# Properties

 Label 722.2.c.n.429.1 Level $722$ Weight $2$ Character 722.429 Analytic conductor $5.765$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$722 = 2 \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 722.c (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.76519902594$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{3})$$ Coefficient field: 8.0.324000000.2 Defining polynomial: $$x^{8} + 5x^{6} + 20x^{4} + 25x^{2} + 25$$ x^8 + 5*x^6 + 20*x^4 + 25*x^2 + 25 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 429.1 Root $$-0.587785 + 1.01807i$$ of defining polynomial Character $$\chi$$ $$=$$ 722.429 Dual form 722.2.c.n.653.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 - 0.866025i) q^{2} +(-1.26007 + 2.18251i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.22982 - 2.13012i) q^{5} +(1.26007 + 2.18251i) q^{6} -2.79360 q^{7} -1.00000 q^{8} +(-1.67557 - 2.90217i) q^{9} +O(q^{10})$$ $$q+(0.500000 - 0.866025i) q^{2} +(-1.26007 + 2.18251i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.22982 - 2.13012i) q^{5} +(1.26007 + 2.18251i) q^{6} -2.79360 q^{7} -1.00000 q^{8} +(-1.67557 - 2.90217i) q^{9} +(-1.22982 - 2.13012i) q^{10} -1.67853 q^{11} +2.52015 q^{12} +(3.17229 + 5.49456i) q^{13} +(-1.39680 + 2.41933i) q^{14} +(3.09934 + 5.36821i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.48459 + 4.30343i) q^{17} -3.35114 q^{18} -2.45965 q^{20} +(3.52015 - 6.09707i) q^{21} +(-0.839266 + 1.45365i) q^{22} +(1.24945 + 2.16411i) q^{23} +(1.26007 - 2.18251i) q^{24} +(-0.524938 - 0.909219i) q^{25} +6.34458 q^{26} +0.884927 q^{27} +(1.39680 + 2.41933i) q^{28} +(2.96589 + 5.13708i) q^{29} +6.19868 q^{30} -7.28408 q^{31} +(0.500000 + 0.866025i) q^{32} +(2.11507 - 3.66341i) q^{33} +(2.48459 + 4.30343i) q^{34} +(-3.43564 + 5.95071i) q^{35} +(-1.67557 + 2.90217i) q^{36} -0.550972 q^{37} -15.9893 q^{39} +(-1.22982 + 2.13012i) q^{40} +(-1.30371 + 2.25809i) q^{41} +(-3.52015 - 6.09707i) q^{42} +(-1.43564 + 2.48661i) q^{43} +(0.839266 + 1.45365i) q^{44} -8.24263 q^{45} +2.49890 q^{46} +(-0.372797 - 0.645703i) q^{47} +(-1.26007 - 2.18251i) q^{48} +0.804226 q^{49} -1.04988 q^{50} +(-6.26153 - 10.8453i) q^{51} +(3.17229 - 5.49456i) q^{52} +(-0.735136 - 1.27329i) q^{53} +(0.442463 - 0.766369i) q^{54} +(-2.06430 + 3.57547i) q^{55} +2.79360 q^{56} +5.93179 q^{58} +(-2.48131 + 4.29775i) q^{59} +(3.09934 - 5.36821i) q^{60} +(-4.66843 - 8.08596i) q^{61} +(-3.64204 + 6.30820i) q^{62} +(4.68088 + 8.10752i) q^{63} +1.00000 q^{64} +15.6054 q^{65} +(-2.11507 - 3.66341i) q^{66} +(5.78022 + 10.0116i) q^{67} +4.96917 q^{68} -6.29761 q^{69} +(3.43564 + 5.95071i) q^{70} +(-3.49849 + 6.05956i) q^{71} +(1.67557 + 2.90217i) q^{72} +(3.09310 - 5.35740i) q^{73} +(-0.275486 + 0.477156i) q^{74} +2.64584 q^{75} +4.68915 q^{77} +(-7.99463 + 13.8471i) q^{78} +(-2.95579 + 5.11958i) q^{79} +(1.22982 + 2.13012i) q^{80} +(3.91164 - 6.77516i) q^{81} +(1.30371 + 2.25809i) q^{82} +15.1773 q^{83} -7.04029 q^{84} +(6.11121 + 10.5849i) q^{85} +(1.43564 + 2.48661i) q^{86} -14.9490 q^{87} +1.67853 q^{88} +(3.45251 + 5.97992i) q^{89} +(-4.12132 + 7.13833i) q^{90} +(-8.86212 - 15.3496i) q^{91} +(1.24945 - 2.16411i) q^{92} +(9.17848 - 15.8976i) q^{93} -0.745593 q^{94} -2.52015 q^{96} +(7.19369 - 12.4598i) q^{97} +(0.402113 - 0.696480i) q^{98} +(2.81250 + 4.87139i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q + 4 q^{2} + 2 q^{3} - 4 q^{4} + 2 q^{5} - 2 q^{6} - 4 q^{7} - 8 q^{8} - 4 q^{9}+O(q^{10})$$ 8 * q + 4 * q^2 + 2 * q^3 - 4 * q^4 + 2 * q^5 - 2 * q^6 - 4 * q^7 - 8 * q^8 - 4 * q^9 $$8 q + 4 q^{2} + 2 q^{3} - 4 q^{4} + 2 q^{5} - 2 q^{6} - 4 q^{7} - 8 q^{8} - 4 q^{9} - 2 q^{10} + 4 q^{11} - 4 q^{12} + 18 q^{13} - 2 q^{14} + 4 q^{15} - 4 q^{16} - 6 q^{17} - 8 q^{18} - 4 q^{20} + 4 q^{21} + 2 q^{22} + 10 q^{23} - 2 q^{24} - 6 q^{25} + 36 q^{26} + 8 q^{27} + 2 q^{28} - 2 q^{29} + 8 q^{30} - 52 q^{31} + 4 q^{32} + 16 q^{33} + 6 q^{34} - 6 q^{35} - 4 q^{36} - 8 q^{37} - 12 q^{39} - 2 q^{40} - 12 q^{41} - 4 q^{42} + 10 q^{43} - 2 q^{44} - 44 q^{45} + 20 q^{46} + 12 q^{47} + 2 q^{48} - 24 q^{49} - 12 q^{50} - 2 q^{51} + 18 q^{52} + 8 q^{53} + 4 q^{54} + 26 q^{55} + 4 q^{56} - 4 q^{58} - 8 q^{59} + 4 q^{60} - 26 q^{62} + 22 q^{63} + 8 q^{64} + 8 q^{65} - 16 q^{66} + 10 q^{67} + 12 q^{68} + 40 q^{69} + 6 q^{70} + 4 q^{72} + 14 q^{73} - 4 q^{74} - 16 q^{75} + 8 q^{77} - 6 q^{78} + 22 q^{79} + 2 q^{80} + 4 q^{81} + 12 q^{82} - 24 q^{83} - 8 q^{84} + 18 q^{85} - 10 q^{86} - 52 q^{87} - 4 q^{88} - 16 q^{89} - 22 q^{90} - 4 q^{91} + 10 q^{92} - 8 q^{93} + 24 q^{94} + 4 q^{96} + 28 q^{97} - 12 q^{98} - 22 q^{99}+O(q^{100})$$ 8 * q + 4 * q^2 + 2 * q^3 - 4 * q^4 + 2 * q^5 - 2 * q^6 - 4 * q^7 - 8 * q^8 - 4 * q^9 - 2 * q^10 + 4 * q^11 - 4 * q^12 + 18 * q^13 - 2 * q^14 + 4 * q^15 - 4 * q^16 - 6 * q^17 - 8 * q^18 - 4 * q^20 + 4 * q^21 + 2 * q^22 + 10 * q^23 - 2 * q^24 - 6 * q^25 + 36 * q^26 + 8 * q^27 + 2 * q^28 - 2 * q^29 + 8 * q^30 - 52 * q^31 + 4 * q^32 + 16 * q^33 + 6 * q^34 - 6 * q^35 - 4 * q^36 - 8 * q^37 - 12 * q^39 - 2 * q^40 - 12 * q^41 - 4 * q^42 + 10 * q^43 - 2 * q^44 - 44 * q^45 + 20 * q^46 + 12 * q^47 + 2 * q^48 - 24 * q^49 - 12 * q^50 - 2 * q^51 + 18 * q^52 + 8 * q^53 + 4 * q^54 + 26 * q^55 + 4 * q^56 - 4 * q^58 - 8 * q^59 + 4 * q^60 - 26 * q^62 + 22 * q^63 + 8 * q^64 + 8 * q^65 - 16 * q^66 + 10 * q^67 + 12 * q^68 + 40 * q^69 + 6 * q^70 + 4 * q^72 + 14 * q^73 - 4 * q^74 - 16 * q^75 + 8 * q^77 - 6 * q^78 + 22 * q^79 + 2 * q^80 + 4 * q^81 + 12 * q^82 - 24 * q^83 - 8 * q^84 + 18 * q^85 - 10 * q^86 - 52 * q^87 - 4 * q^88 - 16 * q^89 - 22 * q^90 - 4 * q^91 + 10 * q^92 - 8 * q^93 + 24 * q^94 + 4 * q^96 + 28 * q^97 - 12 * q^98 - 22 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/722\mathbb{Z}\right)^\times$$.

