-0.112625\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) −4.16756 23.6354i −0.246003 1.39515i
\(288\) −1.53209 + 1.28558i −0.0902792 + 0.0757532i
\(289\) 7.51754 2.73616i 0.442208 0.160951i
\(290\) −18.7939 6.84040i −1.10361 0.401682i
\(291\) 1.53209 + 1.28558i 0.0898126 + 0.0753618i
\(292\) −4.50000 + 7.79423i −0.263343 + 0.456123i
\(293\) −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i \(-0.251343\pi\)
−0.967009 + 0.254741i \(0.918010\pi\)
\(294\) −0.347296 + 1.96962i −0.0202547 + 0.114870i
\(295\) −10.4189 + 59.0885i −0.606611 + 3.44026i
\(296\) 1.00000 + 1.73205i 0.0581238 + 0.100673i
\(297\) −5.00000 + 8.66025i −0.290129 + 0.502519i
\(298\) 0 0
\(299\) −0.939693 0.342020i −0.0543438 0.0197795i
\(300\) 10.3366 3.76222i 0.596785 0.217212i
\(301\) 9.19253 7.71345i 0.529849 0.444596i
\(302\) 0.347296 + 1.96962i 0.0199847 + 0.113339i
\(303\) −2.00000 −0.114897
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) −1.04189 5.90885i −0.0595608 0.337786i
\(307\) −9.19253 + 7.71345i −0.524646 + 0.440230i −0.866248 0.499615i \(-0.833475\pi\)
0.341602 + 0.939845i \(0.389030\pi\)
\(308\) −5.63816 + 2.05212i −0.321264 + 0.116930i
\(309\) −5.63816 2.05212i −0.320743 0.116741i
\(310\) 24.5134 + 20.5692i 1.39227 + 1.16825i
\(311\) −3.50000 + 6.06218i −0.198467 + 0.343755i −0.948031 0.318177i \(-0.896930\pi\)
0.749565 + 0.661931i \(0.230263\pi\)
\(312\) −0.500000 0.866025i −0.0283069 0.0490290i
\(313\) 5.03580 28.5594i 0.284640 1.61427i −0.421928 0.906629i \(-0.638647\pi\)
0.706568 0.707645i \(-0.250242\pi\)
\(314\) −0.347296 + 1.96962i −0.0195991 + 0.111152i
\(315\) −12.0000 20.7846i −0.676123 1.17108i
\(316\) 5.00000 8.66025i 0.281272 0.487177i
\(317\) −20.6832 17.3553i −1.16168 0.974769i −0.161757 0.986831i \(-0.551716\pi\)
−0.999927 + 0.0120618i \(0.996161\pi\)
\(318\) −0.939693 0.342020i −0.0526953 0.0191795i
\(319\) 9.39693 3.42020i 0.526127 0.191495i
\(320\) −3.06418 + 2.57115i −0.171293 + 0.143732i
\(321\) 1.21554 + 6.89365i 0.0678447 + 0.384766i
\(322\) −3.00000 −0.167183
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −1.91013 10.8329i −0.105955 0.600900i
\(326\) −12.2567 + 10.2846i −0.678836 + 0.569611i
\(327\) −14.0954 + 5.13030i −0.779477 + 0.283706i
\(328\) 7.51754 + 2.73616i 0.415087 + 0.151079i
\(329\) 18.3851 + 15.4269i 1.01360 + 0.850513i
\(330\) −4.00000 + 6.92820i −0.220193 + 0.381385i
\(331\) −8.50000 14.7224i −0.467202 0.809218i 0.532096 0.846684i \(-0.321405\pi\)
−0.999298 + 0.0374662i \(0.988071\pi\)
\(332\) −1.04189 + 5.90885i −0.0571811 + 0.324290i
\(333\) 0.694593 3.93923i 0.0380634 0.215869i
\(334\) 6.00000 + 10.3923i 0.328305 + 0.568642i
\(335\) 6.00000 10.3923i 0.327815 0.567792i
\(336\) −2.29813 1.92836i −0.125373 0.105201i
\(337\) 30.0702 + 10.9446i 1.63803 + 0.596193i 0.986692 0.162598i \(-0.0519875\pi\)
0.651334 + 0.758791i \(0.274210\pi\)
\(338\) 11.2763 4.10424i 0.613350 0.223241i
\(339\) −10.7246 + 8.99903i −0.582482 + 0.488760i
\(340\) −2.08378 11.8177i −0.113009 0.640904i
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0.694593 + 3.93923i 0.0374499 + 0.212389i
\(345\) −3.06418 + 2.57115i −0.164970 + 0.138426i
\(346\) 5.63816 2.05212i 0.303109 0.110323i
\(347\) 1.87939 + 0.684040i 0.100891 + 0.0367212i 0.391972 0.919977i \(-0.371793\pi\)
