# Properties

 Label 722.2.c.n.429.3 Level $722$ Weight $2$ Character 722.429 Analytic conductor $5.765$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$722 = 2 \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 722.c (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.76519902594$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{3})$$ Coefficient field: 8.0.324000000.2 Defining polynomial: $$x^{8} + 5x^{6} + 20x^{4} + 25x^{2} + 25$$ x^8 + 5*x^6 + 20*x^4 + 25*x^2 + 25 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 429.3 Root $$0.587785 - 1.01807i$$ of defining polynomial Character $$\chi$$ $$=$$ 722.429 Dual form 722.2.c.n.653.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 - 0.866025i) q^{2} +(0.642040 - 1.11205i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.84786 + 3.20059i) q^{5} +(-0.642040 - 1.11205i) q^{6} -0.442463 q^{7} -1.00000 q^{8} +(0.675571 + 1.17012i) q^{9} +O(q^{10})$$ $$q+(0.500000 - 0.866025i) q^{2} +(0.642040 - 1.11205i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.84786 + 3.20059i) q^{5} +(-0.642040 - 1.11205i) q^{6} -0.442463 q^{7} -1.00000 q^{8} +(0.675571 + 1.17012i) q^{9} +(1.84786 + 3.20059i) q^{10} -4.02967 q^{11} -1.28408 q^{12} +(2.44575 + 4.23616i) q^{13} +(-0.221232 + 0.383185i) q^{14} +(2.37280 + 4.10980i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.133446 + 0.231136i) q^{17} +1.35114 q^{18} +3.69572 q^{20} +(-0.284079 + 0.492039i) q^{21} +(-2.01484 + 3.48980i) q^{22} +(4.60465 + 7.97549i) q^{23} +(-0.642040 + 1.11205i) q^{24} +(-4.32916 - 7.49833i) q^{25} +4.89149 q^{26} +5.58721 q^{27} +(0.221232 + 0.383185i) q^{28} +(-0.111791 - 0.193627i) q^{29} +4.74559 q^{30} -3.47985 q^{31} +(0.500000 + 0.866025i) q^{32} +(-2.58721 + 4.48118i) q^{33} +(0.133446 + 0.231136i) q^{34} +(0.817610 - 1.41614i) q^{35} +(0.675571 - 1.17012i) q^{36} -1.44903 q^{37} +6.28106 q^{39} +(1.84786 - 3.20059i) q^{40} +(-3.93236 + 6.81105i) q^{41} +(0.284079 + 0.492039i) q^{42} +(2.81761 - 4.88024i) q^{43} +(2.01484 + 3.48980i) q^{44} -4.99344 q^{45} +9.20930 q^{46} +(-1.09934 - 1.90411i) q^{47} +(0.642040 + 1.11205i) q^{48} -6.80423 q^{49} -8.65833 q^{50} +(0.171356 + 0.296797i) q^{51} +(2.44575 - 4.23616i) q^{52} +(4.97120 + 8.61038i) q^{53} +(2.79360 - 4.83866i) q^{54} +(7.44627 - 12.8973i) q^{55} +0.442463 q^{56} -0.223582 q^{58} +(-1.75476 + 3.03934i) q^{59} +(2.37280 - 4.10980i) q^{60} +(-2.03977 - 3.53299i) q^{61} +(-1.73993 + 3.01364i) q^{62} +(-0.298915 - 0.517736i) q^{63} +1.00000 q^{64} -18.0776 q^{65} +(2.58721 + 4.48118i) q^{66} +(0.0738814 + 0.127966i) q^{67} +0.266893 q^{68} +11.8255 q^{69} +(-0.817610 - 1.41614i) q^{70} +(5.73456 - 9.93255i) q^{71} +(-0.675571 - 1.17012i) q^{72} +(-0.711130 + 1.23171i) q^{73} +(-0.724514 + 1.25490i) q^{74} -11.1180 q^{75} +1.78298 q^{77} +(3.14053 - 5.43956i) q^{78} +(5.10169 - 8.83638i) q^{79} +(-1.84786 - 3.20059i) q^{80} +(1.56050 - 2.70286i) q^{81} +(3.93236 + 6.81105i) q^{82} -3.28878 q^{83} +0.568158 q^{84} +(-0.493181 - 0.854214i) q^{85} +(-2.81761 - 4.88024i) q^{86} -0.287096 q^{87} +4.02967 q^{88} +(-2.98037 - 5.16216i) q^{89} +(-2.49672 + 4.32444i) q^{90} +(-1.08215 - 1.87434i) q^{91} +(4.60465 - 7.97549i) q^{92} +(-2.23420 + 3.86975i) q^{93} -2.19868 q^{94} +1.28408 q^{96} +(2.04238 - 3.53750i) q^{97} +(-3.40211 + 5.89263i) q^{98} +(-2.72233 - 4.71521i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q + 4 q^{2} + 2 q^{3} - 4 q^{4} + 2 q^{5} - 2 q^{6} - 4 q^{7} - 8 q^{8} - 4 q^{9}+O(q^{10})$$ 8 * q + 4 * q^2 + 2 * q^3 - 4 * q^4 + 2 * q^5 - 2 * q^6 - 4 * q^7 - 8 * q^8 - 4 * q^9 $$8 q + 4 q^{2} + 2 q^{3} - 4 q^{4} + 2 q^{5} - 2 q^{6} - 4 q^{7} - 8 q^{8} - 4 q^{9} - 2 q^{10} + 4 q^{11} - 4 q^{12} + 18 q^{13} - 2 q^{14} + 4 q^{15} - 4 q^{16} - 6 q^{17} - 8 q^{18} - 4 q^{20} + 4 q^{21} + 2 q^{22} + 10 q^{23} - 2 q^{24} - 6 q^{25} + 36 q^{26} + 8 q^{27} + 2 q^{28} - 2 q^{29} + 8 q^{30} - 52 q^{31} + 4 q^{32} + 16 q^{33} + 6 q^{34} - 6 q^{35} - 4 q^{36} - 8 q^{37} - 12 q^{39} - 2 q^{40} - 12 q^{41} - 4 q^{42} + 10 q^{43} - 2 q^{44} - 44 q^{45} + 20 q^{46} + 12 q^{47} + 2 q^{48} - 24 q^{49} - 12 q^{50} - 2 q^{51} + 18 q^{52} + 8 q^{53} + 4 q^{54} + 26 q^{55} + 4 q^{56} - 4 q^{58} - 8 q^{59} + 4 q^{60} - 26 q^{62} + 22 q^{63} + 8 q^{64} + 8 q^{65} - 16 q^{66} + 10 q^{67} + 12 q^{68} + 40 q^{69} + 6 q^{70} + 4 q^{72} + 14 q^{73} - 4 q^{74} - 16 q^{75} + 8 q^{77} - 6 q^{78} + 22 q^{79} + 2 q^{80} + 4 q^{81} + 12 q^{82} - 24 q^{83} - 8 q^{84} + 18 q^{85} - 10 q^{86} - 52 q^{87} - 4 q^{88} - 16 q^{89} - 22 q^{90} - 4 q^{91} + 10 q^{92} - 8 q^{93} + 24 q^{94} + 4 q^{96} + 28 q^{97} - 12 q^{98} - 22 q^{99}+O(q^{100})$$ 8 * q + 4 * q^2 + 2 * q^3 - 4 * q^4 + 2 * q^5 - 2 * q^6 - 4 * q^7 - 8 * q^8 - 4 * q^9 - 2 * q^10 + 4 * q^11 - 4 * q^12 + 18 * q^13 - 2 * q^14 + 4 * q^15 - 4 * q^16 - 6 * q^17 - 8 * q^18 - 4 * q^20 + 4 * q^21 + 2 * q^22 + 10 * q^23 - 2 * q^24 - 6 * q^25 + 36 * q^26 + 8 * q^27 + 2 * q^28 - 2 * q^29 + 8 * q^30 - 52 * q^31 + 4 * q^32 + 16 * q^33 + 6 * q^34 - 6 * q^35 - 4 * q^36 - 8 * q^37 - 12 * q^39 - 2 * q^40 - 12 * q^41 - 4 * q^42 + 10 * q^43 - 2 * q^44 - 44 * q^45 + 20 * q^46 + 12 * q^47 + 2 * q^48 - 24 * q^49 - 12 * q^50 - 2 * q^51 + 18 * q^52 + 8 * q^53 + 4 * q^54 + 26 * q^55 + 4 * q^56 - 4 * q^58 - 8 * q^59 + 4 * q^60 - 26 * q^62 + 22 * q^63 + 8 * q^64 + 8 * q^65 - 16 * q^66 + 10 * q^67 + 12 * q^68 + 40 * q^69 + 6 * q^70 + 4 * q^72 + 14 * q^73 - 4 * q^74 - 16 * q^75 + 8 * q^77 - 6 * q^78 + 22 * q^79 + 2 * q^80 + 4 * q^81 + 12 * q^82 - 24 * q^83 - 8 * q^84 + 18 * q^85 - 10 * q^86 - 52 * q^87 - 4 * q^88 - 16 * q^89 - 22 * q^90 - 4 * q^91 + 10 * q^92 - 8 * q^93 + 24 * q^94 + 4 * q^96 + 28 * q^97 - 12 * q^98 - 22 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/722\mathbb{Z}\right)^\times$$.