 $$n$$ $$363$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 0.866025i 0.353553 0.612372i
$$3$$ −1.26007 + 2.18251i −0.727504 + 1.26007i 0.230431 + 0.973089i $$0.425986\pi$$
−0.957935 + 0.286985i $$0.907347\pi$$
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ 1.22982 2.13012i 0.549994 0.952618i −0.448280 0.893893i $$-0.647963\pi$$
0.998274 0.0587249i $$-0.0187035\pi$$
$$6$$ 1.26007 + 2.18251i 0.514423 + 0.891007i
$$7$$ −2.79360 −1.05588 −0.527942 0.849281i $$-0.677036\pi$$
−0.527942 + 0.849281i $$0.677036\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ −1.67557 2.90217i −0.558524 0.967391i
$$10$$ −1.22982 2.13012i −0.388905 0.673603i
$$11$$ −1.67853 −0.506096 −0.253048 0.967454i $$-0.581433\pi$$
−0.253048 + 0.967454i $$0.581433\pi$$
$$12$$ 2.52015 0.727504
$$13$$ 3.17229 + 5.49456i 0.879834 + 1.52392i 0.851522 + 0.524319i $$0.175680\pi$$
0.0283125 + 0.999599i $$0.490987\pi$$
$$14$$ −1.39680 + 2.41933i −0.373311 + 0.646594i
$$15$$ 3.09934 + 5.36821i 0.800246 + 1.38607i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −2.48459 + 4.30343i −0.602601 + 1.04374i 0.389825 + 0.920889i $$0.372536\pi$$
−0.992426 + 0.122846i $$0.960798\pi$$
$$18$$ −3.35114 −0.789872
$$19$$ 0 0
$$20$$ −2.45965 −0.549994
$$21$$ 3.52015 6.09707i 0.768159 1.33049i
$$22$$ −0.839266 + 1.45365i −0.178932 + 0.309919i
$$23$$ 1.24945 + 2.16411i 0.260529 + 0.451249i 0.966383 0.257109i $$-0.0827698\pi$$
−0.705854 + 0.708358i $$0.749436\pi$$
$$24$$ 1.26007 2.18251i 0.257211 0.445503i
$$25$$ −0.524938 0.909219i −0.104988 0.181844i
$$26$$ 6.34458 1.24427
$$27$$ 0.884927 0.170304
$$28$$ 1.39680 + 2.41933i 0.263971 + 0.457211i
$$29$$ 2.96589 + 5.13708i 0.550752 + 0.953931i 0.998220 + 0.0596313i $$0.0189925\pi$$
−0.447468 + 0.894300i $$0.647674\pi$$
$$30$$ 6.19868 1.13172
$$31$$ −7.28408 −1.30826 −0.654130 0.756382i $$-0.726965\pi$$
−0.654130 + 0.756382i $$0.726965\pi$$
$$32$$ 0.500000 + 0.866025i 0.0883883 + 0.153093i
$$33$$ 2.11507 3.66341i 0.368187 0.637719i
$$34$$ 2.48459 + 4.30343i 0.426103 + 0.738032i
$$35$$ −3.43564 + 5.95071i −0.580730 + 1.00585i
$$36$$ −1.67557 + 2.90217i −0.279262 + 0.483696i
$$37$$ −0.550972 −0.0905792 −0.0452896 0.998974i $$-0.514421\pi$$
−0.0452896 + 0.998974i $$0.514421\pi$$
$$38$$ 0 0
$$39$$ −15.9893 −2.56033
$$40$$ −1.22982 + 2.13012i −0.194452 + 0.336801i
$$41$$ −1.30371 + 2.25809i −0.203605 + 0.352654i −0.949687 0.313200i $$-0.898599\pi$$
0.746083 + 0.665853i $$0.231932\pi$$
$$42$$ −3.52015 6.09707i −0.543170 0.940799i
$$43$$ −1.43564 + 2.48661i −0.218934 + 0.379204i −0.954482 0.298268i $$-0.903591\pi$$
0.735549 + 0.677472i $$0.236924\pi$$
$$44$$ 0.839266 + 1.45365i 0.126524 + 0.219146i
$$45$$ −8.24263 −1.22874
$$46$$ 2.49890 0.368443
$$47$$ −0.372797 0.645703i −0.0543780 0.0941854i 0.837555 0.546353i $$-0.183984\pi$$
−0.891933 + 0.452167i $$0.850651\pi$$
$$48$$ −1.26007 2.18251i −0.181876 0.315018i
$$49$$ 0.804226 0.114889
$$50$$ −1.04988 −0.148475
$$51$$ −6.26153 10.8453i −0.876789 1.51864i
$$52$$ 3.17229 5.49456i 0.439917 0.761959i
$$53$$ −0.735136 1.27329i −0.100979 0.174900i 0.811109 0.584894i $$-0.198864\pi$$
−0.912088 + 0.409994i $$0.865531\pi$$
$$54$$ 0.442463 0.766369i 0.0602117 0.104290i
$$55$$ −2.06430 + 3.57547i −0.278350 + 0.482117i
$$56$$ 2.79360 0.373311
$$57$$ 0 0
$$58$$ 5.93179 0.778882
$$59$$ −2.48131 + 4.29775i −0.323038 + 0.559519i −0.981113 0.193433i $$-0.938038\pi$$
0.658075 + 0.752952i $$0.271371\pi$$
$$60$$ 3.09934 5.36821i 0.400123 0.693033i
$$61$$ −4.66843 8.08596i −0.597731 1.03530i −0.993155 0.116802i $$-0.962736\pi$$
0.395424 0.918499i $$-0.370598\pi$$
$$62$$ −3.64204 + 6.30820i −0.462539 + 0.801142i
$$63$$ 4.68088 + 8.10752i 0.589736 + 1.02145i
$$64$$ 1.00000 0.125000
$$65$$ 15.6054 1.93562
$$66$$ −2.11507 3.66341i −0.260347 0.450935i
$$67$$ 5.78022 + 10.0116i 0.706166 + 1.22312i 0.966269 + 0.257535i $$0.0829103\pi$$
−0.260103 + 0.965581i $$0.583756\pi$$
$$68$$ 4.96917 0.602601
$$69$$ −6.29761 −0.758143
$$70$$ 3.43564 + 5.95071i 0.410638 + 0.711246i
$$71$$ −3.49849 + 6.05956i −0.415195 + 0.719138i −0.995449 0.0952973i $$-0.969620\pi$$
0.580254 + 0.814435i $$0.302953\pi$$
$$72$$ 1.67557 + 2.90217i 0.197468 + 0.342024i
$$73$$ 3.09310 5.35740i 0.362020 0.627036i −0.626274 0.779603i $$-0.715421\pi$$
0.988293 + 0.152567i $$0.0487540\pi$$
$$74$$ −0.275486 + 0.477156i −0.0320246 + 0.0554682i
$$75$$ 2.64584 0.305515
$$76$$ 0 0
$$77$$ 4.68915 0.534379
$$78$$ −7.99463 + 13.8471i −0.905214 + 1.56788i
$$79$$ −2.95579 + 5.11958i −0.332552 + 0.575998i −0.983012 0.183543i $$-0.941243\pi$$
0.650459 + 0.759541i $$0.274577\pi$$
$$80$$ 1.22982 + 2.13012i 0.137499 + 0.238155i
$$81$$ 3.91164 6.77516i 0.434626 0.752795i
$$82$$ 1.30371 + 2.25809i 0.143970 + 0.249364i
$$83$$ 15.1773 1.66593 0.832964 0.553328i $$-0.186642\pi$$
0.832964 + 0.553328i $$0.186642\pi$$
$$84$$ −7.04029 −0.768159
$$85$$ 6.11121 + 10.5849i 0.662854 + 1.14810i
$$86$$ 1.43564 + 2.48661i 0.154809 + 0.268138i
$$87$$ −14.9490 −1.60270
$$88$$ 1.67853 0.178932
$$89$$ 3.45251 + 5.97992i 0.365965 + 0.633870i 0.988931 0.148379i $$-0.0474056\pi$$
−0.622965 + 0.782249i $$0.714072\pi$$
$$90$$ −4.12132 + 7.13833i −0.434425 + 0.752446i
$$91$$ −8.86212 15.3496i −0.929002 1.60908i
$$92$$ 1.24945 2.16411i 0.130264 0.225625i
$$93$$ 9.17848 15.8976i 0.951764 1.64850i
$$94$$ −0.745593 −0.0769021
$$95$$ 0 0
$$96$$ −2.52015 −0.257211
$$97$$ 7.19369 12.4598i 0.730408 1.26510i −0.226300 0.974058i $$-0.572663\pi$$
0.956709 0.291047i $$-0.0940036\pi$$
$$98$$ 0.402113 0.696480i 0.0406196 0.0703551i
$$99$$ 2.81250 + 4.87139i 0.282667 + 0.489593i
$$100$$ −0.524938 + 0.909219i −0.0524938 + 0.0909219i
$$101$$ −5.64146 9.77130i −0.561347 0.972281i −0.997379 0.0723500i $$-0.976950\pi$$
0.436033 0.899931i $$-0.356383\pi$$
$$102$$ −12.5231 −1.23997
