# Properties

 Label 7200.2.k.u Level $7200$ Weight $2$ Character orbit 7200.k Analytic conductor $57.492$ Analytic rank $0$ Dimension $12$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7200 = 2^{5} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7200.k (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$57.4922894553$$ Analytic rank: $$0$$ Dimension: $$12$$ Coefficient field: 12.0.180227832610816.1 Defining polynomial: $$x^{12} + x^{10} - 8x^{6} + 16x^{2} + 64$$ x^12 + x^10 - 8*x^6 + 16*x^2 + 64 Coefficient ring: $$\Z[a_1, \ldots, a_{53}]$$ Coefficient ring index: $$2^{17}$$ Twist minimal: no (minimal twist has level 120) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{11}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta_{3} q^{7}+O(q^{10})$$ q - b3 * q^7 $$q - \beta_{3} q^{7} + \beta_{8} q^{11} + \beta_{9} q^{13} + (\beta_{5} + \beta_{4}) q^{17} + (\beta_{7} - \beta_{2}) q^{19} + ( - 2 \beta_{5} - \beta_{4} + \beta_{3}) q^{23} + ( - 2 \beta_{8} - \beta_{7} - 2 \beta_{2}) q^{29} + ( - \beta_{11} + 3) q^{31} + (\beta_{9} + \beta_{6}) q^{37} + 2 \beta_{11} q^{41} + 2 \beta_1 q^{43} + (\beta_{4} - \beta_{3}) q^{47} + ( - \beta_{11} + \beta_{10} + 1) q^{49} + ( - \beta_{6} + \beta_1) q^{53} + (\beta_{8} - 2 \beta_{2}) q^{59} + (2 \beta_{7} + 2 \beta_{2}) q^{61} + 2 \beta_1 q^{67} + (2 \beta_{11} + 2) q^{71} + ( - 2 \beta_{5} - 4 \beta_{4}) q^{73} + \beta_{6} q^{77} + ( - \beta_{11} + 3) q^{79} + 2 \beta_{9} q^{83} + (2 \beta_{10} - 4) q^{89} + (2 \beta_{8} + 4 \beta_{7} + 4 \beta_{2}) q^{91} + (2 \beta_{5} - 2 \beta_{4}) q^{97}+O(q^{100})$$ q - b3 * q^7 + b8 * q^11 + b9 * q^13 + (b5 + b4) * q^17 + (b7 - b2) * q^19 + (-2*b5 - b4 + b3) * q^23 + (-2*b8 - b7 - 2*b2) * q^29 + (-b11 + 3) * q^31 + (b9 + b6) * q^37 + 2*b11 * q^41 + 2*b1 * q^43 + (b4 - b3) * q^47 + (-b11 + b10 + 1) * q^49 + (-b6 + b1) * q^53 + (b8 - 2*b2) * q^59 + (2*b7 + 2*b2) * q^61 + 2*b1 * q^67 + (2*b11 + 2) * q^71 + (-2*b5 - 4*b4) * q^73 + b6 * q^77 + (-b11 + 3) * q^79 + 2*b9 * q^83 + (2*b10 - 4) * q^89 + (2*b8 + 4*b7 + 4*b2) * q^91 + (2*b5 - 2*b4) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12 q+O(q^{10})$$ 12 * q $$12 q + 32 q^{31} + 8 q^{41} + 12 q^{49} + 32 q^{71} + 32 q^{79} - 40 q^{89}+O(q^{100})$$ 12 * q + 32 * q^31 + 8 * q^41 + 12 * q^49 + 32 * q^71 + 32 * q^79 - 40 * q^89

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{12} + x^{10} - 8x^{6} + 16x^{2} + 64$$ :