 $$n$$ $$363$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 0.866025i 0.353553 0.612372i
$$3$$ 0.642040 1.11205i 0.370682 0.642040i −0.618989 0.785400i $$-0.712457\pi$$
0.989671 + 0.143360i $$0.0457907\pi$$
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ −1.84786 + 3.20059i −0.826388 + 1.43135i 0.0744667 + 0.997224i $$0.476275\pi$$
−0.900854 + 0.434122i $$0.857059\pi$$
$$6$$ −0.642040 1.11205i −0.262112 0.453990i
$$7$$ −0.442463 −0.167235 −0.0836177 0.996498i $$-0.526647\pi$$
−0.0836177 + 0.996498i $$0.526647\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ 0.675571 + 1.17012i 0.225190 + 0.390041i
$$10$$ 1.84786 + 3.20059i 0.584344 + 1.01211i
$$11$$ −4.02967 −1.21499 −0.607496 0.794323i $$-0.707826\pi$$
−0.607496 + 0.794323i $$0.707826\pi$$
$$12$$ −1.28408 −0.370682
$$13$$ 2.44575 + 4.23616i 0.678328 + 1.17490i 0.975484 + 0.220069i $$0.0706284\pi$$
−0.297156 + 0.954829i $$0.596038\pi$$
$$14$$ −0.221232 + 0.383185i −0.0591267 + 0.102410i
$$15$$ 2.37280 + 4.10980i 0.612653 + 1.06115i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −0.133446 + 0.231136i −0.0323655 + 0.0560587i −0.881754 0.471709i $$-0.843637\pi$$
0.849389 + 0.527767i $$0.176971\pi$$
$$18$$ 1.35114 0.318467
$$19$$ 0 0
$$20$$ 3.69572 0.826388
$$21$$ −0.284079 + 0.492039i −0.0619911 + 0.107372i
$$22$$ −2.01484 + 3.48980i −0.429565 + 0.744028i
$$23$$ 4.60465 + 7.97549i 0.960136 + 1.66300i 0.722151 + 0.691735i $$0.243153\pi$$
0.237985 + 0.971269i $$0.423513\pi$$
$$24$$ −0.642040 + 1.11205i −0.131056 + 0.226995i
$$25$$ −4.32916 7.49833i −0.865833 1.49967i
$$26$$ 4.89149 0.959300
$$27$$ 5.58721 1.07526
$$28$$ 0.221232 + 0.383185i 0.0418089 + 0.0724151i
$$29$$ −0.111791 0.193627i −0.0207590 0.0359557i 0.855459 0.517870i $$-0.173275\pi$$
−0.876218 + 0.481914i $$0.839942\pi$$
$$30$$ 4.74559 0.866423
$$31$$ −3.47985 −0.625000 −0.312500 0.949918i $$-0.601166\pi$$
−0.312500 + 0.949918i $$0.601166\pi$$
$$32$$ 0.500000 + 0.866025i 0.0883883 + 0.153093i
$$33$$ −2.58721 + 4.48118i −0.450375 + 0.780073i
$$34$$ 0.133446 + 0.231136i 0.0228859 + 0.0396395i
$$35$$ 0.817610 1.41614i 0.138201 0.239372i
$$36$$ 0.675571 1.17012i 0.112595 0.195020i
$$37$$ −1.44903 −0.238219 −0.119109 0.992881i $$-0.538004\pi$$
−0.119109 + 0.992881i $$0.538004\pi$$
$$38$$ 0 0
$$39$$ 6.28106 1.00577
$$40$$ 1.84786 3.20059i 0.292172 0.506057i
$$41$$ −3.93236 + 6.81105i −0.614132 + 1.06371i 0.376404 + 0.926455i $$0.377160\pi$$
−0.990536 + 0.137252i $$0.956173\pi$$
$$42$$ 0.284079 + 0.492039i 0.0438343 + 0.0759233i
$$43$$ 2.81761 4.88024i 0.429682 0.744230i −0.567163 0.823605i $$-0.691959\pi$$
0.996845 + 0.0793752i $$0.0252925\pi$$
$$44$$ 2.01484 + 3.48980i 0.303748 + 0.526107i
$$45$$ −4.99344 −0.744377
$$46$$ 9.20930 1.35784
$$47$$ −1.09934 1.90411i −0.160355 0.277743i 0.774641 0.632401i $$-0.217931\pi$$
−0.934996 + 0.354658i $$0.884597\pi$$
$$48$$ 0.642040 + 1.11205i 0.0926704 + 0.160510i
$$49$$ −6.80423 −0.972032
$$50$$ −8.65833 −1.22447
$$51$$ 0.171356 + 0.296797i 0.0239946 + 0.0415599i
$$52$$ 2.44575 4.23616i 0.339164 0.587449i
$$53$$ 4.97120 + 8.61038i 0.682847 + 1.18273i 0.974108 + 0.226083i $$0.0725919\pi$$
−0.291261 + 0.956644i $$0.594075\pi$$
$$54$$ 2.79360 4.83866i 0.380161 0.658459i
$$55$$ 7.44627 12.8973i 1.00405 1.73907i
$$56$$ 0.442463 0.0591267
$$57$$ 0 0
$$58$$ −0.223582 −0.0293577
$$59$$ −1.75476 + 3.03934i −0.228451 + 0.395688i −0.957349 0.288934i $$-0.906699\pi$$
0.728898 + 0.684622i $$0.240033\pi$$
$$60$$ 2.37280 4.10980i 0.306327 0.530573i
$$61$$ −2.03977 3.53299i −0.261166 0.452353i 0.705386 0.708824i $$-0.250774\pi$$
−0.966552 + 0.256470i $$0.917440\pi$$
$$62$$ −1.73993 + 3.01364i −0.220971 + 0.382733i
$$63$$ −0.298915 0.517736i −0.0376598 0.0652287i
$$64$$ 1.00000 0.125000
$$65$$ −18.0776 −2.24225
$$66$$ 2.58721 + 4.48118i 0.318463 + 0.551595i
$$67$$ 0.0738814 + 0.127966i 0.00902605 + 0.0156336i 0.870503 0.492163i $$-0.163794\pi$$
−0.861477 + 0.507796i $$0.830460\pi$$
$$68$$ 0.266893 0.0323655
$$69$$ 11.8255 1.42362
$$70$$ −0.817610 1.41614i −0.0977231 0.169261i
$$71$$ 5.73456 9.93255i 0.680567 1.17878i −0.294241 0.955731i $$-0.595067\pi$$
0.974808 0.223045i $$-0.0715998\pi$$
$$72$$ −0.675571 1.17012i −0.0796167 0.137900i
$$73$$ −0.711130 + 1.23171i −0.0832315 + 0.144161i −0.904636 0.426185i $$-0.859857\pi$$
0.821405 + 0.570346i $$0.193191\pi$$
$$74$$ −0.724514 + 1.25490i −0.0842230 + 0.145879i
$$75$$ −11.1180 −1.28379
$$76$$ 0 0
$$77$$ 1.78298 0.203190
$$78$$ 3.14053 5.43956i 0.355595 0.615909i
$$79$$ 5.10169 8.83638i 0.573985 0.994171i −0.422166 0.906518i $$-0.638730\pi$$
0.996151 0.0876525i $$-0.0279365\pi$$
$$80$$ −1.84786 3.20059i −0.206597 0.357836i
$$81$$ 1.56050 2.70286i 0.173389 0.300318i
$$82$$ 3.93236 + 6.81105i 0.434257 + 0.752155i
$$83$$ −3.28878 −0.360990 −0.180495 0.983576i $$-0.557770\pi$$
−0.180495 + 0.983576i $$0.557770\pi$$
$$84$$ 0.568158 0.0619911
$$85$$ −0.493181 0.854214i −0.0534929 0.0926525i
$$86$$ −2.81761 4.88024i −0.303831 0.526250i
$$87$$ −0.287096 −0.0307800
$$88$$ 4.02967 0.429565
$$89$$ −2.98037 5.16216i −0.315919 0.547188i 0.663714 0.747987i $$-0.268979\pi$$
−0.979632 + 0.200799i $$0.935646\pi$$
$$90$$ −2.49672 + 4.32444i −0.263177 + 0.455836i
$$91$$ −1.08215 1.87434i −0.113440 0.196485i
$$92$$ 4.60465 7.97549i 0.480068 0.831502i
$$93$$ −2.23420 + 3.86975i −0.231676 + 0.401275i
$$94$$ −2.19868 −0.226776
$$95$$ 0 0
$$96$$ 1.28408 0.131056
$$97$$ 2.04238 3.53750i 0.207372 0.359179i −0.743514 0.668721i $$-0.766842\pi$$
0.950886 + 0.309541i $$0.100176\pi$$
$$98$$ −3.40211 + 5.89263i −0.343665 + 0.595246i
$$99$$ −2.72233 4.71521i −0.273604 0.473896i
$$100$$ −4.32916 + 7.49833i −0.432916 + 0.749833i
$$101$$ −0.212639 0.368301i −0.0211583 0.0366473i 0.855252 0.518212i $$-0.173402\pi$$
−0.876411 + 0.481564i $$0.840069\pi$$
$$102$$ 0.342712 0.0339335