$$103$$ −14.8280 −1.46104 −0.730522 0.682889i $$-0.760723\pi$$
−0.730522 + 0.682889i $$0.760723\pi$$
$$104$$ −3.17229 5.49456i −0.311068 0.538786i
$$105$$ −8.65833 14.9967i −0.844966 1.46352i
$$106$$ −1.47027 −0.142805
$$107$$ 2.82849 0.273440 0.136720 0.990610i $$-0.456344\pi$$
0.136720 + 0.990610i $$0.456344\pi$$
$$108$$ −0.442463 0.766369i −0.0425761 0.0737439i
$$109$$ 0.862695 1.49423i 0.0826312 0.143121i −0.821748 0.569851i $$-0.807001\pi$$
0.904379 + 0.426729i $$0.140334\pi$$
$$110$$ 2.06430 + 3.57547i 0.196823 + 0.340908i
$$111$$ 0.694265 1.20250i 0.0658967 0.114137i
$$112$$ 1.39680 2.41933i 0.131985 0.228605i
$$113$$ 0.427785 0.0402426 0.0201213 0.999798i $$-0.493595\pi$$
0.0201213 + 0.999798i $$0.493595\pi$$
$$114$$ 0 0
$$115$$ 6.14643 0.573157
$$116$$ 2.96589 5.13708i 0.275376 0.476966i
$$117$$ 10.6308 18.4131i 0.982816 1.70229i
$$118$$ 2.48131 + 4.29775i 0.228423 + 0.395640i
$$119$$ 6.94095 12.0221i 0.636276 1.10206i
$$120$$ −3.09934 5.36821i −0.282930 0.490049i
$$121$$ −8.18253 −0.743867
$$122$$ −9.33686 −0.845320
$$123$$ −3.28553 5.69071i −0.296246 0.513114i
$$124$$ 3.64204 + 6.30820i 0.327065 + 0.566493i
$$125$$ 9.71592 0.869018
$$126$$ 9.36176 0.834012
$$127$$ −0.568158 0.984079i −0.0504159 0.0873229i 0.839716 0.543026i $$-0.182721\pi$$
−0.890132 + 0.455703i $$0.849388\pi$$
$$128$$ 0.500000 0.866025i 0.0441942 0.0765466i
$$129$$ −3.61803 6.26662i −0.318550 0.551745i
$$130$$ 7.80272 13.5147i 0.684344 1.18532i
$$131$$ 8.92075 15.4512i 0.779410 1.34998i −0.152873 0.988246i $$-0.548852\pi$$
0.932282 0.361731i $$-0.117814\pi$$
$$132$$ −4.23015 −0.368187
$$133$$ 0 0
$$134$$ 11.5604 0.998670
$$135$$ 1.08831 1.88500i 0.0936664 0.162235i
$$136$$ 2.48459 4.30343i 0.213052 0.369016i
$$137$$ 7.95782 + 13.7833i 0.679882 + 1.17759i 0.975016 + 0.222135i $$0.0713025\pi$$
−0.295134 + 0.955456i $$0.595364\pi$$
$$138$$ −3.14880 + 5.45389i −0.268044 + 0.464266i
$$139$$ −5.06008 8.76432i −0.429191 0.743380i 0.567611 0.823297i $$-0.307868\pi$$
−0.996802 + 0.0799168i $$0.974535\pi$$
$$140$$ 6.87129 0.580730
$$141$$ 1.87901 0.158241
$$142$$ 3.49849 + 6.05956i 0.293587 + 0.508507i
$$143$$ −5.32479 9.22280i −0.445281 0.771249i
$$144$$ 3.35114 0.279262
$$145$$ 14.5901 1.21164
$$146$$ −3.09310 5.35740i −0.255986 0.443382i
$$147$$ −1.01338 + 1.75523i −0.0835825 + 0.144769i
$$148$$ 0.275486 + 0.477156i 0.0226448 + 0.0392220i
$$149$$ −4.69925 + 8.13935i −0.384978 + 0.666801i −0.991766 0.128062i $$-0.959124\pi$$
0.606788 + 0.794864i $$0.292458\pi$$
$$150$$ 1.32292 2.29137i 0.108016 0.187089i
$$151$$ 10.2632 0.835210 0.417605 0.908629i $$-0.362870\pi$$
0.417605 + 0.908629i $$0.362870\pi$$
$$152$$ 0 0
$$153$$ 16.6524 1.34627
$$154$$ 2.34458 4.06093i 0.188931 0.327239i
$$155$$ −8.95814 + 15.5160i −0.719535 + 1.24627i
$$156$$ 7.99463 + 13.8471i 0.640083 + 1.10866i
$$157$$ −1.48694 + 2.57545i −0.118671 + 0.205543i −0.919241 0.393695i $$-0.871197\pi$$
0.800571 + 0.599239i $$0.204530\pi$$
$$158$$ 2.95579 + 5.11958i 0.235150 + 0.407292i
$$159$$ 3.70530 0.293849
$$160$$ 2.45965 0.194452
$$161$$ −3.49047 6.04568i −0.275088 0.476466i
$$162$$ −3.91164 6.77516i −0.307327 0.532307i
$$163$$ 5.59191 0.437992 0.218996 0.975726i $$-0.429722\pi$$
0.218996 + 0.975726i $$0.429722\pi$$
$$164$$ 2.60741 0.203605
$$165$$ −5.20234 9.01071i −0.405001 0.701483i
$$166$$ 7.58866 13.1439i 0.588994 1.02017i
$$167$$ −3.54180 6.13458i −0.274073 0.474708i 0.695828 0.718209i $$-0.255038\pi$$
−0.969901 + 0.243500i $$0.921704\pi$$
$$168$$ −3.52015 + 6.09707i −0.271585 + 0.470399i
$$169$$ −13.6268 + 23.6024i −1.04822 + 1.81557i
$$170$$ 12.2224 0.937418
$$171$$ 0 0
$$172$$ 2.87129 0.218934
$$173$$ −11.5104 + 19.9366i −0.875120 + 1.51575i −0.0184843 + 0.999829i $$0.505884\pi$$
−0.856635 + 0.515922i $$0.827449\pi$$
$$174$$ −7.47449 + 12.9462i −0.566639 + 0.981448i
$$175$$ 1.46647 + 2.54000i 0.110855 + 0.192006i
$$176$$ 0.839266 1.45365i 0.0632620 0.109573i
$$177$$ −6.25325 10.8310i −0.470023 0.814104i
$$178$$ 6.90502 0.517553
$$179$$ −8.21471 −0.613996 −0.306998 0.951710i $$-0.599325\pi$$
−0.306998 + 0.951710i $$0.599325\pi$$
$$180$$ 4.12132 + 7.13833i 0.307185 + 0.532060i
$$181$$ −6.49994 11.2582i −0.483137 0.836818i 0.516676 0.856181i $$-0.327169\pi$$
−0.999813 + 0.0193635i $$0.993836\pi$$
$$182$$ −17.7242 −1.31381
$$183$$ 23.5303 1.73941
$$184$$ −1.24945 2.16411i −0.0921108 0.159541i
$$185$$ −0.677599 + 1.17364i −0.0498181 + 0.0862874i
$$186$$ −9.17848 15.8976i −0.672998 1.16567i
$$187$$ 4.17046 7.22345i 0.304974 0.528231i
$$188$$ −0.372797 + 0.645703i −0.0271890 + 0.0470927i
$$189$$ −2.47214 −0.179821
$$190$$ 0 0
$$191$$ 6.57479 0.475735 0.237868 0.971298i $$-0.423552\pi$$
0.237868 + 0.971298i $$0.423552\pi$$
$$192$$ −1.26007 + 2.18251i −0.0909380 + 0.157509i
$$193$$ 13.4413 23.2810i 0.967527 1.67581i 0.264859 0.964287i $$-0.414675\pi$$
0.702667 0.711518i $$-0.251992\pi$$
$$194$$ −7.19369 12.4598i −0.516477 0.894564i
$$195$$ −19.6640 + 34.0590i −1.40817 + 2.43902i
$$196$$ −0.402113 0.696480i −0.0287224 0.0497486i
$$197$$ −9.84940 −0.701741 −0.350870 0.936424i $$-0.614114\pi$$
−0.350870 + 0.936424i $$0.614114\pi$$
$$198$$ 5.62500 0.399751
$$199$$ 10.2331 + 17.7242i 0.725402 + 1.25643i 0.958808 + 0.284053i $$0.0916793\pi$$
−0.233407 + 0.972379i $$0.574987\pi$$
$$200$$ 0.524938 + 0.909219i 0.0371187 + 0.0642915i
$$201$$ −29.1340 −2.05495
$$202$$ −11.2829 −0.793864
$$203$$ −8.28553 14.3510i −0.581530 1.00724i
$$204$$ −6.26153 + 10.8453i −0.438394 + 0.759322i
$$205$$ 3.20666 + 5.55410i 0.223963 + 0.387915i
$$206$$ −7.41399 + 12.8414i −0.516557 + 0.894703i
$$207$$ 4.18709 7.25225i 0.291023 0.504066i
$$208$$ −6.34458 −0.439917
$$209$$ 0 0
$$210$$ −17.3167 −1.19496
$$211$$ 4.05815 7.02892i 0.279374 0.483891i −0.691855 0.722036i $$-0.743206\pi$$
0.971229 + 0.238146i $$0.0765396\pi$$