−0.291082 + 0.956698i \(0.594015\pi\)
\(348\) 3.83022 + 3.21394i 0.205321 + 0.172285i
\(349\) −5.00000 + 8.66025i −0.267644 + 0.463573i −0.968253 0.249973i \(-0.919578\pi\)
0.700609 + 0.713545i \(0.252912\pi\)
\(350\) −16.5000 28.5788i −0.881962 1.52760i
\(351\) −0.868241 + 4.92404i −0.0463433 + 0.262826i
\(352\) 0.347296 1.96962i 0.0185110 0.104981i
\(353\) −4.50000 7.79423i −0.239511 0.414845i 0.721063 0.692869i \(-0.243654\pi\)
−0.960574 + 0.278024i \(0.910320\pi\)
\(354\) 7.50000 12.9904i 0.398621 0.690431i
\(355\) −6.12836 5.14230i −0.325259 0.272925i
\(356\) 0 0
\(357\) 8.45723 3.07818i 0.447604 0.162915i
\(358\) 0 0
\(359\) −2.60472 14.7721i −0.137472 0.779642i −0.973106 0.230356i \(-0.926011\pi\)
0.835634 0.549286i \(-0.185100\pi\)
\(360\) 8.00000 0.421637
\(361\) 0 0
\(362\) 22.0000 1.15629
\(363\) 1.21554 + 6.89365i 0.0637992 + 0.361823i
\(364\) −2.29813 + 1.92836i −0.120455 + 0.101074i
\(365\) 33.8289 12.3127i 1.77069 0.644477i
\(366\) 1.87939 + 0.684040i 0.0982370 + 0.0357554i
\(367\) 21.4492 + 17.9981i 1.11964 + 0.939491i 0.998586 0.0531551i \(-0.0169278\pi\)
0.121055 + 0.992646i \(0.461372\pi\)
\(368\) 0.500000 0.866025i 0.0260643 0.0451447i
\(369\) −8.00000 13.8564i −0.416463 0.721336i
\(370\) 1.38919 7.87846i 0.0722203 0.409582i
\(371\) −0.520945 + 2.95442i −0.0270461 + 0.153386i
\(372\) −4.00000 6.92820i −0.207390 0.359211i
\(373\) −14.5000 + 25.1147i −0.750782 + 1.30039i 0.196663 + 0.980471i \(0.436990\pi\)
−0.947444 + 0.319921i \(0.896344\pi\)
\(374\) 4.59627 + 3.85673i 0.237667 + 0.199427i
\(375\) −22.5526 8.20848i −1.16461 0.423884i
\(376\) −7.51754 + 2.73616i −0.387688 + 0.141107i
\(377\) 3.83022 3.21394i 0.197266 0.165526i
\(378\) 2.60472 + 14.7721i 0.133972 + 0.759796i
\(379\) 15.0000 0.770498 0.385249 0.922813i \(-0.374116\pi\)
0.385249 + 0.922813i \(0.374116\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.922168
\(382\) 1.21554 + 6.89365i 0.0621923 + 0.352710i
\(383\) −19.9172 + 16.7125i −1.01772 + 0.853968i −0.989339 0.145629i \(-0.953479\pi\)
−0.0283799 + 0.999597i \(0.509035\pi\)
\(384\) 0.939693 0.342020i 0.0479535 0.0174536i
\(385\) 22.5526 + 8.20848i 1.14939 + 0.418343i
\(386\) −4.59627 3.85673i −0.233944 0.196302i
\(387\) 4.00000 6.92820i 0.203331 0.352180i
\(388\) 1.00000 + 1.73205i 0.0507673 + 0.0879316i
\(389\) −5.20945 + 29.5442i −0.264129 + 1.49795i 0.507374 + 0.861726i \(0.330616\pi\)
−0.771503 + 0.636226i \(0.780495\pi\)
\(390\) −0.694593 + 3.93923i −0.0351721 + 0.199471i
\(391\) 1.50000 + 2.59808i 0.0758583 + 0.131390i
\(392\) −1.00000 + 1.73205i −0.0505076 + 0.0874818i
\(393\) −9.19253 7.71345i −0.463702 0.389092i
\(394\) −7.51754 2.73616i −0.378728 0.137846i
\(395\) −37.5877 + 13.6808i −1.89124 + 0.688356i
\(396\) −3.06418 + 2.57115i −0.153981 + 0.129205i
\(397\) 1.38919 + 7.87846i 0.0697212 + 0.395409i 0.999619 + 0.0275914i \(0.00878372\pi\)
−0.929898 + 0.367817i \(0.880105\pi\)
\(398\) −25.0000 −1.25314
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −1.38919 7.87846i −0.0693726 0.393432i −0.999647 0.0265672i \(-0.991542\pi\)
0.930274 0.366864i \(-0.119569\pi\)
\(402\) −2.29813 + 1.92836i −0.114620 + 0.0961780i
\(403\) −7.51754 + 2.73616i −0.374475 + 0.136298i
\(404\) −1.87939 0.684040i −0.0935029 0.0340323i
\(405\) −3.06418 2.57115i −0.152260 0.127761i