$$103$$ 4.53618 0.446963 0.223482 0.974708i $$-0.428258\pi$$
0.223482 + 0.974708i $$0.428258\pi$$
$$104$$ −2.44575 4.23616i −0.239825 0.415389i
$$105$$ −1.04988 1.81844i −0.102457 0.177461i
$$106$$ 9.94241 0.965692
$$107$$ 3.17151 0.306602 0.153301 0.988180i $$-0.451010\pi$$
0.153301 + 0.988180i $$0.451010\pi$$
$$108$$ −2.79360 4.83866i −0.268815 0.465601i
$$109$$ −3.39056 + 5.87262i −0.324757 + 0.562495i −0.981463 0.191651i $$-0.938616\pi$$
0.656706 + 0.754146i $$0.271949\pi$$
$$110$$ −7.44627 12.8973i −0.709974 1.22971i
$$111$$ −0.930333 + 1.61138i −0.0883033 + 0.152946i
$$112$$ 0.221232 0.383185i 0.0209044 0.0362075i
$$113$$ 10.0444 0.944893 0.472447 0.881359i $$-0.343371\pi$$
0.472447 + 0.881359i $$0.343371\pi$$
$$114$$ 0 0
$$115$$ −34.0350 −3.17378
$$116$$ −0.111791 + 0.193627i −0.0103795 + 0.0179778i
$$117$$ −3.30455 + 5.72364i −0.305506 + 0.529151i
$$118$$ 1.75476 + 3.03934i 0.161539 + 0.279794i
$$119$$ 0.0590452 0.102269i 0.00541266 0.00937501i
$$120$$ −2.37280 4.10980i −0.216606 0.375172i
$$121$$ 5.23826 0.476205
$$122$$ −4.07955 −0.369345
$$123$$ 5.04946 + 8.74593i 0.455295 + 0.788594i
$$124$$ 1.73993 + 3.01364i 0.156250 + 0.270633i
$$125$$ 13.5201 1.20928
$$126$$ −0.597831 −0.0532590
$$127$$ 7.04029 + 12.1941i 0.624725 + 1.08206i 0.988594 + 0.150605i $$0.0481223\pi$$
−0.363869 + 0.931450i $$0.618544\pi$$
$$128$$ 0.500000 0.866025i 0.0441942 0.0765466i
$$129$$ −3.61803 6.26662i −0.318550 0.551745i
$$130$$ −9.03879 + 15.6556i −0.792754 + 1.37309i
$$131$$ −7.92075 + 13.7191i −0.692039 + 1.19865i 0.279129 + 0.960254i $$0.409954\pi$$
−0.971169 + 0.238394i $$0.923379\pi$$
$$132$$ 5.17442 0.450375
$$133$$ 0 0
$$134$$ 0.147763 0.0127648
$$135$$ −10.3244 + 17.8823i −0.888581 + 1.53907i
$$136$$ 0.133446 0.231136i 0.0114429 0.0198198i
$$137$$ −1.10372 1.91169i −0.0942970 0.163327i 0.815018 0.579436i $$-0.196727\pi$$
−0.909315 + 0.416108i $$0.863394\pi$$
$$138$$ 5.91273 10.2412i 0.503325 0.871785i
$$139$$ 8.53222 + 14.7782i 0.723694 + 1.25347i 0.959510 + 0.281676i $$0.0908904\pi$$
−0.235816 + 0.971798i $$0.575776\pi$$
$$140$$ −1.63522 −0.138201
$$141$$ −2.82328 −0.237763
$$142$$ −5.73456 9.93255i −0.481234 0.833521i
$$143$$ −9.85555 17.0703i −0.824163 1.42749i
$$144$$ −1.35114 −0.112595
$$145$$ 0.826294 0.0686200
$$146$$ 0.711130 + 1.23171i 0.0588535 + 0.101937i
$$147$$ −4.36858 + 7.56661i −0.360315 + 0.624083i
$$148$$ 0.724514 + 1.25490i 0.0595547 + 0.103152i
$$149$$ −6.77288 + 11.7310i −0.554856 + 0.961039i 0.443059 + 0.896493i $$0.353893\pi$$
−0.997915 + 0.0645462i $$0.979440\pi$$
$$150$$ −5.55899 + 9.62845i −0.453890 + 0.786160i
$$151$$ 9.15317 0.744875 0.372437 0.928057i $$-0.378522\pi$$
0.372437 + 0.928057i $$0.378522\pi$$
$$152$$ 0 0
$$153$$ −0.360610 −0.0291536
$$154$$ 0.891491 1.54411i 0.0718384 0.124428i
$$155$$ 6.43028 11.1376i 0.516492 0.894591i
$$156$$ −3.14053 5.43956i −0.251444 0.435513i
$$157$$ 8.19514 14.1944i 0.654043 1.13284i −0.328089 0.944647i $$-0.606405\pi$$
0.982133 0.188190i $$-0.0602620\pi$$
$$158$$ −5.10169 8.83638i −0.405869 0.702985i
$$159$$ 12.7668 1.01248
$$160$$ −3.69572 −0.292172
$$161$$ −2.03739 3.52886i −0.160569 0.278113i
$$162$$ −1.56050 2.70286i −0.122604 0.212357i
$$163$$ −13.7722 −1.07873 −0.539363 0.842073i $$-0.681335\pi$$
−0.539363 + 0.842073i $$0.681335\pi$$
$$164$$ 7.86472 0.614132
$$165$$ −9.56159 16.5612i −0.744369 1.28929i
$$166$$ −1.64439 + 2.84817i −0.127629 + 0.221061i
$$167$$ −5.16640 8.94847i −0.399788 0.692453i 0.593911 0.804530i $$-0.297583\pi$$
−0.993700 + 0.112077i $$0.964250\pi$$
$$168$$ 0.284079 0.492039i 0.0219172 0.0379617i
$$169$$ −5.46334 + 9.46279i −0.420257 + 0.727907i
$$170$$ −0.986361 −0.0756504
$$171$$ 0 0
$$172$$ −5.63522 −0.429682
$$173$$ −4.90601 + 8.49745i −0.372997 + 0.646049i −0.990025 0.140892i $$-0.955003\pi$$
0.617028 + 0.786941i $$0.288336\pi$$
$$174$$ −0.143548 + 0.248633i −0.0108824 + 0.0188488i
$$175$$ 1.91550 + 3.31774i 0.144798 + 0.250797i
$$176$$ 2.01484 3.48980i 0.151874 0.263053i
$$177$$ 2.25325 + 3.90275i 0.169365 + 0.293349i
$$178$$ −5.96075 −0.446777
$$179$$ 8.79830 0.657616 0.328808 0.944397i $$-0.393353\pi$$
0.328808 + 0.944397i $$0.393353\pi$$
$$180$$ 2.49672 + 4.32444i 0.186094 + 0.322325i
$$181$$ 7.26388 + 12.5814i 0.539920 + 0.935168i 0.998908 + 0.0467258i $$0.0148787\pi$$
−0.458988 + 0.888442i $$0.651788\pi$$
$$182$$ −2.16431 −0.160429
$$183$$ −5.23846 −0.387238
$$184$$ −4.60465 7.97549i −0.339459 0.587961i
$$185$$ 2.67760 4.63774i 0.196861 0.340973i
$$186$$ 2.23420 + 3.86975i 0.163820 + 0.283744i
$$187$$ 0.537746 0.931403i 0.0393239 0.0681109i
$$188$$ −1.09934 + 1.90411i −0.0801776 + 0.138872i
$$189$$ −2.47214 −0.179821
$$190$$ 0 0
$$191$$ 12.7302 0.921122 0.460561 0.887628i $$-0.347648\pi$$
0.460561 + 0.887628i $$0.347648\pi$$
$$192$$ 0.642040 1.11205i 0.0463352 0.0802549i
$$193$$ 8.73903 15.1364i 0.629049 1.08954i −0.358694 0.933455i $$-0.616778\pi$$
0.987743 0.156090i $$-0.0498889\pi$$
$$194$$ −2.04238 3.53750i −0.146634 0.253978i
$$195$$ −11.6065 + 20.1031i −0.831160 + 1.43961i
$$196$$ 3.40211 + 5.89263i 0.243008 + 0.420902i
$$197$$ −24.5113 −1.74636 −0.873178 0.487401i $$-0.837945\pi$$
−0.873178 + 0.487401i $$0.837945\pi$$
$$198$$ −5.44466 −0.386935
$$199$$ −8.23305 14.2601i −0.583625 1.01087i −0.995045 0.0994230i $$-0.968300\pi$$
0.411420 0.911446i $$-0.365033\pi$$
$$200$$ 4.32916 + 7.49833i 0.306118 + 0.530212i
$$201$$ 0.189739 0.0133832
$$202$$ −0.425277 −0.0299224
$$203$$ 0.0494633 + 0.0856730i 0.00347165 + 0.00601307i
$$204$$ 0.171356 0.296797i 0.0119973 0.0207799i
$$205$$ −14.5329 25.1717i −1.01502 1.75807i
$$206$$ 2.26809 3.92845i 0.158025 0.273708i
$$207$$ −6.22153 + 10.7760i −0.432426 + 0.748984i
$$208$$ −4.89149 −0.339164
$$209$$ 0 0
$$210$$ −2.09975 −0.144897
$$211$$ 13.7402 23.7988i 0.945916 1.63837i 0.192010 0.981393i $$-0.438499\pi$$
0.753906 0.656982i $$-0.228167\pi$$