$$212$$ −0.735136 + 1.27329i −0.0504893 + 0.0874501i
$$213$$ −8.81671 15.2710i −0.604111 1.04635i
$$214$$ 1.41424 2.44954i 0.0966757 0.167447i
$$215$$ 3.53118 + 6.11619i 0.240825 + 0.417120i
$$216$$ −0.884927 −0.0602117
$$217$$ 20.3488 1.38137
$$218$$ −0.862695 1.49423i −0.0584291 0.101202i
$$219$$ 7.79506 + 13.5014i 0.526741 + 0.912342i
$$220$$ 4.12860 0.278350
$$221$$ −31.5273 −2.12076
$$222$$ −0.694265 1.20250i −0.0465960 0.0807067i
$$223$$ 5.37701 9.31326i 0.360071 0.623662i −0.627901 0.778293i $$-0.716086\pi$$
0.987972 + 0.154631i $$0.0494190\pi$$
$$224$$ −1.39680 2.41933i −0.0933278 0.161648i
$$225$$ −1.75914 + 3.04692i −0.117276 + 0.203128i
$$226$$ 0.213892 0.370473i 0.0142279 0.0246435i
$$227$$ −27.0936 −1.79827 −0.899133 0.437676i $$-0.855802\pi$$
−0.899133 + 0.437676i $$0.855802\pi$$
$$228$$ 0 0
$$229$$ 9.46557 0.625503 0.312751 0.949835i $$-0.398749\pi$$
0.312751 + 0.949835i $$0.398749\pi$$
$$230$$ 3.07321 5.32296i 0.202642 0.350986i
$$231$$ −5.90868 + 10.2341i −0.388762 + 0.673356i
$$232$$ −2.96589 5.13708i −0.194720 0.337266i
$$233$$ −11.4311 + 19.7992i −0.748873 + 1.29709i 0.199490 + 0.979900i $$0.436071\pi$$
−0.948363 + 0.317186i $$0.897262\pi$$
$$234$$ −10.6308 18.4131i −0.694956 1.20370i
$$235$$ −1.83390 −0.119630
$$236$$ 4.96261 0.323038
$$237$$ −7.44903 12.9021i −0.483866 0.838081i
$$238$$ −6.94095 12.0221i −0.449915 0.779276i
$$239$$ 8.66611 0.560564 0.280282 0.959918i $$-0.409572\pi$$
0.280282 + 0.959918i $$0.409572\pi$$
$$240$$ −6.19868 −0.400123
$$241$$ 2.82913 + 4.90020i 0.182240 + 0.315649i 0.942643 0.333802i $$-0.108332\pi$$
−0.760403 + 0.649452i $$0.774998\pi$$
$$242$$ −4.09127 + 7.08628i −0.262997 + 0.455523i
$$243$$ 11.1853 + 19.3735i 0.717537 + 1.24281i
$$244$$ −4.66843 + 8.08596i −0.298866 + 0.517650i
$$245$$ 0.989057 1.71310i 0.0631885 0.109446i
$$246$$ −6.57106 −0.418956
$$247$$ 0 0
$$248$$ 7.28408 0.462539
$$249$$ −19.1245 + 33.1247i −1.21197 + 2.09919i
$$250$$ 4.85796 8.41423i 0.307244 0.532163i
$$251$$ 6.77762 + 11.7392i 0.427799 + 0.740970i 0.996677 0.0814518i $$-0.0259557\pi$$
−0.568878 + 0.822422i $$0.692622\pi$$
$$252$$ 4.68088 8.10752i 0.294868 0.510726i
$$253$$ −2.09724 3.63253i −0.131853 0.228375i
$$254$$ −1.13632 −0.0712988
$$255$$ −30.8023 −1.92892
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 5.01963 + 8.69425i 0.313116 + 0.542332i 0.979035 0.203691i $$-0.0652939\pi$$
−0.665919 + 0.746024i $$0.731961\pi$$
$$258$$ −7.23607 −0.450498
$$259$$ 1.53920 0.0956411
$$260$$ −7.80272 13.5147i −0.483904 0.838146i
$$261$$ 9.93912 17.2151i 0.615216 1.06559i
$$262$$ −8.92075 15.4512i −0.551126 0.954578i
$$263$$ 9.41309 16.3040i 0.580436 1.00534i −0.414992 0.909825i $$-0.636215\pi$$
0.995428 0.0955194i $$-0.0304512\pi$$
$$264$$ −2.11507 + 3.66341i −0.130174 + 0.225468i
$$265$$ −3.61635 −0.222151
$$266$$ 0 0
$$267$$ −17.4017 −1.06496
$$268$$ 5.78022 10.0116i 0.353083 0.611558i
$$269$$ −8.19134 + 14.1878i −0.499435 + 0.865046i −1.00000 0.000652557i $$-0.999792\pi$$
0.500565 + 0.865699i $$0.333126\pi$$
$$270$$ −1.08831 1.88500i −0.0662321 0.114717i
$$271$$ 1.38342 2.39615i 0.0840367 0.145556i −0.820944 0.571009i $$-0.806552\pi$$
0.904980 + 0.425453i $$0.139885\pi$$
$$272$$ −2.48459 4.30343i −0.150650 0.260934i
$$273$$ 44.6677 2.70341
$$274$$ 15.9156 0.961499
$$275$$ 0.881125 + 1.52615i 0.0531338 + 0.0920305i
$$276$$ 3.14880 + 5.45389i 0.189536 + 0.328285i
$$277$$ 24.5321 1.47399 0.736996 0.675897i $$-0.236244\pi$$
0.736996 + 0.675897i $$0.236244\pi$$
$$278$$ −10.1202 −0.606967
$$279$$ 12.2050 + 21.1397i 0.730694 + 1.26560i
$$280$$ 3.43564 5.95071i 0.205319 0.355623i
$$281$$ 5.08518 + 8.80779i 0.303356 + 0.525429i 0.976894 0.213724i $$-0.0685594\pi$$
−0.673538 + 0.739153i $$0.735226\pi$$
$$282$$ 0.939503 1.62727i 0.0559466 0.0969023i
$$283$$ −13.8339 + 23.9610i −0.822340 + 1.42433i 0.0815955 + 0.996666i $$0.473998\pi$$
−0.903935 + 0.427669i $$0.859335\pi$$
$$284$$ 6.99698 0.415195
$$285$$ 0 0
$$286$$ −10.6496 −0.629722
$$287$$ 3.64204 6.30820i 0.214983 0.372361i
$$288$$ 1.67557 2.90217i 0.0987339 0.171012i
$$289$$ −3.84635 6.66207i −0.226256 0.391887i
$$290$$ 7.29506 12.6354i 0.428380 0.741977i
$$291$$ 18.1292 + 31.4006i 1.06275 + 1.84074i
$$292$$ −6.18619 −0.362020
$$293$$ −23.8386 −1.39267 −0.696333 0.717719i $$-0.745186\pi$$
−0.696333 + 0.717719i $$0.745186\pi$$
$$294$$ 1.01338 + 1.75523i 0.0591018 + 0.102367i
$$295$$ 6.10314 + 10.5710i 0.355339 + 0.615465i
$$296$$ 0.550972 0.0320246
$$297$$ −1.48538 −0.0861904
$$298$$ 4.69925 + 8.13935i 0.272221 + 0.471500i
$$299$$ −7.92724 + 13.7304i −0.458444 + 0.794049i
$$300$$ −1.32292 2.29137i −0.0763789 0.132292i
$$301$$ 4.01062 6.94660i 0.231168 0.400395i
$$302$$ 5.13162 8.88822i 0.295291 0.511460i
$$303$$ 28.4346 1.63353
$$304$$ 0 0
$$305$$ −22.9654 −1.31500
$$306$$ 8.32620 14.4214i 0.475977 0.824417i
$$307$$ 12.9942 22.5066i 0.741619 1.28452i −0.210138 0.977672i $$-0.567391\pi$$
0.951758 0.306851i $$-0.0992752\pi$$
$$308$$ −2.34458 4.06093i −0.133595 0.231393i
$$309$$ 18.6843 32.3622i 1.06291 1.84102i
$$310$$ 8.95814 + 15.5160i 0.508788 + 0.881247i
$$311$$ −23.1043 −1.31013 −0.655063 0.755574i $$-0.727358\pi$$
−0.655063 + 0.755574i $$0.727358\pi$$
$$312$$ 15.9893 0.905214
$$313$$ −6.13235 10.6215i −0.346621 0.600365i 0.639026 0.769185i $$-0.279338\pi$$
−0.985647 + 0.168820i $$0.946004\pi$$
$$314$$ 1.48694 + 2.57545i 0.0839127 + 0.145341i
$$315$$ 23.0267 1.29741
$$316$$ 5.91158 0.332552
$$317$$ −0.136152 0.235823i −0.00764708 0.0132451i 0.862177 0.506608i $$-0.169101\pi$$
−0.869824 + 0.493363i $$0.835767\pi$$
$$318$$ 1.85265 3.20888i 0.103891 0.179945i
$$319$$ −4.97834 8.62275i −0.278734 0.482781i
$$320$$ 1.22982 2.13012i 0.0687493 0.119077i
$$321$$ −3.56410 + 6.17320i −0.198929 + 0.344555i
$$322$$ −6.98095 −0.389033
$$323$$ 0 0