\(406\) 7.50000 12.9904i 0.372219 0.644702i
\(407\) 2.00000 + 3.46410i 0.0991363 + 0.171709i
\(408\) −0.520945 + 2.95442i −0.0257906 + 0.146266i
\(409\) −3.47296 + 19.6962i −0.171727 + 0.973912i 0.770127 + 0.637890i \(0.220193\pi\)
−0.941854 + 0.336022i \(0.890918\pi\)
\(410\) −16.0000 27.7128i −0.790184 1.36864i
\(411\) −8.50000 + 14.7224i −0.419274 + 0.726204i
\(412\) −4.59627 3.85673i −0.226442 0.190007i
\(413\) −42.2862 15.3909i −2.08077 0.757337i
\(414\) −1.87939 + 0.684040i −0.0923667 + 0.0336187i
\(415\) 18.3851 15.4269i 0.902487 0.757277i
\(416\) −0.173648 0.984808i −0.00851380 0.0482842i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 2.08378 + 11.8177i 0.101678 + 0.576644i
\(421\) −9.95858 + 8.35624i −0.485351 + 0.407258i −0.852357 0.522961i \(-0.824827\pi\)
0.367005 + 0.930219i \(0.380383\pi\)
\(422\) −25.3717 + 9.23454i −1.23508 + 0.449531i
\(423\) 15.0351 + 5.47232i 0.731031 + 0.266073i
\(424\) −0.766044 0.642788i −0.0372024 0.0312165i
\(425\) −16.5000 + 28.5788i −0.800368 + 1.38628i
\(426\) 1.00000 + 1.73205i 0.0484502 + 0.0839181i
\(427\) 1.04189 5.90885i 0.0504205 0.285949i
\(428\) −1.21554 + 6.89365i −0.0587552 + 0.333217i
\(429\) −1.00000 1.73205i −0.0482805 0.0836242i
\(430\) 8.00000 13.8564i 0.385794 0.668215i
\(431\) −13.7888 11.5702i −0.664183 0.557316i 0.247154 0.968976i \(-0.420505\pi\)
−0.911337 + 0.411660i \(0.864949\pi\)
\(432\) −4.69846 1.71010i −0.226055 0.0822773i
\(433\) −13.1557 + 4.78828i −0.632222 + 0.230110i −0.638198 0.769872i \(-0.720320\pi\)
0.00597589 + 0.999982i \(0.498098\pi\)
\(434\) −18.3851 + 15.4269i −0.882511 + 0.740515i
\(435\) −3.47296 19.6962i −0.166516 0.944358i
\(436\) −15.0000 −0.718370
\(437\) 0 0
\(438\) −9.00000 −0.430037
\(439\) 3.47296 + 19.6962i 0.165756 + 0.940046i 0.948282 + 0.317429i \(0.102820\pi\)
−0.782527 + 0.622617i \(0.786069\pi\)
\(440\) −6.12836 + 5.14230i −0.292158 + 0.245150i
\(441\) 3.75877 1.36808i 0.178989 0.0651467i
\(442\) 2.81908 + 1.02606i 0.134090 + 0.0488047i
\(443\) −19.9172 16.7125i −0.946293 0.794034i 0.0323767 0.999476i \(-0.489692\pi\)
−0.978669 + 0.205442i \(0.934137\pi\)
\(444\) −1.00000 + 1.73205i −0.0474579 + 0.0821995i
\(445\) 0 0
\(446\) 2.43107 13.7873i 0.115115 0.652848i
\(447\) 0 0
\(448\) −1.50000 2.59808i −0.0708683 0.122748i
\(449\) −5.00000 + 8.66025i −0.235965 + 0.408703i −0.959553 0.281529i \(-0.909158\pi\)
0.723588 + 0.690232i \(0.242492\pi\)
\(450\) −16.8530 14.1413i −0.794457 0.666629i
\(451\) 15.0351 + 5.47232i 0.707974 + 0.257682i
\(452\) −13.1557 + 4.78828i −0.618792 + 0.225222i
\(453\) −1.53209 + 1.28558i −0.0719838 + 0.0604016i
\(454\) −2.95202 16.7417i −0.138545 0.785728i
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) −7.00000 −0.327446 −0.163723 0.986506i \(-0.552350\pi\)
−0.163723 + 0.986506i \(0.552350\pi\)
\(458\) −1.73648 9.84808i −0.0811405 0.460170i
\(459\) 11.4907 9.64181i 0.536338 0.450041i
\(460\) −3.75877 + 1.36808i −0.175254 + 0.0637871i
\(461\) 26.3114 + 9.57656i 1.22544 + 0.446025i 0.872035 0.489444i \(-0.162800\pi\)
0.353409 + 0.935469i \(0.385022\pi\)
\(462\) −4.59627 3.85673i −0.213838 0.179431i
\(463\) −2.00000 + 3.46410i −0.0929479 + 0.160990i −0.908750 0.417340i \(-0.862962\pi\)
0.815802 + 0.578331i \(0.196296\pi\)
\(464\) 2.50000 + 4.33013i 0.116060 + 0.201021i