$$212$$ 4.97120 8.61038i 0.341424 0.591363i
$$213$$ −7.36363 12.7542i −0.504547 0.873902i
$$214$$ 1.58576 2.74661i 0.108400 0.187754i
$$215$$ 10.4131 + 18.0360i 0.710167 + 1.23005i
$$216$$ −5.58721 −0.380161
$$217$$ 1.53971 0.104522
$$218$$ 3.39056 + 5.87262i 0.229638 + 0.397744i
$$219$$ 0.913147 + 1.58162i 0.0617048 + 0.106876i
$$220$$ −14.8925 −1.00405
$$221$$ −1.30550 −0.0878178
$$222$$ 0.930333 + 1.61138i 0.0624399 + 0.108149i
$$223$$ 10.1853 17.6414i 0.682058 1.18136i −0.292294 0.956329i $$-0.594419\pi$$
0.974352 0.225030i $$-0.0722481\pi$$
$$224$$ −0.221232 0.383185i −0.0147817 0.0256026i
$$225$$ 5.84931 10.1313i 0.389954 0.675420i
$$226$$ 5.02218 8.69866i 0.334070 0.578626i
$$227$$ 22.1493 1.47010 0.735051 0.678011i $$-0.237158\pi$$
0.735051 + 0.678011i $$0.237158\pi$$
$$228$$ 0 0
$$229$$ 12.7148 0.840216 0.420108 0.907474i $$-0.361992\pi$$
0.420108 + 0.907474i $$0.361992\pi$$
$$230$$ −17.0175 + 29.4752i −1.12210 + 1.94353i
$$231$$ 1.14475 1.98276i 0.0753187 0.130456i
$$232$$ 0.111791 + 0.193627i 0.00733942 + 0.0127123i
$$233$$ 4.34088 7.51863i 0.284381 0.492562i −0.688078 0.725637i $$-0.741545\pi$$
0.972459 + 0.233075i $$0.0748787\pi$$
$$234$$ 3.30455 + 5.72364i 0.216025 + 0.374166i
$$235$$ 8.12569 0.530062
$$236$$ 3.50953 0.228451
$$237$$ −6.55097 11.3466i −0.425531 0.737042i
$$238$$ −0.0590452 0.102269i −0.00382733 0.00662913i
$$239$$ 21.8749 1.41497 0.707485 0.706728i $$-0.249830\pi$$
0.707485 + 0.706728i $$0.249830\pi$$
$$240$$ −4.74559 −0.306327
$$241$$ −9.48160 16.4226i −0.610764 1.05787i −0.991112 0.133031i $$-0.957529\pi$$
0.380348 0.924843i $$-0.375804\pi$$
$$242$$ 2.61913 4.53647i 0.168364 0.291615i
$$243$$ 6.37701 + 11.0453i 0.409085 + 0.708557i
$$244$$ −2.03977 + 3.53299i −0.130583 + 0.226177i
$$245$$ 12.5732 21.7775i 0.803275 1.39131i
$$246$$ 10.0989 0.643884
$$247$$ 0 0
$$248$$ 3.47985 0.220971
$$249$$ −2.11153 + 3.65727i −0.133813 + 0.231770i
$$250$$ 6.76007 11.7088i 0.427545 0.740529i
$$251$$ −1.45138 2.51386i −0.0916102 0.158673i 0.816579 0.577234i $$-0.195868\pi$$
−0.908189 + 0.418561i $$0.862535\pi$$
$$252$$ −0.298915 + 0.517736i −0.0188299 + 0.0326143i
$$253$$ −18.5552 32.1386i −1.16656 2.02054i
$$254$$ 14.0806 0.883495
$$255$$ −1.26657 −0.0793154
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 11.4525 + 19.8363i 0.714388 + 1.23736i 0.963195 + 0.268803i $$0.0866281\pi$$
−0.248807 + 0.968553i $$0.580039\pi$$
$$258$$ −7.23607 −0.450498
$$259$$ 0.641142 0.0398386
$$260$$ 9.03879 + 15.6556i 0.560562 + 0.970921i
$$261$$ 0.151045 0.261618i 0.00934946 0.0161937i
$$262$$ 7.92075 + 13.7191i 0.489346 + 0.847572i
$$263$$ 2.53118 4.38413i 0.156079 0.270337i −0.777372 0.629041i $$-0.783448\pi$$
0.933452 + 0.358704i $$0.116781\pi$$
$$264$$ 2.58721 4.48118i 0.159232 0.275797i
$$265$$ −36.7443 −2.25719
$$266$$ 0 0
$$267$$ −7.65407 −0.468421
$$268$$ 0.0738814 0.127966i 0.00451303 0.00781679i
$$269$$ −10.3710 + 17.9630i −0.632329 + 1.09523i 0.354745 + 0.934963i $$0.384568\pi$$
−0.987074 + 0.160263i $$0.948766\pi$$
$$270$$ 10.3244 + 17.8823i 0.628321 + 1.08828i
$$271$$ −3.14735 + 5.45137i −0.191188 + 0.331147i −0.945644 0.325203i $$-0.894567\pi$$
0.754456 + 0.656350i $$0.227901\pi$$
$$272$$ −0.133446 0.231136i −0.00809138 0.0140147i
$$273$$ −2.77914 −0.168201
$$274$$ −2.20744 −0.133356
$$275$$ 17.4451 + 30.2158i 1.05198 + 1.82208i
$$276$$ −5.91273 10.2412i −0.355905 0.616445i
$$277$$ 7.17608 0.431169 0.215584 0.976485i $$-0.430834\pi$$
0.215584 + 0.976485i $$0.430834\pi$$
$$278$$ 17.0644 1.02346
$$279$$ −2.35089 4.07185i −0.140744 0.243776i
$$280$$ −0.817610 + 1.41614i −0.0488615 + 0.0846307i
$$281$$ 1.38696 + 2.40228i 0.0827388 + 0.143308i 0.904425 0.426632i $$-0.140300\pi$$
−0.821687 + 0.569940i $$0.806967\pi$$
$$282$$ −1.41164 + 2.44503i −0.0840618 + 0.145599i
$$283$$ −3.87431 + 6.71049i −0.230304 + 0.398897i −0.957897 0.287111i $$-0.907305\pi$$
0.727594 + 0.686008i $$0.240639\pi$$
$$284$$ −11.4691 −0.680567
$$285$$ 0 0
$$286$$ −19.7111 −1.16554
$$287$$ 1.73993 3.01364i 0.102705 0.177890i
$$288$$ −0.675571 + 1.17012i −0.0398084 + 0.0689501i
$$289$$ 8.46438 + 14.6607i 0.497905 + 0.862397i
$$290$$ 0.413147 0.715592i 0.0242608 0.0420210i
$$291$$ −2.62258 4.54243i −0.153738 0.266282i
$$292$$ 1.42226 0.0832315
$$293$$ 0.782870 0.0457358 0.0228679 0.999738i $$-0.492720\pi$$
0.0228679 + 0.999738i $$0.492720\pi$$
$$294$$ 4.36858 + 7.56661i 0.254781 + 0.441293i
$$295$$ −6.48511 11.2325i −0.377578 0.653983i
$$296$$ 1.44903 0.0842230
$$297$$ −22.5146 −1.30643
$$298$$ 6.77288 + 11.7310i 0.392342 + 0.679557i
$$299$$ −22.5236 + 39.0120i −1.30257 + 2.25612i
$$300$$ 5.55899 + 9.62845i 0.320948 + 0.555899i
$$301$$ −1.24669 + 2.15933i −0.0718580 + 0.124462i
$$302$$ 4.57659 7.92688i 0.263353 0.456141i
$$303$$ −0.546090 −0.0313720
$$304$$ 0 0
$$305$$ 15.0769 0.863298
$$306$$ −0.180305 + 0.312297i −0.0103074 + 0.0178529i
$$307$$ −14.0844 + 24.3949i −0.803839 + 1.39229i 0.113234 + 0.993568i $$0.463879\pi$$
−0.917072 + 0.398721i $$0.869454\pi$$
$$308$$ −0.891491 1.54411i −0.0507974 0.0879837i
$$309$$ 2.91241 5.04444i 0.165681 0.286968i
$$310$$ −6.43028 11.1376i −0.365215 0.632571i
$$311$$ 3.86827 0.219350 0.109675 0.993968i $$-0.465019\pi$$
0.109675 + 0.993968i $$0.465019\pi$$
$$312$$ −6.28106 −0.355595
$$313$$ −15.1939 26.3166i −0.858809 1.48750i −0.873065 0.487603i $$-0.837871\pi$$
0.0142562 0.999898i $$-0.495462\pi$$
$$314$$ −8.19514 14.1944i −0.462479 0.801036i
$$315$$ 2.20941 0.124486
$$316$$ −10.2034 −0.573985
$$317$$ 2.66402 + 4.61421i 0.149626 + 0.259160i 0.931089 0.364791i $$-0.118860\pi$$
−0.781463 + 0.623951i $$0.785526\pi$$
$$318$$ 6.38342 11.0564i 0.357964 0.620012i
$$319$$ 0.450480 + 0.780255i 0.0252221 + 0.0436859i
$$320$$ −1.84786 + 3.20059i −0.103298 + 0.178918i
$$321$$ 2.03624 3.52687i 0.113652 0.196850i
$$322$$ −4.07478 −0.227079