$$324$$ −7.82328 −0.434626
$$325$$ 3.33051 5.76861i 0.184743 0.319985i
$$326$$ 2.79595 4.84273i 0.154854 0.268214i
$$327$$ 2.17412 + 3.76568i 0.120229 + 0.208243i
$$328$$ 1.30371 2.25809i 0.0719851 0.124682i
$$329$$ 1.04145 + 1.80384i 0.0574168 + 0.0994488i
$$330$$ −10.4047 −0.572759
$$331$$ 19.9930 1.09891 0.549457 0.835522i $$-0.314835\pi$$
0.549457 + 0.835522i $$0.314835\pi$$
$$332$$ −7.58866 13.1439i −0.416482 0.721368i
$$333$$ 0.923192 + 1.59902i 0.0505906 + 0.0876256i
$$334$$ −7.08361 −0.387598
$$335$$ 28.4346 1.55355
$$336$$ 3.52015 + 6.09707i 0.192040 + 0.332623i
$$337$$ −8.64121 + 14.9670i −0.470717 + 0.815305i −0.999439 0.0334897i $$-0.989338\pi$$
0.528722 + 0.848795i $$0.322671\pi$$
$$338$$ 13.6268 + 23.6024i 0.741202 + 1.28380i
$$339$$ −0.539040 + 0.933645i −0.0292767 + 0.0507086i
$$340$$ 6.11121 10.5849i 0.331427 0.574049i
$$341$$ 12.2266 0.662105
$$342$$ 0 0
$$343$$ 17.3085 0.934573
$$344$$ 1.43564 2.48661i 0.0774047 0.134069i
$$345$$ −7.74495 + 13.4146i −0.416974 + 0.722220i
$$346$$ 11.5104 + 19.9366i 0.618803 + 1.07180i
$$347$$ 9.27279 16.0609i 0.497789 0.862197i −0.502207 0.864747i $$-0.667479\pi$$
0.999997 + 0.00255065i $$0.000811898\pi$$
$$348$$ 7.47449 + 12.9462i 0.400674 + 0.693989i
$$349$$ −20.1210 −1.07705 −0.538527 0.842609i $$-0.681019\pi$$
−0.538527 + 0.842609i $$0.681019\pi$$
$$350$$ 2.93294 0.156772
$$351$$ 2.80724 + 4.86229i 0.149840 + 0.259530i
$$352$$ −0.839266 1.45365i −0.0447330 0.0774799i
$$353$$ 24.0557 1.28035 0.640177 0.768227i $$-0.278861\pi$$
0.640177 + 0.768227i $$0.278861\pi$$
$$354$$ −12.5065 −0.664713
$$355$$ 8.60506 + 14.9044i 0.456709 + 0.791044i
$$356$$ 3.45251 5.97992i 0.182983 0.316935i
$$357$$ 17.4922 + 30.2974i 0.925787 + 1.60351i
$$358$$ −4.10736 + 7.11415i −0.217081 + 0.375994i
$$359$$ 5.42673 9.39937i 0.286412 0.496080i −0.686539 0.727093i $$-0.740871\pi$$
0.972951 + 0.231013i $$0.0742041\pi$$
$$360$$ 8.24263 0.434425
$$361$$ 0 0
$$362$$ −12.9999 −0.683259
$$363$$ 10.3106 17.8585i 0.541166 0.937327i
$$364$$ −8.86212 + 15.3496i −0.464501 + 0.804540i
$$365$$ −7.60793 13.1773i −0.398217 0.689733i
$$366$$ 11.7651 20.3778i 0.614973 1.06516i
$$367$$ 16.3060 + 28.2429i 0.851168 + 1.47427i 0.880155 + 0.474687i $$0.157439\pi$$
−0.0289868 + 0.999580i $$0.509228\pi$$
$$368$$ −2.49890 −0.130264
$$369$$ 8.73781 0.454872
$$370$$ 0.677599 + 1.17364i 0.0352267 + 0.0610144i
$$371$$ 2.05368 + 3.55707i 0.106622 + 0.184674i
$$372$$ −18.3570 −0.951764
$$373$$ 5.30198 0.274526 0.137263 0.990535i $$-0.456169\pi$$
0.137263 + 0.990535i $$0.456169\pi$$
$$374$$ −4.17046 7.22345i −0.215649 0.373515i
$$375$$ −12.2428 + 21.2051i −0.632214 + 1.09503i
$$376$$ 0.372797 + 0.645703i 0.0192255 + 0.0332996i
$$377$$ −18.8173 + 32.5926i −0.969142 + 1.67860i
$$378$$ −1.23607 + 2.14093i −0.0635765 + 0.110118i
$$379$$ −24.6656 −1.26699 −0.633494 0.773748i $$-0.718380\pi$$
−0.633494 + 0.773748i $$0.718380\pi$$
$$380$$ 0 0
$$381$$ 2.86368 0.146711
$$382$$ 3.28740 5.69394i 0.168198 0.291327i
$$383$$ 1.82208 3.15593i 0.0931039 0.161261i −0.815712 0.578459i $$-0.803654\pi$$
0.908816 + 0.417198i $$0.136988\pi$$
$$384$$ 1.26007 + 2.18251i 0.0643029 + 0.111376i
$$385$$ 5.76684 9.98845i 0.293905 0.509059i
$$386$$ −13.4413 23.2810i −0.684145 1.18497i
$$387$$ 9.62209 0.489118
$$388$$ −14.3874 −0.730408
$$389$$ −1.39677 2.41927i −0.0708189 0.122662i 0.828442 0.560076i $$-0.189228\pi$$
−0.899260 + 0.437414i $$0.855895\pi$$
$$390$$ 19.6640 + 34.0590i 0.995725 + 1.72465i
$$391$$ −12.4175 −0.627979
$$392$$ −0.804226 −0.0406196
$$393$$ 22.4816 + 38.9393i 1.13405 + 1.96423i
$$394$$ −4.92470 + 8.52983i −0.248103 + 0.429727i
$$395$$ 7.27021 + 12.5924i 0.365804 + 0.633591i
$$396$$ 2.81250 4.87139i 0.141333 0.244797i
$$397$$ 19.7551 34.2168i 0.991478 1.71729i 0.382919 0.923782i $$-0.374919\pi$$
0.608559 0.793509i $$-0.291748\pi$$
$$398$$ 20.4661 1.02587
$$399$$ 0 0
$$400$$ 1.04988 0.0524938
$$401$$ −9.31073 + 16.1267i −0.464956 + 0.805327i −0.999200 0.0400033i $$-0.987263\pi$$
0.534244 + 0.845331i $$0.320596\pi$$
$$402$$ −14.5670 + 25.2308i −0.726536 + 1.25840i
$$403$$ −23.1072 40.0228i −1.15105 1.99368i
$$404$$ −5.64146 + 9.77130i −0.280673 + 0.486140i
$$405$$ −9.62126 16.6645i −0.478084 0.828066i
$$406$$ −16.5711 −0.822408
$$407$$ 0.924824 0.0458418
$$408$$ 6.26153 + 10.8453i 0.309992 + 0.536921i
$$409$$ −8.57164 14.8465i −0.423840 0.734113i 0.572471 0.819925i $$-0.305985\pi$$
−0.996311 + 0.0858120i $$0.972652\pi$$
$$410$$ 6.41332 0.316731
$$411$$ −40.1098 −1.97847
$$412$$ 7.41399 + 12.8414i 0.365261 + 0.632651i
$$413$$ 6.93179 12.0062i 0.341091 0.590787i
$$414$$ −4.18709 7.25225i −0.205784 0.356429i
$$415$$ 18.6654 32.3295i 0.916251 1.58699i
$$416$$ −3.17229 + 5.49456i −0.155534 + 0.269393i
$$417$$ 25.5043 1.24895
$$418$$ 0 0
$$419$$ −18.5042 −0.903989 −0.451995 0.892021i $$-0.649287\pi$$
−0.451995 + 0.892021i $$0.649287\pi$$
$$420$$ −8.65833 + 14.9967i −0.422483 + 0.731762i
$$421$$ −8.09980 + 14.0293i −0.394760 + 0.683745i −0.993071 0.117520i $$-0.962506\pi$$
0.598310 + 0.801264i $$0.295839\pi$$
$$422$$ −4.05815 7.02892i −0.197548 0.342162i
$$423$$ −1.24929 + 2.16384i −0.0607428 + 0.105210i
$$424$$ 0.735136 + 1.27329i 0.0357013 + 0.0618365i
$$425$$ 5.21702 0.253062
$$426$$ −17.6334 −0.854342
$$427$$ 13.0417 + 22.5890i 0.631134 + 1.09316i
$$428$$ −1.41424 2.44954i −0.0683600 0.118403i
$$429$$ 26.8385 1.29577
$$430$$ 7.06236 0.340577
$$431$$ 6.34983 + 10.9982i 0.305861 + 0.529766i 0.977453 0.211155i $$-0.0677225\pi$$
−0.671592 + 0.740921i $$0.734389\pi$$
$$432$$ −0.442463 + 0.766369i −0.0212880 + 0.0368720i
$$433$$ 7.11751 + 12.3279i 0.342046 + 0.592441i 0.984813 0.173621i $$-0.0555468\pi$$
−0.642767 + 0.766062i $$0.722213\pi$$
$$434$$ 10.1744 17.6226i 0.488388 0.845912i
$$435$$ −18.3846 + 31.8431i −0.881475 + 1.52676i