\(465\) −5.55674 + 31.5138i −0.257688 + 1.46142i
\(466\) −1.04189 + 5.90885i −0.0482646 + 0.273722i
\(467\) 1.00000 + 1.73205i 0.0462745 + 0.0801498i 0.888235 0.459390i \(-0.151932\pi\)
−0.841960 + 0.539539i \(0.818598\pi\)
\(468\) −1.00000 + 1.73205i −0.0462250 + 0.0800641i
\(469\) 6.89440 + 5.78509i 0.318354 + 0.267131i
\(470\) 30.0702 + 10.9446i 1.38703 + 0.504839i
\(471\) −1.87939 + 0.684040i −0.0865975 + 0.0315189i
\(472\) 11.4907 9.64181i 0.528901 0.443800i
\(473\) 1.38919 + 7.87846i 0.0638748 + 0.362252i
\(474\) 10.0000 0.459315
\(475\) 0 0
\(476\) 9.00000 0.412514
\(477\) 0.347296 + 1.96962i 0.0159016 + 0.0901825i
\(478\) 11.4907 9.64181i 0.525571 0.441006i
\(479\) 18.7939 6.84040i 0.858713 0.312546i 0.125125 0.992141i \(-0.460067\pi\)
0.733588 + 0.679595i \(0.237844\pi\)
\(480\) −3.75877 1.36808i −0.171564 0.0624440i
\(481\) 1.53209 + 1.28558i 0.0698572 + 0.0586172i
\(482\) 4.00000 6.92820i 0.182195 0.315571i
\(483\) −1.50000 2.59808i −0.0682524 0.118217i
\(484\) −1.21554 + 6.89365i −0.0552517 + 0.313348i
\(485\) 1.38919 7.87846i 0.0630797 0.357743i
\(486\) 8.00000 + 13.8564i 0.362887 + 0.628539i
\(487\) 1.00000 1.73205i 0.0453143 0.0784867i −0.842479 0.538730i \(-0.818904\pi\)
0.887793 + 0.460243i \(0.152238\pi\)
\(488\) 1.53209 + 1.28558i 0.0693544 + 0.0581953i
\(489\) −15.0351 5.47232i −0.679910 0.247467i
\(490\) 7.51754 2.73616i 0.339608 0.123607i
\(491\) −21.4492 + 17.9981i −0.967991 + 0.812241i −0.982234 0.187658i \(-0.939910\pi\)
0.0142436 + 0.999899i \(0.495466\pi\)
\(492\) 1.38919 + 7.87846i 0.0626293 + 0.355188i
\(493\) −15.0000 −0.675566
\(494\) 0 0
\(495\) 16.0000 0.719147
\(496\) −1.38919 7.87846i −0.0623763 0.353753i
\(497\) 4.59627 3.85673i 0.206171 0.172998i
\(498\) −5.63816 + 2.05212i −0.252652 + 0.0919577i
\(499\) −37.5877 13.6808i −1.68266 0.612437i −0.688987 0.724774i \(-0.741944\pi\)
−0.993670 + 0.112337i \(0.964166\pi\)
\(500\) −18.3851 15.4269i −0.822205 0.689912i
\(501\) −6.00000 + 10.3923i −0.268060 + 0.464294i
\(502\) −1.00000 1.73205i −0.0446322 0.0773052i
\(503\) 6.77228 38.4075i 0.301961 1.71251i −0.335514 0.942035i \(-0.608910\pi\)
0.637475 0.770471i \(-0.279979\pi\)
\(504\) −1.04189 + 5.90885i −0.0464094 + 0.263201i
\(505\) 4.00000 + 6.92820i 0.177998 + 0.308301i
\(506\) 1.00000 1.73205i 0.0444554 0.0769991i
\(507\) 9.19253 + 7.71345i 0.408255 + 0.342566i
\(508\) −16.9145 6.15636i −0.750458 0.273144i
\(509\) 28.1908 10.2606i 1.24953 0.454793i 0.369290 0.929314i \(-0.379601\pi\)
0.880244 + 0.474521i \(0.157379\pi\)
\(510\) 9.19253 7.71345i 0.407052 0.341557i
\(511\) 4.68850 + 26.5898i 0.207407 + 1.17626i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) 4.16756 + 23.6354i 0.183644 + 1.04150i
\(516\) −3.06418 + 2.57115i −0.134893 + 0.113189i
\(517\) −15.0351 + 5.47232i −0.661242 + 0.240672i
\(518\) 5.63816 + 2.05212i 0.247726 + 0.0901650i
\(519\) 4.59627 + 3.85673i 0.201754 + 0.169291i
\(520\) −2.00000 + 3.46410i −0.0877058 + 0.151911i
\(521\) 14.0000 + 24.2487i 0.613351 + 1.06236i 0.990671 + 0.136272i \(0.0435123\pi\)
−0.377320 + 0.926083i \(0.623154\pi\)
\(522\) 1.73648 9.84808i 0.0760037 0.431039i
\(523\) 5.03580 28.5594i 0.220200 1.24882i −0.651451 0.758690i \(-0.725840\pi\)
0.871652 0.490126i \(-0.163049\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 16.5000 28.5788i 0.720119 1.24728i