$$323$$ 0 0
$$324$$ −3.12099 −0.173389
$$325$$ 21.1761 36.6780i 1.17464 2.03453i
$$326$$ −6.88612 + 11.9271i −0.381387 + 0.660582i
$$327$$ 4.35375 + 7.54091i 0.240763 + 0.417013i
$$328$$ 3.93236 6.81105i 0.217128 0.376077i
$$329$$ 0.486417 + 0.842500i 0.0268171 + 0.0464485i
$$330$$ −19.1232 −1.05270
$$331$$ 20.5480 1.12942 0.564711 0.825289i $$-0.308988\pi$$
0.564711 + 0.825289i $$0.308988\pi$$
$$332$$ 1.64439 + 2.84817i 0.0902476 + 0.156313i
$$333$$ −0.978921 1.69554i −0.0536445 0.0929150i
$$334$$ −10.3328 −0.565386
$$335$$ −0.546090 −0.0298361
$$336$$ −0.284079 0.492039i −0.0154978 0.0268429i
$$337$$ 6.64121 11.5029i 0.361770 0.626603i −0.626483 0.779435i $$-0.715506\pi$$
0.988252 + 0.152832i $$0.0488393\pi$$
$$338$$ 5.46334 + 9.46279i 0.297167 + 0.514708i
$$339$$ 6.44887 11.1698i 0.350255 0.606659i
$$340$$ −0.493181 + 0.854214i −0.0267465 + 0.0463262i
$$341$$ 14.0227 0.759370
$$342$$ 0 0
$$343$$ 6.10787 0.329794
$$344$$ −2.81761 + 4.88024i −0.151915 + 0.263125i
$$345$$ −21.8518 + 37.8484i −1.17646 + 2.03769i
$$346$$ 4.90601 + 8.49745i 0.263749 + 0.456826i
$$347$$ −15.0712 + 26.1040i −0.809062 + 1.40134i 0.104452 + 0.994530i $$0.466691\pi$$
−0.913514 + 0.406807i $$0.866642\pi$$
$$348$$ 0.143548 + 0.248633i 0.00769499 + 0.0133281i
$$349$$ 35.0653 1.87700 0.938501 0.345277i $$-0.112215\pi$$
0.938501 + 0.345277i $$0.112215\pi$$
$$350$$ 3.83099 0.204775
$$351$$ 13.6649 + 23.6683i 0.729378 + 1.26332i
$$352$$ −2.01484 3.48980i −0.107391 0.186007i
$$353$$ 13.5411 0.720718 0.360359 0.932814i $$-0.382654\pi$$
0.360359 + 0.932814i $$0.382654\pi$$
$$354$$ 4.50651 0.239518
$$355$$ 21.1933 + 36.7079i 1.12482 + 1.94825i
$$356$$ −2.98037 + 5.16216i −0.157959 + 0.273594i
$$357$$ −0.0758187 0.131322i −0.00401275 0.00695029i
$$358$$ 4.39915 7.61955i 0.232502 0.402706i
$$359$$ 11.7536 20.3579i 0.620332 1.07445i −0.369092 0.929393i $$-0.620331\pi$$
0.989424 0.145053i $$-0.0463354\pi$$
$$360$$ 4.99344 0.263177
$$361$$ 0 0
$$362$$ 14.5278 0.763562
$$363$$ 3.36317 5.82518i 0.176521 0.305743i
$$364$$ −1.08215 + 1.87434i −0.0567202 + 0.0982423i
$$365$$ −2.62814 4.55206i −0.137563 0.238266i
$$366$$ −2.61923 + 4.53664i −0.136909 + 0.237134i
$$367$$ 6.34644 + 10.9924i 0.331282 + 0.573796i 0.982763 0.184868i $$-0.0591857\pi$$
−0.651482 + 0.758664i $$0.725852\pi$$
$$368$$ −9.20930 −0.480068
$$369$$ −10.6264 −0.553186
$$370$$ −2.67760 4.63774i −0.139202 0.241104i
$$371$$ −2.19958 3.80978i −0.114196 0.197794i
$$372$$ 4.46841 0.231676
$$373$$ −2.64950 −0.137186 −0.0685930 0.997645i $$-0.521851\pi$$
−0.0685930 + 0.997645i $$0.521851\pi$$
$$374$$ −0.537746 0.931403i −0.0278062 0.0481617i
$$375$$ 8.68047 15.0350i 0.448257 0.776405i
$$376$$ 1.09934 + 1.90411i 0.0566941 + 0.0981970i
$$377$$ 0.546824 0.947126i 0.0281629 0.0487795i
$$378$$ −1.23607 + 2.14093i −0.0635765 + 0.110118i
$$379$$ −18.1672 −0.933187 −0.466593 0.884472i $$-0.654519\pi$$
−0.466593 + 0.884472i $$0.654519\pi$$
$$380$$ 0 0
$$381$$ 18.0806 0.926297
$$382$$ 6.36508 11.0246i 0.325666 0.564070i
$$383$$ 11.5042 19.9258i 0.587835 1.01816i −0.406680 0.913570i $$-0.633314\pi$$
0.994515 0.104590i $$-0.0333529\pi$$
$$384$$ −0.642040 1.11205i −0.0327639 0.0567488i
$$385$$ −3.29470 + 5.70659i −0.167913 + 0.290835i
$$386$$ −8.73903 15.1364i −0.444805 0.770425i
$$387$$ 7.61398 0.387040
$$388$$ −4.08476 −0.207372
$$389$$ 8.28531 + 14.3506i 0.420082 + 0.727603i 0.995947 0.0899414i $$-0.0286680\pi$$
−0.575865 + 0.817545i $$0.695335\pi$$
$$390$$ 11.6065 + 20.1031i 0.587719 + 1.01796i
$$391$$ −2.45790 −0.124301
$$392$$ 6.80423 0.343665
$$393$$ 10.1709 + 17.6165i 0.513053 + 0.888633i
$$394$$ −12.2556 + 21.2274i −0.617430 + 1.06942i
$$395$$ 18.8544 + 32.6568i 0.948668 + 1.64314i
$$396$$ −2.72233 + 4.71521i −0.136802 + 0.236948i
$$397$$ 8.89741 15.4108i 0.446548 0.773444i −0.551610 0.834102i $$-0.685986\pi$$
0.998159 + 0.0606575i $$0.0193197\pi$$
$$398$$ −16.4661 −0.825371
$$399$$ 0 0
$$400$$ 8.65833 0.432916
$$401$$ 15.3107 26.5190i 0.764582 1.32429i −0.175886 0.984411i $$-0.556279\pi$$
0.940468 0.339884i $$-0.110388\pi$$
$$402$$ 0.0948696 0.164319i 0.00473167 0.00819549i
$$403$$ −8.51084 14.7412i −0.423955 0.734311i
$$404$$ −0.212639 + 0.368301i −0.0105792 + 0.0183237i
$$405$$ 5.76716 + 9.98901i 0.286572 + 0.496358i
$$406$$ 0.0989267 0.00490965
$$407$$ 5.83911 0.289434
$$408$$ −0.171356 0.296797i −0.00848338 0.0146936i
$$409$$ 4.57164 + 7.91831i 0.226053 + 0.391535i 0.956635 0.291290i $$-0.0940844\pi$$
−0.730582 + 0.682825i $$0.760751\pi$$
$$410$$ −29.0658 −1.43546
$$411$$ −2.83452 −0.139817
$$412$$ −2.26809 3.92845i −0.111741 0.193541i
$$413$$ 0.776418 1.34480i 0.0382051 0.0661731i
$$414$$ 6.22153 + 10.7760i 0.305772 + 0.529612i
$$415$$ 6.07720 10.5260i 0.298318 0.516702i
$$416$$ −2.44575 + 4.23616i −0.119913 + 0.207695i
$$417$$ 21.9121 1.07304
$$418$$ 0 0
$$419$$ 12.6157 0.616315 0.308158 0.951335i $$-0.400288\pi$$
0.308158 + 0.951335i $$0.400288\pi$$
$$420$$ −1.04988 + 1.81844i −0.0512287 + 0.0887307i
$$421$$ 16.6277 28.8000i 0.810383 1.40362i −0.102213 0.994762i $$-0.532592\pi$$
0.912596 0.408862i $$-0.134074\pi$$
$$422$$ −13.7402 23.7988i −0.668864 1.15851i
$$423$$ 1.48536 2.57272i 0.0722208 0.125090i
$$424$$ −4.97120 8.61038i −0.241423 0.418157i
$$425$$ 2.31085 0.112093
$$426$$ −14.7273 −0.713538
$$427$$ 0.902526 + 1.56322i 0.0436763 + 0.0756495i
$$428$$ −1.58576 2.74661i −0.0766504 0.132762i
$$429$$ −25.3106 −1.22201
$$430$$ 20.8262 1.00433
$$431$$ −11.4957 19.9112i −0.553730 0.959088i −0.998001 0.0631958i $$-0.979871\pi$$
0.444271 0.895892i $$-0.353463\pi$$
$$432$$ −2.79360 + 4.83866i −0.134407 + 0.232800i
$$433$$ 17.3546 + 30.0591i 0.834010 + 1.44455i 0.894834 + 0.446399i $$0.147294\pi$$
−0.0608241 + 0.998148i $$0.519373\pi$$
$$434$$ 0.769854 1.33343i 0.0369542 0.0640065i
$$435$$ 0.530514 0.918877i 0.0254362 0.0440568i