$$436$$ −1.72539 −0.0826312
$$437$$ 0 0
$$438$$ 15.5901 0.744924
$$439$$ 14.0950 24.4133i 0.672718 1.16518i −0.304412 0.952540i $$-0.598460\pi$$
0.977130 0.212642i $$-0.0682067\pi$$
$$440$$ 2.06430 3.57547i 0.0984116 0.170454i
$$441$$ −1.34754 2.33400i −0.0641685 0.111143i
$$442$$ −15.7637 + 27.3035i −0.749801 + 1.29869i
$$443$$ 16.4972 + 28.5740i 0.783805 + 1.35759i 0.929711 + 0.368291i $$0.120057\pi$$
−0.145906 + 0.989298i $$0.546610\pi$$
$$444$$ −1.38853 −0.0658967
$$445$$ 16.9839 0.805115
$$446$$ −5.37701 9.31326i −0.254609 0.440995i
$$447$$ −11.8428 20.5124i −0.560146 0.970201i
$$448$$ −2.79360 −0.131985
$$449$$ 17.1975 0.811601 0.405801 0.913962i $$-0.366993\pi$$
0.405801 + 0.913962i $$0.366993\pi$$
$$450$$ 1.75914 + 3.04692i 0.0829267 + 0.143633i
$$451$$ 2.18831 3.79027i 0.103044 0.178477i
$$452$$ −0.213892 0.370473i −0.0100607 0.0174256i
$$453$$ −12.9324 + 22.3996i −0.607618 + 1.05243i
$$454$$ −13.5468 + 23.4637i −0.635783 + 1.10121i
$$455$$ −43.5954 −2.04378
$$456$$ 0 0
$$457$$ −31.1517 −1.45722 −0.728608 0.684931i $$-0.759832\pi$$
−0.728608 + 0.684931i $$0.759832\pi$$
$$458$$ 4.73279 8.19743i 0.221149 0.383041i
$$459$$ −2.19868 + 3.80822i −0.102626 + 0.177753i
$$460$$ −3.07321 5.32296i −0.143289 0.248184i
$$461$$ −7.77050 + 13.4589i −0.361908 + 0.626843i −0.988275 0.152685i $$-0.951208\pi$$
0.626367 + 0.779528i $$0.284541\pi$$
$$462$$ 5.90868 + 10.2341i 0.274897 + 0.476135i
$$463$$ 20.6648 0.960374 0.480187 0.877166i $$-0.340569\pi$$
0.480187 + 0.877166i $$0.340569\pi$$
$$464$$ −5.93179 −0.275376
$$465$$ −22.5758 39.1025i −1.04693 1.81333i
$$466$$ 11.4311 + 19.7992i 0.529533 + 0.917178i
$$467$$ −28.4830 −1.31803 −0.659017 0.752128i $$-0.729028\pi$$
−0.659017 + 0.752128i $$0.729028\pi$$
$$468$$ −21.2616 −0.982816
$$469$$ −16.1477 27.9686i −0.745629 1.29147i
$$470$$ −0.916949 + 1.58820i −0.0422957 + 0.0732583i
$$471$$ −3.74730 6.49052i −0.172667 0.299067i
$$472$$ 2.48131 4.29775i 0.114211 0.197820i
$$473$$ 2.40977 4.17385i 0.110802 0.191914i
$$474$$ −14.8981 −0.684290
$$475$$ 0 0
$$476$$ −13.8819 −0.636276
$$477$$ −2.46354 + 4.26698i −0.112798 + 0.195372i
$$478$$ 4.33306 7.50508i 0.198189 0.343274i
$$479$$ 5.23632 + 9.06958i 0.239254 + 0.414400i 0.960500 0.278279i $$-0.0897639\pi$$
−0.721247 + 0.692678i $$0.756431\pi$$
$$480$$ −3.09934 + 5.36821i −0.141465 + 0.245024i
$$481$$ −1.74784 3.02735i −0.0796947 0.138035i
$$482$$ 5.65826 0.257727
$$483$$ 17.5930 0.800510
$$484$$ 4.09127 + 7.08628i 0.185967 + 0.322104i
$$485$$ −17.6940 30.6468i −0.803441 1.39160i
$$486$$ 22.3706 1.01475
$$487$$ −2.29894 −0.104175 −0.0520875 0.998643i $$-0.516587\pi$$
−0.0520875 + 0.998643i $$0.516587\pi$$
$$488$$ 4.66843 + 8.08596i 0.211330 + 0.366034i
$$489$$ −7.04622 + 12.2044i −0.318641 + 0.551902i
$$490$$ −0.989057 1.71310i −0.0446810 0.0773898i
$$491$$ −6.08059 + 10.5319i −0.274413 + 0.475297i −0.969987 0.243157i $$-0.921817\pi$$
0.695574 + 0.718455i $$0.255150\pi$$
$$492$$ −3.28553 + 5.69071i −0.148123 + 0.256557i
$$493$$ −29.4761 −1.32754
$$494$$ 0 0
$$495$$ 13.8355 0.621860
$$496$$ 3.64204 6.30820i 0.163532 0.283246i
$$497$$ 9.77340 16.9280i 0.438397 0.759326i
$$498$$ 19.1245 + 33.1247i 0.856991 + 1.48435i
$$499$$ −7.56742 + 13.1072i −0.338764 + 0.586757i −0.984201 0.177057i $$-0.943342\pi$$
0.645436 + 0.763814i $$0.276676\pi$$
$$500$$ −4.85796 8.41423i −0.217255 0.376296i
$$501$$ 17.8517 0.797556
$$502$$ 13.5552 0.605000
$$503$$ 0.286841 + 0.496824i 0.0127896 + 0.0221523i 0.872349 0.488883i $$-0.162595\pi$$
−0.859560 + 0.511035i $$0.829262\pi$$
$$504$$ −4.68088 8.10752i −0.208503 0.361138i
$$505$$ −27.7520 −1.23495
$$506$$ −4.19449 −0.186468
$$507$$ −34.3416 59.4814i −1.52516 2.64166i
$$508$$ −0.568158 + 0.984079i −0.0252079 + 0.0436614i
$$509$$ −13.1081 22.7039i −0.581008 1.00633i −0.995360 0.0962184i $$-0.969325\pi$$
0.414353 0.910116i $$-0.364008\pi$$
$$510$$ −15.4012 + 26.6756i −0.681975 + 1.18121i
$$511$$ −8.64089 + 14.9665i −0.382250 + 0.662077i
$$512$$ −1.00000 −0.0441942
$$513$$ 0 0
$$514$$ 10.0393 0.442813
$$515$$ −18.2358 + 31.5854i −0.803566 + 1.39182i
$$516$$ −3.61803 + 6.26662i −0.159275 + 0.275873i
$$517$$ 0.625751 + 1.08383i 0.0275205 + 0.0476669i
$$518$$ 0.769599 1.33298i 0.0338142 0.0585680i
$$519$$ −29.0079 50.2432i −1.27331 2.20543i
$$520$$ −15.6054 −0.684344
$$521$$ 12.9637 0.567948 0.283974 0.958832i $$-0.408347\pi$$
0.283974 + 0.958832i $$0.408347\pi$$
$$522$$ −9.93912 17.2151i −0.435024 0.753483i
$$523$$ 8.88963 + 15.3973i 0.388716 + 0.673276i 0.992277 0.124041i $$-0.0395853\pi$$
−0.603561 + 0.797317i $$0.706252\pi$$
$$524$$ −17.8415 −0.779410
$$525$$ −7.39144 −0.322589
$$526$$ −9.41309 16.3040i −0.410430 0.710886i
$$527$$ 18.0979 31.3465i 0.788358 1.36548i
$$528$$ 2.11507 + 3.66341i 0.0920467 + 0.159430i
$$529$$ 8.37774 14.5107i 0.364250 0.630899i
$$530$$ −1.80818 + 3.13185i −0.0785421 + 0.136039i
$$531$$ 16.6304 0.721698
$$532$$ 0 0
$$533$$ −16.5429 −0.716554
$$534$$ −8.70083 + 15.0703i −0.376522 + 0.652155i
$$535$$ 3.47854 6.02501i 0.150391 0.260484i
$$536$$ −5.78022 10.0116i −0.249668 0.432437i
$$537$$ 10.3511 17.9287i 0.446685 0.773681i
$$538$$ 8.19134 + 14.1878i 0.353154 + 0.611680i
$$539$$ −1.34992 −0.0581451
$$540$$ −2.17661 −0.0936664
$$541$$ 2.67209 + 4.62820i 0.114882 + 0.198982i 0.917733 0.397199i $$-0.130018\pi$$
−0.802851 + 0.596180i $$0.796684\pi$$
$$542$$ −1.38342 2.39615i −0.0594229 0.102923i
$$543$$ 32.7616 1.40594
$$544$$ −4.96917 −0.213052
$$545$$ −2.12193 3.67529i −0.0908934 0.157432i
$$546$$ 22.3338 38.6833i 0.955800 1.65549i
$$547$$ 2.55056 + 4.41770i 0.109054 + 0.188887i 0.915387 0.402574i $$-0.131885\pi$$
−0.806333 + 0.591461i $$0.798551\pi$$
$$548$$ 7.95782 13.7833i 0.339941 0.588795i
$$549$$ −15.6446 + 27.0972i −0.667694 + 1.15648i
$$550$$ 1.76225 0.0751426
$$551$$ 0 0