\(526\) 18.3851 + 15.4269i 0.801627 + 0.672645i
\(527\) 22.5526 + 8.20848i 0.982408 + 0.357567i
\(528\) 1.87939 0.684040i 0.0817897 0.0297690i
\(529\) −16.8530 + 14.1413i −0.732738 + 0.614840i
\(530\) 0.694593 + 3.93923i 0.0301712 + 0.171109i
\(531\) −30.0000 −1.30189
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) 21.4492 17.9981i 0.927332 0.778124i
\(536\) −2.81908 + 1.02606i −0.121766 + 0.0443191i
\(537\) 0 0
\(538\) 22.9813 + 19.2836i 0.990796 + 0.831376i
\(539\) −2.00000 + 3.46410i −0.0861461 + 0.149209i
\(540\) 10.0000 + 17.3205i 0.430331 + 0.745356i
\(541\) 0.347296 1.96962i 0.0149314 0.0846804i −0.976431 0.215828i \(-0.930755\pi\)
0.991363 + 0.131147i \(0.0418661\pi\)
\(542\) 1.21554 6.89365i 0.0522118 0.296108i
\(543\) 11.0000 + 19.0526i 0.472055 + 0.817624i
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) 45.9627 + 38.5673i 1.96882 + 1.65204i
\(546\) −2.81908 1.02606i −0.120645 0.0439113i
\(547\) −26.3114 + 9.57656i −1.12499 + 0.409464i −0.836472 0.548009i \(-0.815386\pi\)
−0.288522 + 0.957473i \(0.593164\pi\)
\(548\) −13.0228 + 10.9274i −0.556305 + 0.466795i
\(549\) −0.694593 3.93923i −0.0296445 0.168122i
\(550\) 22.0000 0.938083
\(551\) 0 0
\(552\) 1.00000 0.0425628
\(553\) −5.20945 29.5442i −0.221528 1.25635i
\(554\) 21.4492 17.9981i 0.911291 0.764664i
\(555\) 7.51754 2.73616i 0.319102 0.116144i
\(556\) 0 0
\(557\) 21.4492 + 17.9981i 0.908834 + 0.762602i 0.971897 0.235408i \(-0.0756425\pi\)
−0.0630631 + 0.998010i \(0.520087\pi\)
\(558\) −8.00000 + 13.8564i −0.338667 + 0.586588i
\(559\) 2.00000 + 3.46410i 0.0845910 + 0.146516i
\(560\) −2.08378 + 11.8177i −0.0880557 + 0.499389i
\(561\) −1.04189 + 5.90885i −0.0439886 + 0.249472i
\(562\) 4.00000 + 6.92820i 0.168730 + 0.292249i
\(563\) 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331202i \(-0.107454\pi\)
\(564\) −6.12836 5.14230i −0.258050 0.216530i
\(565\) 52.6228 + 19.1531i 2.21386 + 0.805778i
\(566\) 5.63816 2.05212i 0.236989 0.0862571i
\(567\) 2.29813 1.92836i 0.0965125 0.0809836i
\(568\) 0.347296 + 1.96962i 0.0145722 + 0.0826432i
\(569\) 40.0000 1.67689 0.838444 0.544988i \(-0.183466\pi\)
0.838444 + 0.544988i \(0.183466\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) −0.347296 1.96962i −0.0145212 0.0823538i
\(573\) −5.36231 + 4.49951i −0.224014 + 0.187970i
\(574\) 22.5526 8.20848i 0.941328 0.342615i
\(575\) 10.3366 + 3.76222i 0.431067 + 0.156895i
\(576\) −1.53209 1.28558i −0.0638370 0.0535656i
\(577\) 18.5000 32.0429i 0.770165 1.33397i −0.167307 0.985905i \(-0.553507\pi\)
0.937472 0.348060i \(-0.113160\pi\)
\(578\) 4.00000 + 6.92820i 0.166378 + 0.288175i
\(579\) 1.04189 5.90885i 0.0432994 0.245563i
\(580\) 3.47296 19.6962i 0.144207 0.817838i
\(581\) 9.00000 + 15.5885i 0.373383 + 0.646718i
\(582\) −1.00000 + 1.73205i −0.0414513 + 0.0717958i
\(583\) −1.53209 1.28558i −0.0634526 0.0532431i
\(584\) −8.45723 3.07818i −0.349963 0.127376i
\(585\) 7.51754 2.73616i 0.310812 0.113126i
\(586\) 6.89440 5.78509i 0.284805 0.238980i
\(587\) −2.08378 11.8177i −0.0860067 0.487768i −0.997135 0.0756451i \(-0.975898\pi\)
0.911128 0.412123i \(-0.135213\pi\)
\(588\) −2.00000 −0.0824786
\(589\) 0 0
\(590\) −60.0000 −2.47016
\(591\) −1.38919 7.87846i −0.0571435 0.324077i