$$436$$ 6.78112 0.324757
$$437$$ 0 0
$$438$$ 1.82629 0.0872637
$$439$$ −18.2409 + 31.5942i −0.870591 + 1.50791i −0.00920482 + 0.999958i $$0.502930\pi$$
−0.861386 + 0.507950i $$0.830403\pi$$
$$440$$ −7.44627 + 12.8973i −0.354987 + 0.614855i
$$441$$ −4.59673 7.96178i −0.218892 0.379132i
$$442$$ −0.652752 + 1.13060i −0.0310483 + 0.0537772i
$$443$$ −5.87915 10.1830i −0.279327 0.483808i 0.691891 0.722002i $$-0.256778\pi$$
−0.971218 + 0.238194i $$0.923445\pi$$
$$444$$ 1.86067 0.0883033
$$445$$ 22.0292 1.04429
$$446$$ −10.1853 17.6414i −0.482288 0.835347i
$$447$$ 8.69691 + 15.0635i 0.411350 + 0.712479i
$$448$$ −0.442463 −0.0209044
$$449$$ 8.69102 0.410154 0.205077 0.978746i $$-0.434255\pi$$
0.205077 + 0.978746i $$0.434255\pi$$
$$450$$ −5.84931 10.1313i −0.275739 0.477594i
$$451$$ 15.8461 27.4463i 0.746165 1.29240i
$$452$$ −5.02218 8.69866i −0.236223 0.409151i
$$453$$ 5.87670 10.1787i 0.276111 0.478239i
$$454$$ 11.0747 19.1819i 0.519760 0.900250i
$$455$$ 7.99866 0.374983
$$456$$ 0 0
$$457$$ −13.0286 −0.609454 −0.304727 0.952440i $$-0.598565\pi$$
−0.304727 + 0.952440i $$0.598565\pi$$
$$458$$ 6.35738 11.0113i 0.297061 0.514525i
$$459$$ −0.745593 + 1.29141i −0.0348013 + 0.0602777i
$$460$$ 17.0175 + 29.4752i 0.793444 + 1.37429i
$$461$$ −4.52130 + 7.83112i −0.210578 + 0.364732i −0.951896 0.306423i $$-0.900868\pi$$
0.741318 + 0.671154i $$0.234201\pi$$
$$462$$ −1.14475 1.98276i −0.0532584 0.0922462i
$$463$$ −17.7205 −0.823542 −0.411771 0.911287i $$-0.635090\pi$$
−0.411771 + 0.911287i $$0.635090\pi$$
$$464$$ 0.223582 0.0103795
$$465$$ −8.25698 14.3015i −0.382908 0.663217i
$$466$$ −4.34088 7.51863i −0.201087 0.348294i
$$467$$ −7.87772 −0.364537 −0.182269 0.983249i $$-0.558344\pi$$
−0.182269 + 0.983249i $$0.558344\pi$$
$$468$$ 6.60909 0.305506
$$469$$ −0.0326898 0.0566205i −0.00150948 0.00261449i
$$470$$ 4.06285 7.03706i 0.187405 0.324595i
$$471$$ −10.5232 18.2267i −0.484884 0.839844i
$$472$$ 1.75476 3.03934i 0.0807695 0.139897i
$$473$$ −11.3540 + 19.6658i −0.522060 + 0.904234i
$$474$$ −13.1019 −0.601792
$$475$$ 0 0
$$476$$ −0.118090 −0.00541266
$$477$$ −6.71680 + 11.6338i −0.307541 + 0.532677i
$$478$$ 10.9375 18.9442i 0.500267 0.866489i
$$479$$ 15.0899 + 26.1365i 0.689476 + 1.19421i 0.972008 + 0.234949i $$0.0754924\pi$$
−0.282532 + 0.959258i $$0.591174\pi$$
$$480$$ −2.37280 + 4.10980i −0.108303 + 0.187586i
$$481$$ −3.54395 6.13831i −0.161590 0.279883i
$$482$$ −18.9632 −0.863751
$$483$$ −5.23234 −0.238080
$$484$$ −2.61913 4.53647i −0.119051 0.206203i
$$485$$ 7.54806 + 13.0736i 0.342740 + 0.593642i
$$486$$ 12.7540 0.578534
$$487$$ −35.7699 −1.62089 −0.810445 0.585814i $$-0.800775\pi$$
−0.810445 + 0.585814i $$0.800775\pi$$
$$488$$ 2.03977 + 3.53299i 0.0923362 + 0.159931i
$$489$$ −8.84233 + 15.3154i −0.399864 + 0.692585i
$$490$$ −12.5732 21.7775i −0.568001 0.983807i
$$491$$ 9.13632 15.8246i 0.412316 0.714153i −0.582826 0.812597i $$-0.698053\pi$$
0.995143 + 0.0984441i $$0.0313866\pi$$
$$492$$ 5.04946 8.74593i 0.227647 0.394297i
$$493$$ 0.0596724 0.00268751
$$494$$ 0 0
$$495$$ 20.1219 0.904413
$$496$$ 1.73993 3.01364i 0.0781250 0.135316i
$$497$$ −2.53733 + 4.39479i −0.113815 + 0.197133i
$$498$$ 2.11153 + 3.65727i 0.0946197 + 0.163886i
$$499$$ −8.84899 + 15.3269i −0.396135 + 0.686126i −0.993245 0.116033i $$-0.962982\pi$$
0.597110 + 0.802159i $$0.296316\pi$$
$$500$$ −6.76007 11.7088i −0.302320 0.523633i
$$501$$ −13.2681 −0.592777
$$502$$ −2.90276 −0.129556
$$503$$ 5.09512 + 8.82501i 0.227180 + 0.393488i 0.956971 0.290182i $$-0.0937160\pi$$
−0.729791 + 0.683670i $$0.760383\pi$$
$$504$$ 0.298915 + 0.517736i 0.0133147 + 0.0230618i
$$505$$ 1.57171 0.0699400
$$506$$ −37.1105 −1.64976
$$507$$ 7.01537 + 12.1510i 0.311563 + 0.539644i
$$508$$ 7.04029 12.1941i 0.312363 0.541028i
$$509$$ −4.21811 7.30598i −0.186964 0.323832i 0.757272 0.653099i $$-0.226532\pi$$
−0.944237 + 0.329268i $$0.893198\pi$$
$$510$$ −0.633283 + 1.09688i −0.0280422 + 0.0485706i
$$511$$ 0.314649 0.544988i 0.0139193 0.0241089i
$$512$$ −1.00000 −0.0441942
$$513$$ 0 0
$$514$$ 22.9050 1.01030
$$515$$ −8.38222 + 14.5184i −0.369365 + 0.639759i
$$516$$ −3.61803 + 6.26662i −0.159275 + 0.275873i
$$517$$ 4.42998 + 7.67295i 0.194830 + 0.337456i
$$518$$ 0.320571 0.555245i 0.0140851 0.0243961i
$$519$$ 6.29970 + 10.9114i 0.276526 + 0.478957i
$$520$$ 18.0776 0.792754
$$521$$ −8.96365 −0.392705 −0.196352 0.980533i $$-0.562910\pi$$
−0.196352 + 0.980533i $$0.562910\pi$$
$$522$$ −0.151045 0.261618i −0.00661107 0.0114507i
$$523$$ −1.06997 1.85324i −0.0467864 0.0810364i 0.841684 0.539971i $$-0.181565\pi$$
−0.888470 + 0.458934i $$0.848231\pi$$
$$524$$ 15.8415 0.692039
$$525$$ 4.91930 0.214696
$$526$$ −2.53118 4.38413i −0.110365 0.191157i
$$527$$ 0.464374 0.804320i 0.0202285 0.0350367i
$$528$$ −2.58721 4.48118i −0.112594 0.195018i
$$529$$ −30.9056 + 53.5301i −1.34372 + 2.32739i
$$530$$ −18.3722 + 31.8215i −0.798036 + 1.38224i
$$531$$ −4.74186 −0.205779
$$532$$ 0 0
$$533$$ −38.4702 −1.66633
$$534$$ −3.82703 + 6.62862i −0.165612 + 0.286848i
$$535$$ −5.86051 + 10.1507i −0.253372 + 0.438853i
$$536$$ −0.0738814 0.127966i −0.00319119 0.00552731i
$$537$$ 5.64886 9.78411i 0.243766 0.422216i
$$538$$ 10.3710 + 17.9630i 0.447124 + 0.774442i
$$539$$ 27.4188 1.18101
$$540$$ 20.6487 0.888581
$$541$$ 5.85577 + 10.1425i 0.251759 + 0.436060i 0.964010 0.265865i $$-0.0856575\pi$$
−0.712251 + 0.701925i $$0.752324\pi$$
$$542$$ 3.14735 + 5.45137i 0.135190 + 0.234156i
$$543$$ 18.6548 0.800553
$$544$$ −0.266893 −0.0114429
$$545$$ −12.5305 21.7035i −0.536750 0.929678i
$$546$$ −1.38957 + 2.40681i −0.0594681 + 0.103002i
$$547$$ −12.4948 21.6417i −0.534240 0.925332i −0.999200 0.0399995i $$-0.987264\pi$$
0.464959 0.885332i $$-0.346069\pi$$
$$548$$ −1.10372 + 1.91169i −0.0471485 + 0.0816636i
$$549$$ 2.75602 4.77357i 0.117624 0.203731i
$$550$$ 34.8902 1.48772
$$551$$ 0 0