$$552$$ 6.29761 0.268044
$$553$$ 8.25731 14.3021i 0.351137 0.608186i
$$554$$ 12.2661 21.2454i 0.521135 0.902632i
$$555$$ −1.70765 2.95774i −0.0724857 0.125549i
$$556$$ −5.06008 + 8.76432i −0.214595 + 0.371690i
$$557$$ 5.36176 + 9.28685i 0.227185 + 0.393496i 0.956973 0.290178i $$-0.0937144\pi$$
−0.729788 + 0.683674i $$0.760381\pi$$
$$558$$ 24.4100 1.03336
$$559$$ −18.2171 −0.770502
$$560$$ −3.43564 5.95071i −0.145182 0.251463i
$$561$$ 10.5102 + 18.2041i 0.443740 + 0.768580i
$$562$$ 10.1704 0.429011
$$563$$ −9.76285 −0.411455 −0.205728 0.978609i $$-0.565956\pi$$
−0.205728 + 0.978609i $$0.565956\pi$$
$$564$$ −0.939503 1.62727i −0.0395602 0.0685203i
$$565$$ 0.526100 0.911233i 0.0221332 0.0383358i
$$566$$ 13.8339 + 23.9610i 0.581482 + 1.00716i
$$567$$ −10.9276 + 18.9271i −0.458915 + 0.794864i
$$568$$ 3.49849 6.05956i 0.146793 0.254254i
$$569$$ 8.84194 0.370674 0.185337 0.982675i $$-0.440662\pi$$
0.185337 + 0.982675i $$0.440662\pi$$
$$570$$ 0 0
$$571$$ 22.8411 0.955871 0.477935 0.878395i $$-0.341385\pi$$
0.477935 + 0.878395i $$0.341385\pi$$
$$572$$ −5.32479 + 9.22280i −0.222640 + 0.385625i
$$573$$ −8.28472 + 14.3496i −0.346099 + 0.599461i
$$574$$ −3.64204 6.30820i −0.152016 0.263299i
$$575$$ 1.31177 2.27205i 0.0547046 0.0947511i
$$576$$ −1.67557 2.90217i −0.0698154 0.120924i
$$577$$ −14.0176 −0.583560 −0.291780 0.956486i $$-0.594247\pi$$
−0.291780 + 0.956486i $$0.594247\pi$$
$$578$$ −7.69270 −0.319974
$$579$$ 33.8741 + 58.6716i 1.40776 + 2.43831i
$$580$$ −7.29506 12.6354i −0.302911 0.524657i
$$581$$ −42.3994 −1.75903
$$582$$ 36.2583 1.50296
$$583$$ 1.23395 + 2.13726i 0.0511049 + 0.0885163i
$$584$$ −3.09310 + 5.35740i −0.127993 + 0.221691i
$$585$$ −26.1480 45.2897i −1.08109 1.87250i
$$586$$ −11.9193 + 20.6448i −0.492382 + 0.852830i
$$587$$ −10.5178 + 18.2174i −0.434116 + 0.751911i −0.997223 0.0744731i $$-0.976273\pi$$
0.563107 + 0.826384i $$0.309606\pi$$
$$588$$ 2.02677 0.0835825
$$589$$ 0 0
$$590$$ 12.2063 0.502525
$$591$$ 12.4110 21.4964i 0.510519 0.884245i
$$592$$ 0.275486 0.477156i 0.0113224 0.0196110i
$$593$$ 17.4596 + 30.2410i 0.716981 + 1.24185i 0.962190 + 0.272377i $$0.0878099\pi$$
−0.245210 + 0.969470i $$0.578857\pi$$
$$594$$ −0.742689 + 1.28637i −0.0304729 + 0.0527806i
$$595$$ −17.0723 29.5701i −0.699897 1.21226i
$$596$$ 9.39851 0.384978
$$597$$ −51.5776 −2.11093
$$598$$ 7.92724 + 13.7304i 0.324169 + 0.561477i
$$599$$ 10.7553 + 18.6288i 0.439450 + 0.761150i 0.997647 0.0685583i $$-0.0218399\pi$$
−0.558197 + 0.829709i $$0.688507\pi$$
$$600$$ −2.64584 −0.108016
$$601$$ 14.3417 0.585012 0.292506 0.956264i $$-0.405511\pi$$
0.292506 + 0.956264i $$0.405511\pi$$
$$602$$ −4.01062 6.94660i −0.163461 0.283122i
$$603$$ 19.3703 33.5504i 0.788821 1.36628i
$$604$$ −5.13162 8.88822i −0.208803 0.361657i
$$605$$ −10.0631 + 17.4298i −0.409122 + 0.708621i
$$606$$ 14.2173 24.6251i 0.577539 1.00033i
$$607$$ 10.3488 0.420046 0.210023 0.977696i $$-0.432646\pi$$
0.210023 + 0.977696i $$0.432646\pi$$
$$608$$ 0 0
$$609$$ 41.7615 1.69226
$$610$$ −11.4827 + 19.8886i −0.464921 + 0.805267i
$$611$$ 2.36524 4.09671i 0.0956873 0.165735i
$$612$$ −8.32620 14.4214i −0.336567 0.582951i
$$613$$ −9.78370 + 16.9459i −0.395160 + 0.684437i −0.993122 0.117088i $$-0.962644\pi$$
0.597962 + 0.801525i $$0.295978\pi$$
$$614$$ −12.9942 22.5066i −0.524404 0.908294i
$$615$$ −16.1625 −0.651735
$$616$$ −4.68915 −0.188931
$$617$$ 2.96261 + 5.13139i 0.119270 + 0.206582i 0.919479 0.393140i $$-0.128611\pi$$
−0.800208 + 0.599722i $$0.795278\pi$$
$$618$$ −18.6843 32.3622i −0.751594 1.30180i
$$619$$ 8.03958 0.323138 0.161569 0.986861i $$-0.448345\pi$$
0.161569 + 0.986861i $$0.448345\pi$$
$$620$$ 17.9163 0.719535
$$621$$ 1.10567 + 1.91508i 0.0443692 + 0.0768496i
$$622$$ −11.5522 + 20.0089i −0.463200 + 0.802286i
$$623$$ −9.64494 16.7055i −0.386417 0.669293i
$$624$$ 7.99463 13.8471i 0.320041 0.554328i
$$625$$ 14.5736 25.2422i 0.582943 1.00969i
$$626$$ −12.2647 −0.490196
$$627$$ 0 0
$$628$$ 2.97387 0.118671
$$629$$ 1.36894 2.37107i 0.0545831 0.0945408i
$$630$$ 11.5133 19.9417i 0.458702 0.794495i
$$631$$ 6.45032 + 11.1723i 0.256783 + 0.444762i 0.965378 0.260854i $$-0.0840040\pi$$
−0.708595 + 0.705615i $$0.750671\pi$$
$$632$$ 2.95579 5.11958i 0.117575 0.203646i
$$633$$ 10.2271 + 17.7139i 0.406492 + 0.704065i
$$634$$ −0.272305 −0.0108146
$$635$$ −2.79494 −0.110914
$$636$$ −1.85265 3.20888i −0.0734623 0.127241i
$$637$$ 2.55124 + 4.41887i 0.101084 + 0.175082i
$$638$$ −9.95669 −0.394189
$$639$$ 23.4479 0.927584
$$640$$ −1.22982 2.13012i −0.0486131 0.0842003i
$$641$$ −14.4319 + 24.9969i −0.570028 + 0.987317i 0.426535 + 0.904471i $$0.359734\pi$$
−0.996562 + 0.0828458i $$0.973599\pi$$
$$642$$ 3.56410 + 6.17320i 0.140664 + 0.243637i
$$643$$ −13.1697 + 22.8106i −0.519363 + 0.899563i 0.480384 + 0.877058i $$0.340497\pi$$
−0.999747 + 0.0225047i $$0.992836\pi$$
$$644$$ −3.49047 + 6.04568i −0.137544 + 0.238233i
$$645$$ −17.7982 −0.700803
$$646$$ 0 0
$$647$$ −3.04601 −0.119751 −0.0598756 0.998206i $$-0.519070\pi$$
−0.0598756 + 0.998206i $$0.519070\pi$$
$$648$$ −3.91164 + 6.77516i −0.153664 + 0.266153i
$$649$$ 4.16495 7.21390i 0.163489 0.283170i
$$650$$ −3.33051 5.76861i −0.130633 0.226264i
$$651$$ −25.6410 + 44.4116i −1.00495 + 1.74063i
$$652$$ −2.79595 4.84273i −0.109498 0.189656i
$$653$$ −15.1973 −0.594717 −0.297359 0.954766i $$-0.596106\pi$$
−0.297359 + 0.954766i $$0.596106\pi$$
$$654$$ 4.34824 0.170030
$$655$$ −21.9419 38.0045i −0.857342 1.48496i
$$656$$ −1.30371 2.25809i −0.0509012 0.0881634i
$$657$$ −20.7308 −0.808786
$$658$$ 2.08289 0.0811996
$$659$$ 8.93704 + 15.4794i 0.348138 + 0.602992i 0.985919 0.167226i $$-0.0534808\pi$$
−0.637781 + 0.770218i $$0.720148\pi$$
$$660$$ −5.20234 + 9.01071i −0.202501 + 0.350742i
$$661$$ 18.9263 + 32.7812i 0.736146 + 1.27504i 0.954219 + 0.299110i $$0.0966898\pi$$