\(592\) −1.53209 + 1.28558i −0.0629685 + 0.0528368i
\(593\) −31.9495 + 11.6287i −1.31201 + 0.477533i −0.900890 0.434048i \(-0.857085\pi\)
−0.411121 + 0.911581i \(0.634863\pi\)
\(594\) −9.39693 3.42020i −0.385561 0.140333i
\(595\) −27.5776 23.1404i −1.13057 0.948662i
\(596\) 0 0
\(597\) −12.5000 21.6506i −0.511591 0.886102i
\(598\) 0.173648 0.984808i 0.00710100 0.0402718i
\(599\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(600\) 5.50000 + 9.52628i 0.224537 + 0.388909i
\(601\) 4.00000 6.92820i 0.163163 0.282607i −0.772838 0.634603i \(-0.781164\pi\)
0.936002 + 0.351996i \(0.114497\pi\)
\(602\) 9.19253 + 7.71345i 0.374660 + 0.314377i
\(603\) 5.63816 + 2.05212i 0.229603 + 0.0835688i
\(604\) −1.87939 + 0.684040i −0.0764711 + 0.0278332i
\(605\) 21.4492 17.9981i 0.872036 0.731725i
\(606\) −0.347296 1.96962i −0.0141080 0.0800102i
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 0 0
\(609\) 15.0000 0.607831
\(610\) −1.38919 7.87846i −0.0562465 0.318990i
\(611\) −6.12836 + 5.14230i −0.247927 + 0.208035i
\(612\) 5.63816 2.05212i 0.227909 0.0829521i
\(613\) −31.9495 11.6287i −1.29043 0.469678i −0.396562 0.918008i \(-0.629797\pi\)
−0.893868 + 0.448330i \(0.852019\pi\)
\(614\) −9.19253 7.71345i −0.370980 0.311290i
\(615\) 16.0000 27.7128i 0.645182 1.11749i
\(616\) −3.00000 5.19615i −0.120873 0.209359i
\(617\) 3.12567 17.7265i 0.125835 0.713644i −0.854974 0.518671i \(-0.826427\pi\)
0.980809 0.194973i \(-0.0624619\pi\)
\(618\) 1.04189 5.90885i 0.0419109 0.237689i
\(619\) −5.00000 8.66025i −0.200967 0.348085i 0.747873 0.663842i \(-0.231075\pi\)
−0.948840 + 0.315757i \(0.897742\pi\)
\(620\) −16.0000 + 27.7128i −0.642575 + 1.11297i
\(621\) −3.83022 3.21394i −0.153702 0.128971i
\(622\) −6.57785 2.39414i −0.263748 0.0959963i
\(623\) 0 0
\(624\) 0.766044 0.642788i 0.0306663 0.0257321i
\(625\) 7.11958 + 40.3771i 0.284783 + 1.61508i
\(626\) 29.0000 1.15907
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −1.04189 5.90885i −0.0415428 0.235601i
\(630\) 18.3851 15.4269i 0.732479 0.614623i
\(631\) −30.0702 + 10.9446i −1.19707 + 0.435699i −0.862202 0.506564i \(-0.830915\pi\)
−0.334872 + 0.942264i \(0.608693\pi\)
\(632\) 9.39693 + 3.42020i 0.373790 + 0.136048i
\(633\) −20.6832 17.3553i −0.822083 0.689810i
\(634\) 13.5000 23.3827i 0.536153 0.928645i
\(635\) 36.0000 + 62.3538i 1.42862 + 2.47444i
\(636\) 0.173648 0.984808i 0.00688560 0.0390502i
\(637\) −0.347296 + 1.96962i −0.0137604 + 0.0780390i
\(638\) 5.00000 + 8.66025i 0.197952 + 0.342863i
\(639\) 2.00000 3.46410i 0.0791188 0.137038i
\(640\) −3.06418 2.57115i −0.121122 0.101634i
\(641\) −39.4671 14.3648i −1.55886 0.567377i −0.588382 0.808583i \(-0.700235\pi\)
−0.970474 + 0.241206i \(0.922457\pi\)
\(642\) −6.57785 + 2.39414i −0.259607 + 0.0944892i
\(643\) −19.9172 + 16.7125i −0.785456 + 0.659076i −0.944616 0.328177i \(-0.893566\pi\)
0.159160 + 0.987253i \(0.449121\pi\)
\(644\) −0.520945 2.95442i −0.0205281 0.116421i
\(645\) 16.0000 0.629999
\(646\) 0 0
\(647\) 23.0000 0.904223 0.452112 0.891961i \(-0.350671\pi\)
0.452112 + 0.891961i \(0.350671\pi\)
\(648\) 0.173648 + 0.984808i 0.00682154 + 0.0386869i
\(649\) 22.9813 19.2836i 0.902096 0.756949i
\(650\) 10.3366 3.76222i 0.405436 0.147566i
\(651\) −22.5526 8.20848i −0.883907 0.321716i
\(652\) −12.2567 10.2846i −0.480010 0.402776i