$$552$$ −11.8255 −0.503325
$$553$$ −2.25731 + 3.90978i −0.0959906 + 0.166261i
$$554$$ 3.58804 6.21467i 0.152441 0.264036i
$$555$$ −3.43825 5.95522i −0.145946 0.252785i
$$556$$ 8.53222 14.7782i 0.361847 0.626737i
$$557$$ −4.59783 7.96368i −0.194816 0.337432i 0.752024 0.659136i $$-0.229078\pi$$
−0.946840 + 0.321704i $$0.895744\pi$$
$$558$$ −4.70177 −0.199042
$$559$$ 27.5646 1.16586
$$560$$ 0.817610 + 1.41614i 0.0345503 + 0.0598429i
$$561$$ −0.690508 1.19599i −0.0291533 0.0504949i
$$562$$ 2.77391 0.117010
$$563$$ −19.7224 −0.831202 −0.415601 0.909547i $$-0.636429\pi$$
−0.415601 + 0.909547i $$0.636429\pi$$
$$564$$ 1.41164 + 2.44503i 0.0594407 + 0.102954i
$$565$$ −18.5605 + 32.1478i −0.780848 + 1.35247i
$$566$$ 3.87431 + 6.71049i 0.162849 + 0.282063i
$$567$$ −0.690463 + 1.19592i −0.0289967 + 0.0502238i
$$568$$ −5.73456 + 9.93255i −0.240617 + 0.416760i
$$569$$ −22.1469 −0.928446 −0.464223 0.885718i $$-0.653666\pi$$
−0.464223 + 0.885718i $$0.653666\pi$$
$$570$$ 0 0
$$571$$ −3.02145 −0.126444 −0.0632218 0.998000i $$-0.520138\pi$$
−0.0632218 + 0.998000i $$0.520138\pi$$
$$572$$ −9.85555 + 17.0703i −0.412081 + 0.713746i
$$573$$ 8.17327 14.1565i 0.341443 0.591397i
$$574$$ −1.73993 3.01364i −0.0726231 0.125787i
$$575$$ 39.8686 69.0544i 1.66263 2.87977i
$$576$$ 0.675571 + 1.17012i 0.0281488 + 0.0487551i
$$577$$ 2.30938 0.0961407 0.0480704 0.998844i $$-0.484693\pi$$
0.0480704 + 0.998844i $$0.484693\pi$$
$$578$$ 16.9288 0.704144
$$579$$ −11.2216 19.4364i −0.466354 0.807749i
$$580$$ −0.413147 0.715592i −0.0171550 0.0297133i
$$581$$ 1.45516 0.0603704
$$582$$ −5.24515 −0.217419
$$583$$ −20.0323 34.6970i −0.829654 1.43700i
$$584$$ 0.711130 1.23171i 0.0294268 0.0509687i
$$585$$ −12.2127 21.1530i −0.504932 0.874568i
$$586$$ 0.391435 0.677985i 0.0161700 0.0280073i
$$587$$ −14.0445 + 24.3258i −0.579679 + 1.00403i 0.415837 + 0.909439i $$0.363489\pi$$
−0.995516 + 0.0945942i $$0.969845\pi$$
$$588$$ 8.73716 0.360315
$$589$$ 0 0
$$590$$ −12.9702 −0.533975
$$591$$ −15.7372 + 27.2576i −0.647342 + 1.12123i
$$592$$ 0.724514 1.25490i 0.0297773 0.0515759i
$$593$$ 6.04695 + 10.4736i 0.248318 + 0.430100i 0.963059 0.269289i $$-0.0867887\pi$$
−0.714741 + 0.699389i $$0.753455\pi$$
$$594$$ −11.2573 + 19.4982i −0.461893 + 0.800022i
$$595$$ 0.218214 + 0.377958i 0.00894592 + 0.0154948i
$$596$$ 13.5458 0.554856
$$597$$ −21.1438 −0.865357
$$598$$ 22.5236 + 39.0120i 0.921059 + 1.59532i
$$599$$ 9.75126 + 16.8897i 0.398426 + 0.690094i 0.993532 0.113554i $$-0.0362233\pi$$
−0.595106 + 0.803647i $$0.702890\pi$$
$$600$$ 11.1180 0.453890
$$601$$ 38.9632 1.58934 0.794671 0.607040i $$-0.207643\pi$$
0.794671 + 0.607040i $$0.207643\pi$$
$$602$$ 1.24669 + 2.15933i 0.0508113 + 0.0880077i
$$603$$ −0.0998242 + 0.172901i −0.00406516 + 0.00704106i
$$604$$ −4.57659 7.92688i −0.186219 0.322540i
$$605$$ −9.67957 + 16.7655i −0.393530 + 0.681614i
$$606$$ −0.273045 + 0.472928i −0.0110917 + 0.0192114i
$$607$$ −8.46029 −0.343393 −0.171696 0.985150i $$-0.554925\pi$$
−0.171696 + 0.985150i $$0.554925\pi$$
$$608$$ 0 0
$$609$$ 0.127030 0.00514750
$$610$$ 7.53843 13.0569i 0.305222 0.528660i
$$611$$ 5.37741 9.31394i 0.217547 0.376802i
$$612$$ 0.180305 + 0.312297i 0.00728840 + 0.0126239i
$$613$$ 1.45746 2.52440i 0.0588664 0.101960i −0.835090 0.550113i $$-0.814585\pi$$
0.893957 + 0.448153i $$0.147918\pi$$
$$614$$ 14.0844 + 24.3949i 0.568400 + 0.984497i
$$615$$ −37.3228 −1.50500
$$616$$ −1.78298 −0.0718384
$$617$$ 1.50953 + 2.61457i 0.0607712 + 0.105259i 0.894810 0.446446i $$-0.147311\pi$$
−0.834039 + 0.551705i $$0.813977\pi$$
$$618$$ −2.91241 5.04444i −0.117154 0.202917i
$$619$$ −3.92813 −0.157885 −0.0789423 0.996879i $$-0.525154\pi$$
−0.0789423 + 0.996879i $$0.525154\pi$$
$$620$$ −12.8606 −0.516492
$$621$$ 25.7271 + 44.5607i 1.03239 + 1.78816i
$$622$$ 1.93414 3.35002i 0.0775518 0.134324i
$$623$$ 1.31871 + 2.28407i 0.0528328 + 0.0915092i
$$624$$ −3.14053 + 5.43956i −0.125722 + 0.217757i
$$625$$ −3.33750 + 5.78072i −0.133500 + 0.231229i
$$626$$ −30.3878 −1.21454
$$627$$ 0 0
$$628$$ −16.3903 −0.654043
$$629$$ 0.193368 0.334923i 0.00771007 0.0133542i
$$630$$ 1.10471 1.91341i 0.0440126 0.0762320i
$$631$$ −5.06836 8.77865i −0.201768 0.349473i 0.747330 0.664453i $$-0.231335\pi$$
−0.949098 + 0.314980i $$0.898002\pi$$
$$632$$ −5.10169 + 8.83638i −0.202934 + 0.351493i
$$633$$ −17.6435 30.5595i −0.701268 1.21463i
$$634$$ 5.32803 0.211603
$$635$$ −52.0379 −2.06506
$$636$$ −6.38342 11.0564i −0.253119 0.438415i
$$637$$ −16.6414 28.8238i −0.659357 1.14204i
$$638$$ 0.900961 0.0356694
$$639$$ 15.4964 0.613028
$$640$$ 1.84786 + 3.20059i 0.0730430 + 0.126514i
$$641$$ 4.14015 7.17096i 0.163526 0.283236i −0.772605 0.634887i $$-0.781046\pi$$
0.936131 + 0.351652i $$0.114380\pi$$
$$642$$ −2.03624 3.52687i −0.0803639 0.139194i
$$643$$ −18.4270 + 31.9166i −0.726691 + 1.25867i 0.231583 + 0.972815i $$0.425610\pi$$
−0.958274 + 0.285851i $$0.907724\pi$$
$$644$$ −2.03739 + 3.52886i −0.0802844 + 0.139057i
$$645$$ 26.7425 1.05298
$$646$$ 0 0
$$647$$ −20.1901 −0.793753 −0.396876 0.917872i $$-0.629906\pi$$
−0.396876 + 0.917872i $$0.629906\pi$$
$$648$$ −1.56050 + 2.70286i −0.0613021 + 0.106178i
$$649$$ 7.07112 12.2475i 0.277566 0.480758i
$$650$$ −21.1761 36.6780i −0.830594 1.43863i
$$651$$ 0.988553 1.71222i 0.0387445 0.0671074i
$$652$$ 6.88612 + 11.9271i 0.269681 + 0.467102i
$$653$$ −22.0387 −0.862443 −0.431221 0.902246i $$-0.641917\pi$$
−0.431221 + 0.902246i $$0.641917\pi$$
$$654$$ 8.70749 0.340490
$$655$$ −29.2729 50.7021i −1.14379 1.98109i
$$656$$ −3.93236 6.81105i −0.153533 0.265927i
$$657$$ −1.92167 −0.0749716
$$658$$ 0.972835 0.0379251
$$659$$ −13.6108 23.5746i −0.530202 0.918336i −0.999379 0.0352322i $$-0.988783\pi$$
0.469178 0.883104i $$-0.344550\pi$$
$$660$$ −9.56159 + 16.5612i −0.372185 + 0.644643i
$$661$$ −4.45412 7.71477i −0.173245 0.300070i 0.766307 0.642474i $$-0.222092\pi$$