 $$\beta_{1}$$ $$=$$ $$( \nu^{9} + \nu^{7} + 8\nu ) / 8$$ (v^9 + v^7 + 8*v) / 8 $$\beta_{2}$$ $$=$$ $$( \nu^{8} + \nu^{6} + 4\nu^{4} - 4\nu^{2} ) / 8$$ (v^8 + v^6 + 4*v^4 - 4*v^2) / 8 $$\beta_{3}$$ $$=$$ $$( -\nu^{11} - 3\nu^{9} + 2\nu^{7} + 4\nu^{5} + 24\nu^{3} ) / 32$$ (-v^11 - 3*v^9 + 2*v^7 + 4*v^5 + 24*v^3) / 32 $$\beta_{4}$$ $$=$$ $$( -\nu^{11} + \nu^{9} - 2\nu^{7} + 12\nu^{5} - 24\nu^{3} + 32\nu ) / 32$$ (-v^11 + v^9 - 2*v^7 + 12*v^5 - 24*v^3 + 32*v) / 32 $$\beta_{5}$$ $$=$$ $$( \nu^{11} - \nu^{9} - 6\nu^{7} - 4\nu^{5} + 40\nu^{3} + 32\nu ) / 32$$ (v^11 - v^9 - 6*v^7 - 4*v^5 + 40*v^3 + 32*v) / 32 $$\beta_{6}$$ $$=$$ $$( \nu^{11} - \nu^{9} + 2\nu^{7} + 4\nu^{5} + 8\nu^{3} ) / 16$$ (v^11 - v^9 + 2*v^7 + 4*v^5 + 8*v^3) / 16 $$\beta_{7}$$ $$=$$ $$( -\nu^{8} + 3\nu^{6} + 4\nu^{2} - 16 ) / 8$$ (-v^8 + 3*v^6 + 4*v^2 - 16) / 8 $$\beta_{8}$$ $$=$$ $$( \nu^{10} + \nu^{8} - 4\nu^{6} - 12\nu^{4} + 16\nu^{2} + 32 ) / 16$$ (v^10 + v^8 - 4*v^6 - 12*v^4 + 16*v^2 + 32) / 16 $$\beta_{9}$$ $$=$$ $$( \nu^{11} - \nu^{9} - 6\nu^{7} - 20\nu^{5} - 8\nu^{3} + 64\nu ) / 32$$ (v^11 - v^9 - 6*v^7 - 20*v^5 - 8*v^3 + 64*v) / 32 $$\beta_{10}$$ $$=$$ $$( -\nu^{10} - \nu^{8} + 8\nu^{4} + 16\nu^{2} - 8 ) / 8$$ (-v^10 - v^8 + 8*v^4 + 16*v^2 - 8) / 8 $$\beta_{11}$$ $$=$$ $$( -\nu^{10} + \nu^{8} + 2\nu^{6} - 8\nu^{2} - 8 ) / 8$$ (-v^10 + v^8 + 2*v^6 - 8*v^2 - 8) / 8
 $$\nu$$ $$=$$ $$( 2\beta_{9} + \beta_{6} + 2\beta_{4} + 2\beta_{3} + 2\beta_1 ) / 8$$ (2*b9 + b6 + 2*b4 + 2*b3 + 2*b1) / 8 $$\nu^{2}$$ $$=$$ $$( \beta_{10} + 2\beta_{8} + \beta_{7} + \beta_{2} - 1 ) / 4$$ (b10 + 2*b8 + b7 + b2 - 1) / 4 $$\nu^{3}$$ $$=$$ $$( -2\beta_{9} - \beta_{6} + 4\beta_{5} - 2\beta_{4} + 2\beta_{3} + 2\beta_1 ) / 8$$ (-2*b9 - b6 + 4*b5 - 2*b4 + 2*b3 + 2*b1) / 8 $$\nu^{4}$$ $$=$$ $$( -2\beta_{11} + \beta_{10} - 2\beta_{8} - \beta_{7} + 3\beta_{2} + 1 ) / 4$$ (-2*b11 + b10 - 2*b8 - b7 + 3*b2 + 1) / 4 $$\nu^{5}$$ $$=$$ $$( -6\beta_{9} + 5\beta_{6} + 4\beta_{5} + 10\beta_{4} - 2\beta_{3} - 2\beta_1 ) / 8$$ (-6*b9 + 5*b6 + 4*b5 + 10*b4 - 2*b3 - 2*b1) / 8 $$\nu^{6}$$ $$=$$ $$( 2\beta_{11} - \beta_{10} + 2\beta_{8} + 9\beta_{7} + 5\beta_{2} + 15 ) / 4$$ (2*b11 - b10 + 2*b8 + 9*b7 + 5*b2 + 15) / 4 $$\nu^{7}$$ $$=$$ $$( 6\beta_{9} + 11\beta_{6} - 20\beta_{5} - 10\beta_{4} + 18\beta_{3} + 18\beta_1 ) / 8$$ (6*b9 + 11*b6 - 20*b5 - 10*b4 + 18*b3 + 18*b1) / 8 $$\nu^{8}$$ $$=$$ $$( 6\beta_{11} + \beta_{10} + 14\beta_{8} - \beta_{7} + 19\beta_{2} - 23 ) / 4$$ (6*b11 + b10 + 14*b8 - b7 + 19*b2 - 23) / 4 $$\nu^{9}$$ $$=$$ $$( -22\beta_{9} - 19\beta_{6} + 20\beta_{5} - 6\beta_{4} - 34\beta_{3} + 30\beta_1 ) / 8$$ (-22*b9 - 19*b6 + 20*b5 - 6*b4 - 34*b3 + 30*b1) / 8 $$\nu^{10}$$ $$=$$ $$( -22\beta_{11} - 9\beta_{10} + 2\beta_{8} + 9\beta_{7} + 21\beta_{2} - 17 ) / 4$$ (-22*b11 - 9*b10 + 2*b8 + 9*b7 + 21*b2 - 17) / 4 $$\nu^{11}$$ $$=$$ $$( 6\beta_{9} + 75\beta_{6} + 12\beta_{5} - 10\beta_{4} - 78\beta_{3} - 14\beta_1 ) / 8$$ (6*b9 + 75*b6 + 12*b5 - 10*b4 - 78*b3 - 14*b1) / 8

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$6401$$ $$6751$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
3601.1
 1.37729 + 0.321037i 1.37729 − 0.321037i −0.450129 + 1.34067i −0.450129 − 1.34067i 0.806504 − 1.16170i 0.806504 + 1.16170i −0.806504 + 1.16170i −0.806504 − 1.16170i 0.450129 − 1.34067i 0.450129 + 1.34067i −1.37729 − 0.321037i −1.37729 + 0.321037i
0 0 0 0 0 −4.05705 0 0 0
3601.2 0 0 0 0 0 −4.05705 0 0 0
3601.3 0 0 0 0 0 −2.64265 0 0 0
3601.4 0 0 0 0 0 −2.64265 0 0 0
3601.5 0 0 0 0 0 −0.746175 0 0 0
3601.6 0 0 0 0 0 −0.746175 0 0 0
3601.7 0 0 0 0 0 0.746175 0 0 0
3601.8 0 0 0 0 0 0.746175 0 0 0
3601.9 0 0 0 0 0 2.64265 0 0 0
3601.10 0 0 0 0 0 2.64265 0 0 0
3601.11 0 0 0 0 0 4.05705 0 0 0
3601.12 0 0 0 0 0 4.05705 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 3601.12 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7200.2.k.u 12
3.b odd 2 1 2400.2.k.f 12
4.b odd 2 1 1800.2.k.u 12
5.b even 2 1 inner 7200.2.k.u 12
5.c odd 4 1 1440.2.d.e 6
5.c odd 4 1 1440.2.d.f 6
8.b even 2 1 inner 7200.2.k.u 12
8.d odd 2 1 1800.2.k.u 12
12.b even 2 1 600.2.k.f 12
15.d odd 2 1 2400.2.k.f 12
15.e even 4 1 480.2.d.a 6
15.e even 4 1 480.2.d.b 6
20.d odd 2 1 1800.2.k.u 12
20.e even 4 1 360.2.d.e 6
20.e even 4 1 360.2.d.f 6
24.f even 2 1 600.2.k.f 12
24.h odd 2 1 2400.2.k.f 12
40.e odd 2 1 1800.2.k.u 12
40.f even 2 1 inner 7200.2.k.u 12
40.i odd 4 1 1440.2.d.e 6
40.i odd 4 1 1440.2.d.f 6
40.k even 4 1 360.2.d.e 6
40.k even 4 1 360.2.d.f 6
60.h even 2 1 600.2.k.f 12
60.l odd 4 1 120.2.d.a 6
60.l odd 4 1 120.2.d.b yes 6
120.i odd 2 1 2400.2.k.f 12
120.m even 2 1 600.2.k.f 12
120.q odd 4 1 120.2.d.a 6
120.q odd 4 1 120.2.d.b yes 6
120.w even 4 1 480.2.d.a 6
120.w even 4 1 480.2.d.b 6
240.z odd 4 2 3840.2.f.l 12
240.bb even 4 2 3840.2.f.m 12
240.bd odd 4 2 3840.2.f.l 12
240.bf even 4 2 3840.2.f.m 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.d.a 6 60.l odd 4 1
120.2.d.a 6 120.q odd 4 1
120.2.d.b yes 6 60.l odd 4 1
120.2.d.b yes 6 120.q odd 4 1
360.2.d.e 6 20.e even 4 1