\(653\) 18.0000 31.1769i 0.704394 1.22005i −0.262515 0.964928i \(-0.584552\pi\)
0.966910 0.255119i \(-0.0821147\pi\)
\(654\) −7.50000 12.9904i −0.293273 0.507964i
\(655\) −8.33511 + 47.2708i −0.325680 + 1.84702i
\(656\) −1.38919 + 7.87846i −0.0542386 + 0.307602i
\(657\) 9.00000 + 15.5885i 0.351123 + 0.608164i
\(658\) −12.0000 + 20.7846i −0.467809 + 0.810268i
\(659\) 3.83022 + 3.21394i 0.149204 + 0.125197i 0.714334 0.699805i \(-0.246730\pi\)
−0.565130 + 0.825002i \(0.691174\pi\)
\(660\) −7.51754 2.73616i −0.292620 0.106505i
\(661\) 21.6129 7.86646i 0.840646 0.305970i 0.114425 0.993432i \(-0.463497\pi\)
0.726220 + 0.687462i \(0.241275\pi\)
\(662\) 13.0228 10.9274i 0.506144 0.424705i
\(663\) 0.520945 + 2.95442i 0.0202318 + 0.114740i
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) 0.868241 + 4.92404i 0.0336184 + 0.190660i
\(668\) −9.19253 + 7.71345i −0.355670 + 0.298442i
\(669\) 13.1557 4.78828i 0.508629 0.185126i
\(670\) 11.2763 + 4.10424i 0.435642 + 0.158561i
\(671\) 3.06418 + 2.57115i 0.118291 + 0.0992582i
\(672\) 1.50000 2.59808i 0.0578638 0.100223i
\(673\) −22.0000 38.1051i −0.848038 1.46884i −0.882957 0.469454i \(-0.844451\pi\)
0.0349191 0.999390i \(-0.488883\pi\)
\(674\) −5.55674 + 31.5138i −0.214038 + 1.21387i
\(675\) 9.55065 54.1644i 0.367605 2.08479i
\(676\) 6.00000 + 10.3923i 0.230769 + 0.399704i
\(677\) −6.50000 + 11.2583i −0.249815 + 0.432693i −0.963474 0.267800i \(-0.913703\pi\)
0.713659 + 0.700493i \(0.247037\pi\)
\(678\) −10.7246 8.99903i −0.411877 0.345606i
\(679\) 5.63816 + 2.05212i 0.216373 + 0.0787532i
\(680\) 11.2763 4.10424i 0.432427 0.157390i
\(681\) 13.0228 10.9274i 0.499033 0.418738i
\(682\) −2.77837 15.7569i −0.106389 0.603364i
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 68.0000 2.59815
\(686\) −2.60472 14.7721i −0.0994488 0.564002i
\(687\) 7.66044 6.42788i 0.292264 0.245239i
\(688\) −3.75877 + 1.36808i −0.143302 + 0.0521576i
\(689\) −0.939693 0.342020i −0.0357994 0.0130299i
\(690\) −3.06418 2.57115i −0.116651 0.0978820i
\(691\) −21.0000 + 36.3731i −0.798878 + 1.38370i 0.121470 + 0.992595i \(0.461239\pi\)
−0.920348 + 0.391102i \(0.872094\pi\)
\(692\) 3.00000 + 5.19615i 0.114043 + 0.197528i
\(693\) −2.08378 + 11.8177i −0.0791562 + 0.448917i
\(694\) −0.347296 + 1.96962i −0.0131832 + 0.0747656i
\(695\) 0 0
\(696\) −2.50000 + 4.33013i −0.0947623 + 0.164133i
\(697\) −18.3851 15.4269i −0.696384 0.584336i
\(698\) −9.39693 3.42020i −0.355679 0.129457i
\(699\) −5.63816 + 2.05212i −0.213255 + 0.0776183i
\(700\) 25.2795 21.2120i 0.955474 0.801738i
\(701\) −4.86215 27.5746i −0.183641 1.04148i −0.927689 0.373353i \(-0.878208\pi\)
0.744048 0.668126i \(-0.232903\pi\)
\(702\) −5.00000 −0.188713
\(703\) 0 0
\(704\) 2.00000 0.0753778
\(705\) 5.55674 + 31.5138i 0.209279 + 1.18688i
\(706\) 6.89440 5.78509i 0.259474 0.217725i
\(707\) −5.63816 + 2.05212i −0.212045 + 0.0771779i
\(708\) 14.0954 + 5.13030i 0.529737 + 0.192809i
\(709\) −22.9813 19.2836i −0.863082 0.724212i 0.0995477 0.995033i \(-0.468260\pi\)
−0.962630 + 0.270821i \(0.912705\pi\)
\(710\) 4.00000 6.92820i 0.150117 0.260011i
\(711\) −10.0000 17.3205i −0.375029 0.649570i
\(712\) 0 0
\(713\) 1.38919 7.87846i 0.0520254 0.295051i
\(714\) 4.50000 + 7.79423i 0.168408 + 0.291692i
\(715\) −4.00000 + 6.92820i −0.149592 + 0.259100i
\(716\) 0 0