−0.939553 + 0.342404i $$0.888759\pi$$
$$662$$ 10.2740 17.7951i 0.399311 0.691627i
$$663$$ −0.838186 + 1.45178i −0.0325524 + 0.0563825i
$$664$$ 3.28878 0.127629
$$665$$ 0 0
$$666$$ −1.95784 −0.0758648
$$667$$ 1.02951 1.78317i 0.0398630 0.0690447i
$$668$$ −5.16640 + 8.94847i −0.199894 + 0.346227i
$$669$$ −13.0787 22.6530i −0.505653 0.875816i
$$670$$ −0.273045 + 0.472928i −0.0105486 + 0.0182708i
$$671$$ 8.21962 + 14.2368i 0.317315 + 0.549606i
$$672$$ −0.568158 −0.0219172
$$673$$ −35.7010 −1.37617 −0.688087 0.725629i $$-0.741549\pi$$
−0.688087 + 0.725629i $$0.741549\pi$$
$$674$$ −6.64121 11.5029i −0.255810 0.443076i
$$675$$ −24.1879 41.8947i −0.930994 1.61253i
$$676$$ 10.9267 0.420257
$$677$$ 27.3849 1.05249 0.526243 0.850334i $$-0.323600\pi$$
0.526243 + 0.850334i $$0.323600\pi$$
$$678$$ −6.44887 11.1698i −0.247667 0.428972i
$$679$$ −0.903678 + 1.56522i −0.0346800 + 0.0600675i
$$680$$ 0.493181 + 0.854214i 0.0189126 + 0.0327576i
$$681$$ 14.2207 24.6311i 0.544940 0.943864i
$$682$$ 7.01133 12.1440i 0.268478 0.465017i
$$683$$ 38.1521 1.45985 0.729925 0.683528i $$-0.239555\pi$$
0.729925 + 0.683528i $$0.239555\pi$$
$$684$$ 0 0
$$685$$ 8.15806 0.311703
$$686$$ 3.05393 5.28957i 0.116600 0.201957i
$$687$$ 8.16338 14.1394i 0.311453 0.539452i
$$688$$ 2.81761 + 4.88024i 0.107420 + 0.186058i
$$689$$ −24.3166 + 42.1176i −0.926389 + 1.60455i
$$690$$ 21.8518 + 37.8484i 0.831884 + 1.44086i
$$691$$ −28.2058 −1.07300 −0.536499 0.843901i $$-0.680254\pi$$
−0.536499 + 0.843901i $$0.680254\pi$$
$$692$$ 9.81201 0.372997
$$693$$ 1.20453 + 2.08631i 0.0457563 + 0.0792523i
$$694$$ 15.0712 + 26.1040i 0.572094 + 0.990895i
$$695$$ −63.0654 −2.39221
$$696$$ 0.287096 0.0108824
$$697$$ −1.04952 1.81782i −0.0397534 0.0688549i
$$698$$ 17.5326 30.3674i 0.663620 1.14942i
$$699$$ −5.57404 9.65451i −0.210829 0.365167i
$$700$$ 1.91550 3.31774i 0.0723990 0.125399i
$$701$$ −21.3074 + 36.9055i −0.804769 + 1.39390i 0.111678 + 0.993744i $$0.464378\pi$$
−0.916447 + 0.400157i $$0.868956\pi$$
$$702$$ 27.3298 1.03150
$$703$$ 0 0
$$704$$ −4.02967 −0.151874
$$705$$ 5.21702 9.03614i 0.196484 0.340321i
$$706$$ 6.77053 11.7269i 0.254812 0.441348i
$$707$$ 0.0940849 + 0.162960i 0.00353843 + 0.00612873i
$$708$$ 2.25325 3.90275i 0.0846825 0.146674i
$$709$$ 11.3446 + 19.6494i 0.426055 + 0.737949i 0.996518 0.0833743i $$-0.0265697\pi$$
−0.570463 + 0.821323i $$0.693236\pi$$
$$710$$ 42.3866 1.59074
$$711$$ 13.7862 0.517023
$$712$$ 2.98037 + 5.16216i 0.111694 + 0.193460i
$$713$$ −16.0235 27.7535i −0.600085 1.03938i
$$714$$ −0.151637 −0.00567489
$$715$$ 72.8467 2.72431
$$716$$ −4.39915 7.61955i −0.164404 0.284756i
$$717$$ 14.0446 24.3259i 0.524503 0.908467i
$$718$$ −11.7536 20.3579i −0.438641 0.759748i
$$719$$ 18.9162 32.7638i 0.705456 1.22188i −0.261071 0.965320i $$-0.584076\pi$$
0.966527 0.256565i $$-0.0825909\pi$$
$$720$$ 2.49672 4.32444i 0.0930472 0.161162i
$$721$$ −2.00709 −0.0747481
$$722$$ 0 0
$$723$$ −24.3503 −0.905596
$$724$$ 7.26388 12.5814i 0.269960 0.467584i
$$725$$ −0.967921 + 1.67649i −0.0359477 + 0.0622632i
$$726$$ −3.36317 5.82518i −0.124819 0.216193i
$$727$$ 9.77015 16.9224i 0.362355 0.627617i −0.625993 0.779829i $$-0.715306\pi$$
0.988348 + 0.152212i $$0.0486395\pi$$
$$728$$ 1.08215 + 1.87434i 0.0401073 + 0.0694678i
$$729$$ 25.7402 0.953339
$$730$$ −5.25627 −0.194543
$$731$$ 0.752000 + 1.30250i 0.0278137 + 0.0481748i
$$732$$ 2.61923 + 4.53664i 0.0968096 + 0.167679i
$$733$$ 35.1101 1.29682 0.648410 0.761291i $$-0.275434\pi$$
0.648410 + 0.761291i $$0.275434\pi$$
$$734$$ 12.6929 0.468503
$$735$$ −16.1450 27.9640i −0.595519 1.03147i
$$736$$ −4.60465 + 7.97549i −0.169730 + 0.293980i
$$737$$ −0.297718 0.515663i −0.0109666 0.0189947i
$$738$$ −5.31318 + 9.20269i −0.195581 + 0.338756i
$$739$$ 8.13874 14.0967i 0.299388 0.518556i −0.676608 0.736344i $$-0.736551\pi$$
0.975996 + 0.217788i $$0.0698841\pi$$
$$740$$ −5.35520 −0.196861
$$741$$ 0 0
$$742$$ −4.39915 −0.161498
$$743$$ 16.6543 28.8460i 0.610986 1.05826i −0.380089 0.924950i $$-0.624107\pi$$
0.991075 0.133309i $$-0.0425602\pi$$
$$744$$ 2.23420 3.86975i 0.0819099 0.141872i
$$745$$ −25.0307 43.3544i −0.917052 1.58838i
$$746$$ −1.32475 + 2.29454i −0.0485026 + 0.0840089i
$$747$$ −2.22180 3.84827i −0.0812915 0.140801i
$$748$$ −1.07549 −0.0393239
$$749$$ −1.40328 −0.0512747
$$750$$ −8.68047 15.0350i −0.316966 0.549001i
$$751$$ 9.62995 + 16.6796i 0.351402 + 0.608646i 0.986495 0.163789i $$-0.0523718\pi$$
−0.635093 + 0.772435i $$0.719038\pi$$
$$752$$ 2.19868 0.0801776
$$753$$ −3.72737 −0.135833
$$754$$ −0.546824 0.947126i −0.0199141 0.0344923i
$$755$$ −16.9138 + 29.2955i −0.615555 + 1.06617i
$$756$$ 1.23607 + 2.14093i 0.0449554 + 0.0778650i
$$757$$ 11.9727 20.7373i 0.435156 0.753712i −0.562153 0.827033i $$-0.690027\pi$$
0.997308 + 0.0733218i $$0.0233600\pi$$
$$758$$ −9.08361 + 15.7333i −0.329931 + 0.571458i
$$759$$ −47.6528 −1.72969
$$760$$ 0 0
$$761$$ −44.7968 −1.62388 −0.811941 0.583739i $$-0.801589\pi$$
−0.811941 + 0.583739i $$0.801589\pi$$
$$762$$ 9.04029 15.6582i 0.327495 0.567238i
$$763$$ 1.50020 2.59842i 0.0543108 0.0940691i
$$764$$ −6.36508 11.0246i −0.230281 0.398858i
$$765$$ 0.666356 1.15416i 0.0240922 0.0417289i
$$766$$ −11.5042 19.9258i −0.415662 0.719948i
$$767$$ −17.1668 −0.619858
$$768$$ −1.28408 −0.0463352
$$769$$ 15.8684 + 27.4848i 0.572228 + 0.991128i 0.996337 + 0.0855164i $$0.0272540\pi$$
−0.424109 + 0.905611i $$0.639413\pi$$
$$770$$ 3.29470 + 5.70659i 0.118733 + 0.205651i
$$771$$ 29.4119 1.05924
$$772$$ −17.4781 −0.629049
$$773$$ −11.1153 19.2523i −0.399791 0.692458i 0.593909 0.804532i $$-0.297584\pi$$
−0.993700 + 0.112074i $$0.964251\pi$$
$$774$$ 3.80699 6.59390i 0.136839 0.237013i
$$775$$ 15.0649 + 26.0931i 0.541146 + 0.937292i
$$776$$ −2.04238 + 3.53750i −0.0733171 + 0.126989i
$$777$$ 0.411638 0.712979i 0.0147674 0.0255780i
$$778$$ 16.5706