−0.218072 + 0.975933i $$0.569977\pi$$
$$662$$ 9.99650 17.3144i 0.388525 0.672945i
$$663$$ 39.7267 68.8087i 1.54286 2.67231i
$$664$$ −15.1773 −0.588994
$$665$$ 0 0
$$666$$ 1.84638 0.0715460
$$667$$ −7.41148 + 12.8371i −0.286974 + 0.497053i
$$668$$ −3.54180 + 6.13458i −0.137036 + 0.237354i
$$669$$ 13.5509 + 23.4708i 0.523906 + 0.907433i
$$670$$ 14.2173 24.6251i 0.549263 0.951351i
$$671$$ 7.83611 + 13.5725i 0.302510 + 0.523962i
$$672$$ 7.04029 0.271585
$$673$$ 8.28461 0.319348 0.159674 0.987170i $$-0.448956\pi$$
0.159674 + 0.987170i $$0.448956\pi$$
$$674$$ 8.64121 + 14.9670i 0.332847 + 0.576508i
$$675$$ −0.464532 0.804593i −0.0178798 0.0309688i
$$676$$ 27.2537 1.04822
$$677$$ 18.3233 0.704223 0.352111 0.935958i $$-0.385464\pi$$
0.352111 + 0.935958i $$0.385464\pi$$
$$678$$ 0.539040 + 0.933645i 0.0207017 + 0.0358564i
$$679$$ −20.0963 + 34.8079i −0.771226 + 1.33580i
$$680$$ −6.11121 10.5849i −0.234354 0.405914i
$$681$$ 34.1399 59.1321i 1.30825 2.26595i
$$682$$ 6.11328 10.5885i 0.234090 0.405455i
$$683$$ 49.2217 1.88342 0.941709 0.336429i $$-0.109219\pi$$
0.941709 + 0.336429i $$0.109219\pi$$
$$684$$ 0 0
$$685$$ 39.1469 1.49573
$$686$$ 8.65427 14.9896i 0.330422 0.572307i
$$687$$ −11.9273 + 20.6587i −0.455055 + 0.788179i
$$688$$ −1.43564 2.48661i −0.0547334 0.0948011i
$$689$$ 4.66412 8.07850i 0.177689 0.307766i
$$690$$ 7.74495 + 13.4146i 0.294845 + 0.510687i
$$691$$ 16.6779 0.634458 0.317229 0.948349i $$-0.397248\pi$$
0.317229 + 0.948349i $$0.397248\pi$$
$$692$$ 23.0208 0.875120
$$693$$ −7.85701 13.6087i −0.298463 0.516953i
$$694$$ −9.27279 16.0609i −0.351990 0.609665i
$$695$$ −24.8921 −0.944210
$$696$$ 14.9490 0.566639
$$697$$ −6.47834 11.2208i −0.245385 0.425019i
$$698$$ −10.0605 + 17.4253i −0.380796 + 0.659558i
$$699$$ −28.8079 49.8968i −1.08962 1.88727i
$$700$$ 1.46647 2.54000i 0.0554273 0.0960029i
$$701$$ 15.4533 26.7659i 0.583663 1.01093i −0.411378 0.911465i $$-0.634952\pi$$
0.995041 0.0994688i $$-0.0317143\pi$$
$$702$$ 5.61449 0.211905
$$703$$ 0 0
$$704$$ −1.67853 −0.0632620
$$705$$ 2.31085 4.00250i 0.0870315 0.150743i
$$706$$ 12.0278 20.8328i 0.452674 0.784054i
$$707$$ 15.7600 + 27.2972i 0.592716 + 1.02661i
$$708$$ −6.25325 + 10.8310i −0.235012 + 0.407052i
$$709$$ −20.0528 34.7325i −0.753098 1.30440i −0.946314 0.323248i $$-0.895225\pi$$
0.193216 0.981156i $$-0.438108\pi$$
$$710$$ 17.2101 0.645884
$$711$$ 19.8105 0.742953
$$712$$ −3.45251 5.97992i −0.129388 0.224107i
$$713$$ −9.10111 15.7636i −0.340839 0.590351i
$$714$$ 34.9845 1.30926
$$715$$ −26.1942 −0.979608
$$716$$ 4.10736 + 7.11415i 0.153499 + 0.265868i
$$717$$ −10.9199 + 18.9139i −0.407813 + 0.706352i
$$718$$ −5.42673 9.39937i −0.202524 0.350781i
$$719$$ 22.8264 39.5365i 0.851282 1.47446i −0.0287690 0.999586i $$-0.509159\pi$$
0.880051 0.474878i $$-0.157508\pi$$
$$720$$ 4.12132 7.13833i 0.153592 0.266030i
$$721$$ 41.4235 1.54269
$$722$$ 0 0
$$723$$ −14.2596 −0.530322
$$724$$ −6.49994 + 11.2582i −0.241569 + 0.418409i
$$725$$ 3.11382 5.39329i 0.115644 0.200302i
$$726$$ −10.3106 17.8585i −0.382662 0.662790i
$$727$$ 7.59053 13.1472i 0.281517 0.487602i −0.690242 0.723579i $$-0.742496\pi$$
0.971759 + 0.235977i $$0.0758291\pi$$
$$728$$ 8.86212 + 15.3496i 0.328452 + 0.568896i
$$729$$ −32.9073 −1.21879
$$730$$ −15.2159 −0.563164
$$731$$ −7.13397 12.3564i −0.263859 0.457018i
$$732$$ −11.7651 20.3778i −0.434852 0.753185i
$$733$$ −26.9986 −0.997217 −0.498608 0.866827i $$-0.666155\pi$$
−0.498608 + 0.866827i $$0.666155\pi$$
$$734$$ 32.6121 1.20373
$$735$$ 2.49257 + 4.31726i 0.0919398 + 0.159244i
$$736$$ −1.24945 + 2.16411i −0.0460554 + 0.0797703i
$$737$$ −9.70228 16.8048i −0.357388 0.619014i
$$738$$ 4.36890 7.56716i 0.160822 0.278551i
$$739$$ 2.60391 4.51010i 0.0957864 0.165907i −0.814150 0.580654i $$-0.802797\pi$$
0.909937 + 0.414748i $$0.136130\pi$$
$$740$$ 1.35520 0.0498181
$$741$$ 0 0
$$742$$ 4.10736 0.150786
$$743$$ 11.0539 19.1460i 0.405529 0.702398i −0.588853 0.808240i $$-0.700420\pi$$
0.994383 + 0.105842i $$0.0337538\pi$$
$$744$$ −9.17848 + 15.8976i −0.336499 + 0.582834i
$$745$$ 11.5585 + 20.0199i 0.423471 + 0.733474i
$$746$$ 2.65099 4.59165i 0.0970596 0.168112i
$$747$$ −25.4307 44.0472i −0.930460 1.61160i
$$748$$ −8.34092 −0.304974
$$749$$ −7.90167 −0.288721
$$750$$ 12.2428 + 21.2051i 0.447043 + 0.774301i
$$751$$ −6.24798 10.8218i −0.227992 0.394894i 0.729221 0.684279i $$-0.239883\pi$$
−0.957213 + 0.289384i $$0.906549\pi$$
$$752$$ 0.745593 0.0271890
$$753$$ −34.1612 −1.24490
$$754$$ 18.8173 + 32.5926i 0.685287 + 1.18695i
$$755$$ 12.6220 21.8619i 0.459361 0.795636i
$$756$$ 1.23607 + 2.14093i 0.0449554 + 0.0778650i
$$757$$ 15.4994 26.8458i 0.563336 0.975727i −0.433866 0.900977i $$-0.642851\pi$$
0.997202 0.0747495i $$-0.0238157\pi$$
$$758$$ −12.3328 + 21.3610i −0.447948 + 0.775868i
$$759$$ 10.5707 0.383693
$$760$$ 0 0
$$761$$ 1.96398 0.0711941 0.0355971 0.999366i $$-0.488667\pi$$
0.0355971 + 0.999366i $$0.488667\pi$$
$$762$$ 1.43184 2.48002i 0.0518702 0.0898418i
$$763$$ −2.41003 + 4.17429i −0.0872489 + 0.151120i
$$764$$ −3.28740 5.69394i −0.118934 0.205999i
$$765$$ 20.4795 35.4716i 0.740439 1.28248i
$$766$$ −1.82208 3.15593i −0.0658344 0.114029i
$$767$$ −31.4857 −1.13688
$$768$$ 2.52015 0.0909380
$$769$$ 11.1661 + 19.3402i 0.402659 + 0.697426i 0.994046 0.108962i $$-0.0347527\pi$$
−0.591387 + 0.806388i $$0.701419\pi$$
$$770$$ −5.76684 9.98845i −0.207822 0.359959i
$$771$$ −25.3004 −0.911172
$$772$$ −26.8826 −0.967527
$$773$$ 13.6776 + 23.6904i 0.491951 + 0.852084i 0.999957 0.00926978i $$-0.00295070\pi$$
−0.508006 + 0.861353i $$0.669617\pi$$
$$774$$ 4.81105 8.33298i 0.172929 0.299523i
$$775$$ 3.82369 + 6.62282i 0.137351 + 0.237899i
$$776$$ −7.19369 + 12.4598i −0.258238 + 0.447282i
$$777$$ −1.93950 + 3.35932i −0.0695793 + 0.120515i
$$778$$ −2.79353 −0.100153