\(717\) 14.0954 + 5.13030i 0.526402 + 0.191595i
\(718\) 14.0954 5.13030i 0.526035 0.191461i
\(719\) −3.83022 + 3.21394i −0.142843 + 0.119860i −0.711409 0.702778i \(-0.751943\pi\)
0.568566 + 0.822638i \(0.307498\pi\)
\(720\) 1.38919 + 7.87846i 0.0517719 + 0.293613i
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) 8.00000 0.297523
\(724\) 3.82026 + 21.6658i 0.141979 + 0.805202i
\(725\) −42.1324 + 35.3533i −1.56476 + 1.31299i
\(726\) −6.57785 + 2.39414i −0.244127 + 0.0888549i
\(727\) 15.9748 + 5.81434i 0.592472 + 0.215642i 0.620816 0.783956i \(-0.286801\pi\)
−0.0283446 + 0.999598i \(0.509024\pi\)
\(728\) −2.29813 1.92836i −0.0851745 0.0714699i
\(729\) −6.50000 + 11.2583i −0.240741 + 0.416975i
\(730\) 18.0000 + 31.1769i 0.666210 + 1.15391i
\(731\) 2.08378 11.8177i 0.0770713 0.437093i
\(732\) −0.347296 + 1.96962i −0.0128364 + 0.0727991i
\(733\) 18.0000 + 31.1769i 0.664845 + 1.15155i 0.979327 + 0.202282i \(0.0648358\pi\)
−0.314482 + 0.949263i \(0.601831\pi\)
\(734\) −14.0000 + 24.2487i −0.516749 + 0.895036i
\(735\) 6.12836 + 5.14230i 0.226048 + 0.189677i
\(736\) 0.939693 + 0.342020i 0.0346375 + 0.0126070i
\(737\) −5.63816 + 2.05212i −0.207684 + 0.0755908i
\(738\) 12.2567 10.2846i 0.451176 0.378581i
\(739\) −6.94593 39.3923i −0.255510 1.44907i −0.794760 0.606924i \(-0.792403\pi\)
0.539250 0.842146i \(-0.318708\pi\)
\(740\) 8.00000 0.294086
\(741\) 0 0
\(742\) −3.00000 −0.110133
\(743\) −2.77837 15.7569i −0.101929 0.578065i −0.992403 0.123032i \(-0.960738\pi\)
0.890474 0.455034i \(-0.150373\pi\)
\(744\) 6.12836 5.14230i 0.224676 0.188526i
\(745\) 0 0
\(746\) −27.2511 9.91858i −0.997733 0.363145i
\(747\) 9.19253 + 7.71345i 0.336337 + 0.282220i
\(748\) −3.00000 + 5.19615i −0.109691 + 0.189990i
\(749\) 10.5000 + 18.1865i 0.383662 + 0.664521i
\(750\) 4.16756 23.6354i 0.152178 0.863042i
\(751\) 5.55674 31.5138i 0.202768 1.14996i −0.698145 0.715957i \(-0.745991\pi\)
0.900913 0.434000i \(-0.142898\pi\)
\(752\) −4.00000 6.92820i −0.145865 0.252646i
\(753\) 1.00000 1.73205i 0.0364420 0.0631194i
\(754\) 3.83022 + 3.21394i 0.139488 + 0.117045i
\(755\) 7.51754 + 2.73616i 0.273591 + 0.0995791i
\(756\) −14.0954 + 5.13030i −0.512644 + 0.186587i
\(757\) −1.53209 + 1.28558i −0.0556847 + 0.0467250i −0.670205 0.742176i \(-0.733794\pi\)
0.614521 + 0.788901i \(0.289349\pi\)
\(758\) 2.60472 + 14.7721i 0.0946078 + 0.536547i
\(759\) 2.00000 0.0725954
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) −3.12567 17.7265i −0.113231 0.642165i
\(763\) −34.4720 + 28.9254i −1.24797 + 1.04717i
\(764\) −6.57785 + 2.39414i −0.237978 + 0.0866170i
\(765\) −22.5526 8.20848i −0.815392 0.296778i
\(766\) −19.9172 16.7125i −0.719636 0.603846i
\(767\) 7.50000 12.9904i 0.270809 0.469055i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −6.07769 + 34.4683i −0.219167 + 1.24296i 0.654360 + 0.756183i \(0.272938\pi\)
−0.873527 + 0.486775i \(0.838173\pi\)
\(770\) −4.16756 + 23.6354i −0.150188 + 0.851760i
\(771\) 4.00000 + 6.92820i 0.144056 + 0.249513i
\(772\) 3.00000 5.19615i 0.107972 0.187014i
\(773\) 6.89440 + 5.78509i 0.247974 + 0.208075i 0.758299 0.651906i \(-0.226030\pi\)
−0.510325 + 0.859982i \(0.670475\pi\)
\(774\) 7.51754 + 2.73616i 0.270212 + 0.0983493i
\(775\) 82.6930 30.0978i 2.97042 1.08114i
\(776\) −1.53209 + 1.28558i −0.0549988