360.2.d.e 6 40.k even 4 1
360.2.d.f 6 20.e even 4 1
360.2.d.f 6 40.k even 4 1
480.2.d.a 6 15.e even 4 1
480.2.d.a 6 120.w even 4 1
480.2.d.b 6 15.e even 4 1
480.2.d.b 6 120.w even 4 1
600.2.k.f 12 12.b even 2 1
600.2.k.f 12 24.f even 2 1
600.2.k.f 12 60.h even 2 1
600.2.k.f 12 120.m even 2 1
1440.2.d.e 6 5.c odd 4 1
1440.2.d.e 6 40.i odd 4 1
1440.2.d.f 6 5.c odd 4 1
1440.2.d.f 6 40.i odd 4 1
1800.2.k.u 12 4.b odd 2 1
1800.2.k.u 12 8.d odd 2 1
1800.2.k.u 12 20.d odd 2 1
1800.2.k.u 12 40.e odd 2 1
2400.2.k.f 12 3.b odd 2 1
2400.2.k.f 12 15.d odd 2 1
2400.2.k.f 12 24.h odd 2 1
2400.2.k.f 12 120.i odd 2 1
3840.2.f.l 12 240.z odd 4 2
3840.2.f.l 12 240.bd odd 4 2
3840.2.f.m 12 240.bb even 4 2
3840.2.f.m 12 240.bf even 4 2
7200.2.k.u 12 1.a even 1 1 trivial
7200.2.k.u 12 5.b even 2 1 inner
7200.2.k.u 12 8.b even 2 1 inner
7200.2.k.u 12 40.f even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(7200, [\chi])$$:

 $$T_{7}^{6} - 24T_{7}^{4} + 128T_{7}^{2} - 64$$ T7^6 - 24*T7^4 + 128*T7^2 - 64 $$T_{11}^{6} + 32T_{11}^{4} + 96T_{11}^{2} + 64$$ T11^6 + 32*T11^4 + 96*T11^2 + 64 $$T_{17}^{6} - 36T_{17}^{4} + 368T_{17}^{2} - 1024$$ T17^6 - 36*T17^4 + 368*T17^2 - 1024

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{12}$$
$3$ $$T^{12}$$
$5$ $$T^{12}$$
$7$ $$(T^{6} - 24 T^{4} + 128 T^{2} - 64)^{2}$$
$11$ $$(T^{6} + 32 T^{4} + 96 T^{2} + 64)^{2}$$
$13$ $$(T^{6} + 48 T^{4} + 704 T^{2} + 3136)^{2}$$
$17$ $$(T^{6} - 36 T^{4} + 368 T^{2} - 1024)^{2}$$
$19$ $$(T^{6} + 60 T^{4} + 512 T^{2} + 1024)^{2}$$
$23$ $$(T^{6} - 92 T^{4} + 2304 T^{2} + \cdots - 16384)^{2}$$
$29$ $$(T^{6} + 108 T^{4} + 3120 T^{2} + \cdots + 12544)^{2}$$
$31$ $$(T^{3} - 8 T^{2} - 4 T + 64)^{4}$$
$37$ $$(T^{6} + 64 T^{4} + 128 T^{2} + 64)^{2}$$
$41$ $$(T^{3} - 2 T^{2} - 100 T - 56)^{4}$$
$43$ $$(T^{6} + 128 T^{4} + 4096 T^{2} + \cdots + 4096)^{2}$$
$47$ $$(T^{6} - 60 T^{4} + 512 T^{2} - 1024)^{2}$$
$53$ $$(T^{6} + 80 T^{4} + 1216 T^{2} + 64)^{2}$$
$59$ $$(T^{6} + 176 T^{4} + 9888 T^{2} + \cdots + 179776)^{2}$$
$61$ $$(T^{6} + 176 T^{4} + 7168 T^{2} + \cdots + 65536)^{2}$$
$67$ $$(T^{6} + 128 T^{4} + 4096 T^{2} + \cdots + 4096)^{2}$$
$71$ $$(T^{3} - 8 T^{2} - 80 T + 128)^{4}$$
$73$ $$(T^{6} - 384 T^{4} + 34560 T^{2} + \cdots - 16384)^{2}$$
$79$ $$(T^{3} - 8 T^{2} - 4 T + 64)^{4}$$
$83$ $$(T^{6} + 192 T^{4} + 11264 T^{2} + \cdots + 200704)^{2}$$
$89$ $$(T^{3} + 10 T^{2} - 164 T - 1384)^{4}$$
$97$ $$(T^{6} - 336 T^{4} + 28416 T^{2} + \cdots - 262144)^{2}$$